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Abstract

Herein, we developed the first report on the chemical retrial
queue and hybrid vacation process for the significant Ullmann cou-
pling for enhanced high-throughput reaction discovery. The problem
of controlling the waiting time for chemical retrials is addressed here.
We incorporated the supplementary variables method (SVT) and
generated the steady-state probability generating function (PGF)
for system size and orbit size. Important cases are outlined, and a
few key metrics are utilized to evaluate system performance. Addi-
tionally, the impact of changing certain system parameters has also
been analyzed via numerical examples. One particularly interesting
aspect of this research is the comparison of neuro-fuzzy technique
results with validation results utilizing the “adaptive neuro-fuzzy
inference system” (ANFIS).

1 Background and preliminaries

Chemical processes like “chemical queueing models” lie at the heart of

queuing models, and they are considered the “holy grail” of queuing mod-

els. In the realm of queueing models, chemical queueing models is bur-
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geoning owing to its great deal of attention among mathematicians and

chemists. In these models, a molecule is modeled as an endlessly long

chain of atoms united by links of equal length. The linkages are sensitive

to random shocks, which cause the atoms to move and the molecule to

spread, as discussed by Bohm and Homik [1]. In the context of chem-

ical physics, Stochmayer et al. [2] were the first to explore the chemi-

cal queueing model phenomenon. Following the efforts from Stochmayer,

Conolly et al. [3] analyzed chemical queueing processes using the direct

approach. With the help of a uniformization technique, Tarabia and El-

Baz [4,5] have provided a comprehensive analysis. They posed the system

of partial difference equations whose solutions are the transition functions

of the embedded discrete-time Markov chain and further made some ed-

ucated guesses as to what those solutions may be, and finally proved it

by induction. Stanislav Tsitkov [6] found a way to use a queueing model

to investigate the results of random factors on a N -step reaction cascade

catalysed by N enzymes immobilized on a scaffold. Of late, Alshreef and

Tarabia [7] looked into the transient analysis of the chemical queue with

disasters and server maintenance.

Queuing systems are mathematically abbreviated frameworks that cha-

racterize congestion. In general, a queueing system emerged whenever

‘customers’ demand ‘service’ from a resource. Queuing theory has numer-

ous business implications in real life. Queuing theory can address staffing,

planning, and customer service deficiencies, and is widely used as a tool

for operations management. The objective of queueing theory is to devise

balanced networks that serve consumers promptly and effectively while

remaining economically viable. Customers who are blocked often leave

the service facility for a short period of time before returning at a later

date. This happens in many real-world and technological contexts. Before

making another attempt to occupy a server, a customer who has been tem-

porarily banned will wait in a virtual waiting area known as orbit. Retrial

queues are used to represent these kinds of occurrences. In many imple-

mentations, the retrial rate is proportional to the number of consumers in

the orbit because they often behave independently of one another. Falin

and Templeton [10], Artalejo et al. [11], among others, have conducted
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extensive studies on the RQ.

A server must briefly suspend all service and be unreachable to its prin-

cipal consumers in order to establish a vacation queueing mechanism. This

time away from work is referred to as a vacation. During working vacation

periods (WV), nevertheless, the server delivers service to clients at a re-

duced rate. The providing of network service, internet service, file transfer

service, and postal service are among its numerous applications. A single

server retrial queueing system (SSRQ) was introduced by Arivudainambi

et al. [12] with WV. Recent time Chandrasekaran et al. [13] developed a

concise review on WV queueing techniques. New RQ models with brakes

and WV were addressed by Rajadurai [14]. Revathi [15] looked into several

different types of retrial queuing systems, including ones with consumer

search, optional re-service and delayed repairs.

For various reasons, consumers in a queue may need to be serviced on

multiple occasions. Customer service that isn’t satisfactory can be tried

again and again until it is. Several real-world scenarios lend themselves to

stochastic modeling, which includes these queueing models. Such instances

of queuing are known as feedback. In data transmission, for instance, a

packet sent from the source to the destination may be returned and the

process may resume until the packet is successfully sent. Maragathasun-

dari and Balamurugan [16] conducted a research on the M [X]/G/1 feed-

back queue, which included two phases of repair times as well as general

delay duration. Gnanasekar and Kandaiyan [17] looked at the M/G/1 RQ

with feedback and delayed repair in accordance with the WV policy with

impatient customers.

The molecular mechanism behind the Ullmann reaction

The topic of long-standing interest in synthetic chemistry is building value-

added products from chemical feedstocks, and it is an attractive topic and

of paramount importance to drug development. Among them, sustainable

synthesis is an up-and-coming methodology that entices chemists to bypass

the use of stoichiometric reagents and employ cost-effective first-row tran-

sition metal catalysts. Along the line, copper is in the upper hand owing

to earth-abundant and its versatile stable oxidation states [Cu(0), Cu(I)
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and Cu(II)]. Inspired by what has been mentioned above, it is of great

desire to employ copper catalysis in the synthesis of symmetric biaryls by

means of “classic” Ullmann coupling. A typical Ullmann coupling [8] in-

volves combining the aryl halide with an excessive amount of copper at

elevated temperatures (210−260 ◦C) to produce biaryls. A schematic rep-

resentation of the Ullmann reaction and its mechanism is given in Fig. 1.

The reaction proceeds via the oxidative addition of iodobenzene to copper

to yield organocuprate and further oxidative addition of another iodoben-

zene which results in copper intermediate with Cu(III). Then reductive

elimination occurs to yield the desired biaryl product [9].

Figure 1. Mechanism of Ullmann Reaction

In the Ullmann reaction, the iodobenzene (arrival) undergoes number

of reactions with copper (server) to form biphenyl (output). Since the

copper reacts with a single iodobenzene at a time, the remaining iodoben-

zenes will be waiting in orbit to get reacted or else will remain unreacted

in the reaction vessel. After the initial reaction gets over the iodobenzenes

which is waiting in the orbit will undergo the reaction one by one and

then forms biphenyl. When orbit becomes empty, the server switch on

working vacation and the service becomes slower. If any iodobenzene is

present during the working vacation period, it will get reacted slowly and



103

then form biphenyl. If there is no iodobenzene then the vessel will undergo

complete vacation. After the completion of CV, if there is no iodobenzene

in the system, the server remains in CV, whereas if any iodobenzene enters

the system the CV will switch to normal busy mode and start to provide

service.

In this paper, in order to accomodate the Ullmann’s reaction, we gen-

eralized the chemical queue by introducing the concept of hybrid vacation.

Here, we have visualised the chemical retrial queue for the first time in

which no one else has done before. To perform organic synthesis and drug

discovery, the Ullmann coupling reaction has emerged as an effective and

incredibly useful tool. Copper-catalyzed Ullmann reactions have recently

been greatly advanced through the use of novel ligands and intermedi-

ary synthetic tools. Green synthetic methodologies, including metal, lig-

and and additive-free conditions, recyclable heterogeneous catalysts, and

microwave-assisted synthesis, are expected to continue to have a significant

impact on this field, which is undergoing a number of exciting and rapid

developments due to the Ullmann coupling reactions.

This research is being done with the intention of determining the queue

size and orbit size distributions, both of which will be utilized in the process

of determining the system’s other behaviour metrics. As for the outline

of our piece, here it is: we provide a comprehensive explanation of the

queueing paradigm in section 2. The steady-state (SS) behaviour of the

system and the random epoch probability generating function (PGF) of the

queue size are described in detail in section 3. Section 4 contains a number

of crucial indicators of the system’s behaviour. Findings are presented both

numerically and visually in section 5. In section 6, the findings from the

neuro-fuzzy analysis of the system as well as the outcomes of changing

the system’s parameters are visually examined and explained. The paper

finishes with a summary of its key themes in section 7.
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2 The model’s overview and applicability in

real life

Under hybrid vacation (HV) policy, we provide a M/G/1 chemical RQ

model. The precise justification of our model is as follows:

The arrival process: According to the Poisson process, iodobenzene

will undergo reaction at the rate γ.

The retrial process: A new iodobenzene will immediately be sub-

jected to reaction when it arrives and discovers that the copper (server)

is available (after taking a complete vacation). In the alternative, if arriv-

ing iodobenzene discover that the server is busy or providing lower speed

service, the arrivals either leave the service area with a probability of

ξ̄ = (1 − ξ) or join the blocked area called an orbit with a probabil-

ity of ξ in accordance with FCFS discipline. This means that only the

iodobenzene which is currently at the front of the orbit queue will get re-

acted. After a certain amount of time, iodobenzene will try again to react.

Inter retrial period have a general distribution G(x) with corresponding

“Laplace-Stieltjes Transform” (LST) G∗(φ).

Regular service process: When a new iodobenzene arrives and dis-

covers that the copper is available, then the copper will immediately starts

reacting, and subsequent iodobenzenes will join the orbit. The regular

service period represents a general distribution and it is defined by the ar-

bitrary variable Hb with distribution function Hb(ϖ) having LST H∗
b (φ).

Hybrid vacation policy: The vacation process is a hybrid process

in which the copper can still provide service but at a slower rate when the

orbit becomes idle and the vacation period takes an exponential distribu-

tion with parameter ω. If there are iodobenzene available during the WV

period, the copper will remain in WV and renders service to the avail-

able iodobenzene. However, if the system becomes empty during WV, the

server will go into CV, and it follows an exponential distribution with pa-

rameter η. After the completion of CV, if there is no iodobenzene in the

system, the server remains in CV with probability q(= 1 − q), whereas if

iodobenzene enters the system, the CV will switch to normal busy mode

and start providing service to the new iodobenzene with probability q.
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During the HV period, the service period is assessed by a random variable

Hv with distribution function Hv(ϖ) and LST H∗
v(φ).

The stochastic processes of the system are seen as being completely

independent of one another. The diagrammatic illustration of the model

that can be found in Fig. 2.

Figure 2. Pictorial representation of the model
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2.1 Implementation of the model in real Life

Our approach may have some useful applications in the production process.

Assume that a manufacturing plant contains a machine that is shared by

all of the units that make up the plant (these units are termed customers).

Two people, one skilled worker and his trainee, are needed to run the ma-

chine. The machine is only operated by the apprentice to provide service

to the units when the skilled worker is away on vacation (this type of ab-

sence is known as “working vacation”), and the apprentice’s rate of service

is typically slower than that of the skilled worker. In the event that the

device is currently servicing a large number of customers, a new arrival

unit will be directed to join a waiting line, which is analogous to the retry

queue. In any other case, the unit will be served right away. If an ad-

ditional external unit arrives before the skilled worker can make contact

with the next unit on the list, then the skilled worker will not complete

the service and move on to the next unit on the list. The contact time is

presumed to be distributed evenly across the population (which is called

general retrial time). When the skilled worker arrives at the front of the

line and discovers that there are no units available, he will be required to

take a break from his labour in the form of a vacation. During the time

that the skilled worker is away on vacation, his apprentice will provide

service to the units at a slightly reduced speed. In the event that there is

no unit in the system, both the skilled worker and the apprentice will go

into a period of complete vacation. No matter the apprentice has served

the unit, the skilled worker will restart his service if there is any unit that

arrives at that time in order to guarantee the quality of the skilled worker’s

service. This is done to reduce the skilled worker idle time.

Other domains where this paradigm has been put to use include stocha-

stic production and inventory systems with a multipurpose production

facility, packet switched networks, and the transport of emails between

servers using the Simple Mail Transfer Protocol (SMTP).



107

3 System’s steady state analysis

This section begins by formulating the steady-state equations (SS) for the

RQ system. These equations take into account the elapsed retrial period,

the elapsed service time, and the elapsed lower-speed service times as sup-

plementary variables (SV). Calculations are made to determine the PGF

of the total number of iodobenzene in the orbit and system, in addition

to the orbit length generating functions for a number of different server

states.

3.1 Probabilities and notations for the steady state

It is assumed in SS that G(0) = 0, G(∞) = 1, Hb(0) = 0, Hb(∞) = 1 and

Hv(0) = 0, Hv(∞) = 1 are cont., at ϖ = 0. So that the func. g(ϖ), ζb(ϖ),

ζv(ϖ), are the hazard rates for retrial, service and slower pace service

respectively.

g(ϖ)dϖ =
dG(ϖ)

1− G(ϖ)

ζb(ϖ)dϖ =
dHb(ϖ)

1−Hb(ϖ)

ζv(ϖ)dϖ =
dHv(ϖ)

1−Hv(ϖ)

Apart from it, let G0(ϱ̌),H0
b(ϱ̌) andH0

v(ϱ̌) be the elapsed time for retrial,

normal service and slower-rate service at time ϱ̌ respectively.

3.2 The proposed model’s steady state equations

Let’s define the random variable for the construction of this retrial QS

Ψ(ϱ̌) =



0, if the server is available and in hybrid vacation time

1, if the server is available and in normal service time

2, if the server is unavailable and in normal service at time ϱ̌

3, if the server is unavailable and in hybrid vacation at time ϱ̌

In this section, we concentrate on the use of the bivariate Markov
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process to characterize the system’s state at time {Ψ(ϱ̌), Y(ϱ̌); ϱ̌ ≥ 0},
here Ψ(ϱ̌) represent the server state (0, 1, 2, 3) depending on whether the

server is free or busy on both normal service andWV periods. Y(ϱ̌) denotes

the number of iodobenzene in the orbit. If Ψ(ϱ̌) = 1 and Y(ϱ̌) > 0, then

G0(ϱ̌) is equivalent to the elapsed retrial time. If Θ(ϱ̌) = 2 and Y(ϱ̌) ≥ 0,

then H0
b(ϱ̌) is equivalent to the elapsed time of the iodobenzene served in

normal busy period. If Ψ(ϱ̌) = 3 and Y(ϱ̌) ≥ 0, then H0
v(ϱ̌) is equivalent

to the elapsed time of the iodobenzene being served in lower rate service

period.

3.3 Model’s ergodicity condition

Theorem 1. The embedded Markov chain (MC) {Fm;mϵM} is consid-

ered ergodic iff the system is stable at Λ < G∗(γ), where Λ = γξE(Hb).

Proof. The requirement of ergodicity can be easily confirmed by using

Foster’s criteria [18], which state that the chain {Fm;m ∈ M} is an irre-

ducible and aperiodic chain. These criteria assert that the chain can not

be reduced and that it has a periodic structure. Assuming that e(r), is

non-negative, r ∈ M, and δ > 0, the MC is ergodic, and the mean value

νr = E [e(um+1) − e(um)/vm = r] with certain restricted exemptions r’s,

r ∈ M and νr ≤ −δ ∀ r ∈ M,. In this particular instance, we will be

concentrating on the function written as e(r) = r. After that, we get:

νr =

γξE(Hb)− G∗(γ), if r=1,2,...

γξE(Hb)− 1, if r=0

In this particular instance, γξE(Hb) < G∗(γ) is undeniably a requirement

for ergodicity.

According to the statements made by Humblett et al. [19], the necessary

condition will be satisfied if the MC {Fm;mϵM} meets Kaplan’s status.

More specifically, this means that νr < ∞ ∀ r ≥ 0 and ∃ r0 ∈ M such

that νr ≥ 0 for r ≥ r0, then the necessary requirement has been fulfilled.

V = (vqr) is the the unit-step transition matrix of {Fm;m ∈ M} for

r < q − j and q > 0. The non-ergodic nature of the Markov chain can be
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inferred if Λ ≥ G∗(γ) is satisfied.

Let {ϱ̌n;n = 1, 2, ...} be the series of epochs where a service period ends

or begins. A sequence of random vectors that can be represented by the

equation Fn = {Ψ(ϱ̌n+),Y(ϱ̌n+)}. The Markov chain that was produced

by embedding RQ’s into the system. As a consequence of Theorem (3.1)

{Fn;n ∈ N} is ergodic iff Λ < G∗(γ), in necessary for our structure to

maintain its stability, where Λ = γξE(Hb).

For the procedure {Y(ϱ̌), ϱ̌ ≥ 0}, we describe the probabilities Π0(ϱ̌) =

P{Ψ(ϱ̌) = 0,Y(ϱ̌) = 0}, Υ0(ϱ̌) = P{Ψ(ϱ̌) = 1,Y(ϱ̌) = 0}. Π0(ϱ̌) is the

probability that the system is free at time (ϱ̌) and the copper is in working

vacation. Υ0(ϱ̌) is the probability that the system is free at time (ϱ̌) and

the copper is in regular busy period and the probability dens. are

Υn(ϖ, ϱ̌)dϖ = P{Ψ(ϱ̌) = 1,Y(ϱ̌) = n,ϖ ≤ G0(ϱ̌) < ϖ + dϖ},
for ϱ̌ ≥ 0, ϖ ≥ 0 and n ≥ 1.

Θb,n(ϖ, ϱ̌)dϖ = P{Ψ(ϱ̌) = 2,Y(ϱ̌) = n,ϖ ≤ H0
b(ϱ̌) < ϖ + dϖ},

for ϱ̌ ≥ 0, ϖ ≥ 0 and n ≥ 0.

∆v,n(ϖ, ϱ̌)dϖ = P{Ψ(ϱ̌) = 3,Y(ϱ̌) = n,ϖ ≤ H0
v(ϱ̌) < ϖ + dϖ},

for ϱ̌ ≥ 0, ϖ ≥ 0 and n ≥ 0.

For now, let’s assume the stability criterion is met and do some assign-

ing based on that Π0 = limϱ̌→∞Π0(ϱ̌), Υ0 = limϱ̌→∞Υ0(ϱ̌) and limiting

densities are

Υn(ϖ) = limϱ̌→∞Υn(ϖ, ϱ̌); Θb,n(ϖ) = limϱ̌→∞Θb,n(ϖ, ϱ̌);

∆v,n(ϖ) = limϱ̌→∞∆v,n(ϖ, ϱ̌).

The following set of equations was constructed using the supplementary

variable technique.

γΥ0 = (ω + η)qΠ0 (1)

(γ + ω + η)Π0 = (ω + η)qΠ0 +

∫ ∞

0

Θb,0(ϖ)ζb(ϖ)dϖ

+

∫ ∞

0

∆v,0(ϖ)ζv(ϖ)dϖ (2)
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d

dϖ
Υn(ϖ) + (γ + g(ϖ))Υn(ϖ) = 0, n ≥ 1 (3)

d

dϖ
Θb,0(ϖ) + (γ + ζb(ϖ))Θb,0(ϖ) = γξ̄Θb,0(ϖ), n = 0 (4)

d

dϖ
Θb,n(ϖ) + (γ + ζb(ϖ))Θb,n(ϖ) = γξΘb,n−1(ϖ)

+ γξ̄Θb,n−1(ϖ), n ≥ 1 (5)

d

dϖ
∆v,0(ϖ) + (γ + ω + η + ζv(ϖ))∆v,0(ϖ) = γξ̄∆v,0(ϖ), n = 0 (6)

d

dϖ
∆v,n(ϖ) + (γ + ω + η + ζv(ϖ))∆v,n(ϖ) = γξ∆v,n−1(ϖ)

+ γξ̄∆v,n−1(ϖ), n ≥ 0 (7)

Here are the criterion for the SS boundary for ϖ = 0:

Υn(0) =

∫ ∞

0

Θb,n(ϖ)ζb(ϖ)dϖ +

∫ ∞

0

∆v,n(ϖ)ζv(ϖ)dϖ, n ≥ 1 (8)

Θb,n(0) =

∫ ∞

0

Υn+1(ϖ)g(ϖ)dϖ + γ

∫ ∞

0

Υn(ϖ)dϖ

+ (ω + η)

∫ ∞

0

∆v,n(ϖ)dϖ, n ≥ 1 (9)

Θb,0(0) =

∫ ∞

0

Υ1(ϖ)g(ϖ)dϖ + (ω + η)

∫ ∞

0

∆v,0(ϖ)dϖ + γΥ0, n = 0

(10)

∆v,n(0) =

γΠ0, n = 0

0, n ≥ 1
(11)

The criteria for normalization is given by,

Π0 +Υ0 +

∞∑
n=1

∫ ∞

0

Υn(ϖ)dϖ +

∞∑
n=0

(∫ ∞

0

Θb,n(ϖ)dϖ

+

∫ ∞

0

∆v,n(ϖ)dϖ

)
= 1 (12)
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3.4 The steady state solution

Specifically, the GFs for | ϑ |< 1 that are needed to solve the aforemen-

tioned equations have the form.

Υ(ϖ,ϑ) =

∞∑
n=1

Υn(ϖ)ϑn; Υ(0, ϑ) =

∞∑
n=1

Υn(0)ϑ
n;

Θb(ϖ,ϑ) =

∞∑
n=0

Θb,n(ϖ)ϑn; Θb(0, ϑ) =

∞∑
n=0

Θb,n(0)ϑ
n;

∆v(ϖ,ϑ) =

∞∑
n=0

∆v,n(ϖ)ϑn; ∆v(0, ϑ) =

∞∑
n=0

∆v,n(0)ϑ
n.

Now multiply the SS equation and SS boundary conditions from (3) to

(11) by ϑn and summing over n, (n = 0, 1, 2, ...)

∂

∂ϖ
Υ(ϖ,ϑ) + (γ + g(ϖ))Υ(ϖ,ϑ) = 0 (13)

∂

∂ϖ
Θb(ϖ,ϑ) + (γξ(1− ϑ)) + ζb(ϖ))Θb(ϖ,ϑ) = 0 (14)

∂

∂ϖ
∆v(ϖ,ϑ) + (γξ(1− ϑ) + ω + η + ζv(ϖ))∆v(ϖ,ϑ) = 0 (15)

Υ(0, ϑ) =

∫ ∞

0

Θb(ϖ,ϑ)ζb(ϖ)dϖ +

∫ ∞

0

∆v(ϖ,ϑ)ζv(ϖ)dϖ

− [(γ + ω + η)Π0 − (ω + η)q̄Υ0] (16)

Θb(0, ϑ) =
1

ϑ

∫ ∞

0

Υ(ϖ,ϑ)g(ϖ)dϖ + γ

∫ ∞

0

Υ(ϖ,ϑ)dϖ

+ (ω + η)

∫ ∞

0

∆v(ϖ,ϑ)dϖ (17)

∆v(0, ϑ) = γΠ0 (18)

By completing the solutions to the partial differential equations (13)
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and (15), we have

Υ(ϖ,ϑ) = Υ(0, ϑ)[1− G(ϖ)]e−γϖ (19)

Θb(ϖ,ϑ) = Θb(0, ϑ)[1−Hb(ϖ)]e−H1(ϑ)ϖ (20)

∆v(ϖ,ϑ) = ∆v(0, ϑ)[1−Hv(ϖ)]e−H2(ϑ)ϖ (21)

where H1(ϑ) = γξ(1− ϑ), and H2(ϑ) = ω + η + γξ(1− ϑ)

After some mathematical calculations, we obtain

Θb(0, ϑ) =
Υ(0, ϑ)

ϑ
{G∗(γ) + ϑ[1− G∗(γ)]}+ γΠ0H(ϑ) (22)

where H(ϑ) = ω+η
ω+η+γξ(1−ϑ) (1−H∗

v(H2(ϑ)))

Υ(0, ϑ) = Θb(0, ϑ)H∗
b (H1(ϑ)) + ∆v(0, ϑ)H∗

v(H2(ϑ))− [γ + (ω + η)q]Π0

(23)

Further, we get a combination of (11) and (22) in (23),

Υ(0, ϑ){ϑ− [G∗(γ) + ϑ(1− G∗(γ))]H∗
b (H1(ϑ))}

=ϑΠ0{γ[H(ϑ)H∗
b (H1(ϑ)) +H∗

v(H2(ϑ))− 1]− (ω + η)q}
(24)

In the theory that follows, we are open to investigating the marginal

orbit length distribution that are brought about by the system state of the

server.

Theorem 2. Under the stability requirement, Λ < G∗(γ) provides the

stationary distribution of the number of iodobenzene in the orbit when the

server is available, busy, reduced rate service, and the probability that the

server is available given by,

Υ(ϑ) =
N e(ϑ)

De(ϑ)
(25)
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N e(ϑ) =ϑΠ0{γ[H(ϑ)H∗
b (H1(ϑ)) +H∗

v(H2(ϑ))− 1]− (ω + η)q}

De(ϑ) =ϑ− {G∗(γ) + ϑ[1− G∗(γ)]}H∗
b (H1(ϑ))

Θb(ϑ) =
γΠ0(1−H∗

b (H1(ϑ)))

H1(ϑ)De(ϑ)
{ϑH(ϑ) + [H∗

v(H2(ϑ))− 1]

[G∗(γ) + ϑ[1− G∗(γ)]]} (26)

∆v(ϑ) =
γΠ0

ω + η
H(ϑ) (27)

where,

Π0 =
G∗(γ) + γξE(Hb)

G∗(γ) + γξE(Hb)H∗
v(ω + η) + γ[1−H∗

v(ω + η)]{
G∗(γ)+ξ(1−G∗(γ))

ω+η − G∗(γ)E(Hb)(1− ξ)

}
+ qξ(ω + η)[G∗(γ)− 1]

(28)

Υ0 =
{(ω + η)q[G∗(γ) + γξE(Hb)]}Π0

G∗(γ) + γξE(Hb)H∗
v(ω + η) + γ[1−H∗

v(ω + η)]{
G∗(γ)+ξ(1−G∗(γ))

ω+η − G∗(γ)E(Hb)(1− ξ)

}
+ qξ(ω + η)[G∗(γ)− 1]

(29)

Proof. Taking the eqns. (19)-(21) and integrate with respect to ϖ and cal-

culate the probability generating function Υ(ϑ) =
∫∞
0

Υ(ϖ,ϑ)dϖ,Θb(ϑ) =∫∞
0

Θb(ϖ,ϑ)dϖ, ∆v(ϑ) =
∫∞
0

∆v(ϖ,ϑ)dϖ. We calculate the probability

that the server is empty using the normalization condition (Π0) by es-

tablishing functions as, when there is no iodobenzene in the orbit ϑ = 1

in (25)-(27) and whenever the condition of L’Hospital is needed, we get

Π0 +Υ0 +Υ(1) + Θb(1) + ∆v(1) = 1.

Theorem 3. Utilizing the PGF function, the number of iodobenzene in

the system and the orbit size distribution at a stationary point of period

are calculated under the stability constraint Λ < G∗(γ),

K(ϑ) =
N e(ϑ)

De(ϑ)
(30)
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N e(ϑ) =Π0

{
De(ϑ)

[(
γ

ω + η

)
[(ω + η) + γϑH(ϑ)] + (ω + η)q

]
+ ϑH1(ϑ)(1− G∗(γ)){[H∗

b (H1(ϑ))H(ϑ) +H∗
v(H2(z))]− 1}

+ ϑγ(1−H∗
b (H1(ϑ))){ϑH(ϑ) + [H∗

v(H2(ϑ))− 1]

[G∗(γ) + ϑ[1− G∗(γ)]]}
}

De(ϑ) =H1(ϑ){ϑ− {G∗(γ) + ϑ[1− G∗(γ)]}H∗
b (H1(ϑ))}

K0(ϑ) =
N e0(ϑ)

De(ϑ)
(31)

N e0(ϑ) =Π0

{
De(ϑ)

[(
γ

ω + η

)
[(ω + η) + γH(ϑ)] + (ω + η)q

]
+ ϑH1(ϑ)(1− G∗(γ)){[H∗

b (H1(ϑ))H(ϑ) +H∗
v(H2(z))]− 1}

+ γ(1−H∗
b (H1(ϑ))){ϑH(ϑ) + [H∗

v(H2(ϑ))− 1]

[G∗(γ) + ϑ[1− G∗(γ)]]}
}

where Π0 is denoted by eqn. (28).

Proof. In both the system and orbit, the PGF of the number of iodoben-

zene is (K(ϑ)), (K0(ϑ)) is calculated by using K(ϑ) = Π0 + Υ0 + Υ(ϑ) +

ϑ(Θb(ϑ) + ∆v(ϑ)) and K0(ϑ) = Π0 + Υ0 + Υ(ϑ) + Θb(ϑ) + ∆v(ϑ). The

eqns. (30) and (31) may be derived directly when the eqns. (25)-(28) are

substituted in the earlier results.

4 System performance

This section contains the model’s estimated average busy duration for

various system states, as well as some important system probability and

system efficiency measurements.
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4.1 Measures of the system’s efficiency

Utilizing eqns, (25)-(27), we obtain the findings shown in below, giving

ζ̌ → 1 using L’Hospital’s rule.

(i) Let Υ be the SS Pr( of the server is available during the retrial),

Υ = Υ(1)

= Π0γξ(1− G∗(γ))

{
(1−H∗

v(ω + η))
(

1
ω+η − E(Hb)

)
− [

(
ω+η
γ q

)
]

G∗(γ) + γξE(Hb)

}
(32)

(ii) Let Θb be the SS (Pr that the server is full),

Θb = Θb(1) = Π0γE(Hb)

{
(H∗

v(ω + η)− 1)
(

γξ
ω+η + G∗(γ)

)
G∗(γ) + γξE(Hb)

}
(33)

(iii) Let ∆v be the SS Pr (the server is on hybrid vacation),

∆v = ∆v(1) =
γΠ0

ω + η
[1−H∗

v(ω + η)] (34)

4.2 Mean queue length

When the system is in steady state,

(i) With regard to ϑ, (31) and giving ϑ = 1 yields the mean number of

iodobenzene in the orbit (Lq)

Lq = K
′

0(1) = lim
ϑ→1

d

dϑ
K0(ϑ) = Π0

[
N ′′′

q (1)D′′

q (1)−D′′′

q (1)N ′′

q (1)

3(D′′
q (1))

2

]
(35)
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N
′′
q (1) =− 2γξ

{
G∗(γ) + γξE(Hb) +

γ

(ω + η)
(1−H∗

v(ω + η))(
G∗(γ)[1− 2ξ − (ω + η)E(Hb)(1− ξ)]

+ ξ[1− (ω + η)E(Hb)]−
(
ω + η

γ

)
q

)}
D

′′
q (1) =− 2γξ[G∗(γ) + γξE(Hb)]

N
′′′
q (1) =

−6γ3ξ2

(ω + η)2

{
[G∗(γ) + γξE(Hb)]

(
(ω + η)E(Hv)−H∗

v(ω + η) + 1

)}
+D

′′′
q (1)

[
1 +

γ

(ω + η)
(1−H∗

v(ω + η))

]
− 3γξ(1− G∗(γ)){

2γξ[(1−H∗
v(ω + η))

( 1

ω + η
− E(Hb))]− 2γξE(Hb){

γξ

(ω + η)
[(ω + η)E(Hv)−H∗

v(ω + η) + 1]

}
+H

′′
(1)

+ (γξ)2E(H2
b)(1−H∗

v(ω + η)) + (γξ)2E(H2
v)

}
+ 3γ

{
γξE(Hb)[H

′′
(1) + 2

{
γξ

(ω + η)
[(ω + η)E(Hv)

−H∗
v(ω + η) + 1]

}
− 2γξ(1− G∗(γ))E(Hv)]− (γξ)2E(H2

b)

[(1−H∗
v(ω + η))

( γξ

ω + η
+ G∗(γ)

)
]

}

D
′′′
q (1) =− 3(γξ)2{E(H2

b) + 2(1− G∗(γ))E(Hb)}

whereH′′
(1) = (γξ)2

(ω+η)2

{
2[(ω+η)E(Hv)−H∗

v(ω+η)+1]−(ω+η)2E(H2
v)

}
(ii) With regard to ϑ, (30) and providing ϑ = 1 yields the mean number

of iodobenzene in the system (Ls)

Ls = K
′

s(1) = lim
ϑ→1

d

dϑ
K(ϑ) = Π0

[
N ′′′

s (1)D′′

q (1)−D′′′

q (1)N ′′

q (1)

3(D′′
q (1))

2

]
(36)

N
′′′

s (1) =N
′′′

q (1) + 6γ2ξE(Hb)

{
(1−H∗

v(ω + η))(
γξ

ω + η
+ G∗(γ))

}
(iii) Using Little’s method, we can estimate both the average waiting
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time of iodobenzene in the system (Ws) and the average waiting time of

iodobenzene in the queue (Wq). Ws =
Ls

γ and Wq =
Lq

γ , respectively.

4.3 Mean busy period and cycle

Let A(Ty) and A(Tϑ) represent the expected and predicted size of the

busy period and cycle. Then, the results make sense when considering the

alternate renewal procedure [21], which leads to

Π0 =
A(T0)

A(Ty) +A(T0)
;A(Ty) =

1

γ

(
1

Π0
− 1

)
;

A(Tϑ) =
1

γΠ0
= A(T0) +A(Ty). (37)

where T0 amount of time the system was in its empty condition. As

the duration between the arrivals of two iodobenzene differs exponentially.

We have the equation A(T0) = (1/γ). with variable γ. We may recover

(28) by applying (37) the previously discovered results,

A(Ty) =
1

γ

×



G∗(γ) + γξE(Hb)H∗
v(ω + η) + γ[1−H∗

v(ω + η)]{
G∗(γ)+ξ(1−G∗(γ))

ω+η
− G∗(γ)E(Hb)(1− ξ)

}
+ qξ(ω + η)[G∗(γ)− 1]

G∗(γ) + γξE(Hb)
− 1


(38)

A(Tϑ) =
1

γ

×



G∗(γ) + γξE(Hb)H∗
v(ω + η) + γ[1−H∗

v(ω + η)]{
G∗(γ)+ξ(1−G∗(γ))

ω+η
− G∗(γ)E(Hb)(1− ξ)

}
+ qξ(ω + η)[G∗(γ)− 1]

G∗(γ) + γξE(Hb)


(39)
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4.4 Special cases

In this section, we examine a few real-world examples of our strategy that

are consistent with recent literature.

Case (i):

Let ω, η = 0, ξ = 1 and G∗(γ) → 1. Our model can be simplified to a

M/G/1 queue. The results agree with Takagi [20].

K(ϑ) = Π0

{
N e(ϑ)

De(ϑ)

}
(40)

N e(ϑ) =(1− ϑ){ϑ−H∗
b (γ(1− ϑ))}+ ϑ(1−H∗

b (γ(1− ϑ)))

{H∗
v(γ(1− ϑ))− 1}

De(ϑ) =(1− ϑ){ϑ−H∗
b (γ(1− ϑ))}

Case (ii):

Let ω, η = 0 and ξ = 1. Our model can be simplified to an M/G/1 RQ.

Then the results agree with Gao and Wang [21].

K(ϑ) = Π0

{
N e(ϑ)

De(ϑ)

}
(41)

N e(ϑ) =γ(1− ϑ){ϑ− [G∗(γ) + ϑ(1− G∗(γ))]H∗
b (γ(1− ϑ))}

+ ϑγ(1− ϑ)[1− G∗(γ)](H∗
v(γ(1− ϑ))− 1)

+ γϑ[1−H∗
b (γ(1− ϑ))]{H∗

v(γ(1− ϑ)− 1)

[G∗(γ) + ϑ(1− G∗(γ))]}

De(ϑ) =γ(1− ϑ){ϑ− [G∗(γ) + ϑ(1− G∗(γ))]H∗
b (γ(1− ϑ))}

Case (iii):

Let η = 0 and G∗(γ) → 1. Our model simplified to an M/G/1 queue with

WV. Then the results agree with Zhang and Hou [22].

K(ϑ) = Π0

{
N e(ϑ)

De(ϑ)

}
(42)
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N e(ϑ) =

{
ω(1 + q) + γϑ

(
1−H∗

v (ω + γξ(1− ϑ))

ω + γξ(1− ϑ)

)}
H1(ϑ)[ϑ−H∗

b (H1(ϑ))] + γϑ[1−H∗
b (γ(1− ϑ))]{

ϑω

(
1−H∗

v (ω + γξ(1− ϑ))

ω + γξ(1− ϑ)

)
+ [H∗

v(ω + γξ(1− ϑ))− 1]

}
De(ϑ) =H1(ϑ){ϑ−H∗

b (H1(ϑ))}

where, Π0 =
γξE(Hb)

γξE(Hb)H∗
v(ω)− γ(1−H∗

v(ω))

[
1
ω − E(Hb)(1− ξ)

]

5 Numerical results

The various effects on system performance measurements are demonstra-

ted using MATLAB in this section. We examine exponentially distributed

retrial times, service times, and slower service times. A random selection

is made from among the numerical measurements that are suitable for the

stability criteria.

Table 1 clearly displays that retrial rate G∗(γ) escalates, Lq, Ls, ∆v

are decreases. Table 2 clearly displays that the hybrid vacation rate ζv

increases, Lq, Ls, are decreases and Π0 increases. Table 3 displays that

lower service rate ω escalates, Lq, Ls, ∆v and Π0 decreases.

Table 1. Π0 and Lq for various retrial rate G∗(γ) for the parameter
values of γ = 0.6, ξ = 0.5, q = 1, η = 0.5, ω = 0.6, ζb = 0.8
and ζv = 0.9

Retrial rate
G∗(γ)

Π0 Lq Ls Wq Υ ∆v

3.1 0.8044 4.6846 5.3800 7.8076 0.1675 0.0689
3.2 0.8020 4.2440 4.8633 7.0734 0.1698 0.0687
3.3 0.7998 3.8867 4.4448 6.4779 0.1721 0.0686
3.4 0.7977 3.5917 4.0997 5.9861 0.1742 0.0684
3.5 0.7957 3.3446 3.8110 5.7425 0.1761 0.0682
3.6 0.7939 3.1349 3.5663 5.2248 0.1780 0.0681
3.7 0.7922 2.9549 3.3566 4.9249 0.1798 0.0679

With the impact of the parameters q γ, ω, ξ, ζb, ζv, The system per-
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Table 2. Π0 and Lq for various hybrid vacation rate (ζv) for the pa-
rameter values of γ = 1.5, ξ = 0.02, q = 1, η = 0.02, ω = 0.1,
ζb = 0.9 and G∗(γ) = 0.5

Hybrid
vacation rate

(ζv)

Π0 Lq Ls Wq Υ ∆v

0.5 0.4328 6.8324 20.3312 4.5550 0.0104 2.7048
0.55 0.4588 6.5779 19.4584 4.3853 0.0098 2.5809
0.6 0.4882 6.2806 18.4636 4.1871 0.0091 2.4411
0.65 0.5217 5.9344 17.3243 3.9562 0.0085 2.2822
0.7 0.5600 5.5305 16.0109 3.6870 0.0077 2.1000
0.75 0.6044 5.0568 14.4833 3.3712 0.0067 1.8888
0.8 0.6565 4.4965 12.6875 2.9977 0.0056 1.6412

Table 3. Π0 and Lq for various lower service rate (ω) for the parameter
values of γ = 2, ξ = 0.9, q = 1, η = 5, G∗(γ) = 5, ζb = 0.9
and ζv = 6

Lower
service rate

(ω)

Π0 Lq Ls Wq Υ ∆v

1 0.4418 0.0163 0.0189 0.0081 0.7213 0.0147
2 0.4019 0.0149 0.0173 0.0075 0.7474 0.0115
3 0.3678 0.0137 0.0159 0.0069 0.7689 0.0092
4 0.3394 0.0127 0.0147 0.0064 0.7871 0.0075
5 0.3151 0.0118 0.0137 0.0059 0.8026 0.0063
6 0.2940 0.0110 0.0128 0.0055 0.8160 0.0053
7 0.2755 0.0104 0.0120 0.0052 0.8276 0.0046

formance metrics are depicted in a two-dimensional plot, which is shown

in Fig. 3. In Fig. 3(a), displays the escalation of the retrial rate G∗(γ),

and (Lq), (Ls), (Π0) are decreases. In Fig. 3(b), we found that (Ls), (Υ),

and ∆v decreases while increase the hybrid vacation rate ζv.

The three-dimensional graph representing the system performance met-

rics is shown in Fig. 4. In Fig. 4(a), the surface displays the elevation the

retrial rate G∗(γ) and (Υ), (Π0) are diminishes. In Fig. 4(b), we found

that Ls diminishes while increasing the hybrid vacation rate (ζv), (Π0). In

Fig. 4(c), we found that (Π0) and (∆v) diminishes while increasing the

lower service rate ω.

The numerical findings presented earlier can be utilized to ascertain
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the influence that attributes have on the evaluation criteria of the sys-

tem, and we can be certain that the results are accurate reflections of the

circumstances in concern.

(a) Π0, Lq , Ls vs retrial rate G∗(γ) (b) Ls, Υ, ∆v vs hybrid vacation rate
ζv

Figure 3. 2D visualization of G∗(γ) and ζv

6 Computing of ANFIS

Adaptive neuro-fuzzy inference systems, or ANFIS, are a type of artifi-

cial neural network that heavily borrows from evolutionary network fuzzy

inference systems. Early in the 1990s, Jang [23] developed the ANFIS

methodology. Because it incorporates both neural networks and fuzzy

logic concepts, it may harness the benefits of both in a single framework.

The ANFIS is often regarded as a trustworthy estimator of anything. The

soft computing approach of ANFIS is a great tool for delivering significant

outcomes in actual, daily situations.

Furthermore, the structure of the adaptive network is comprised of

nodes and arrow linkages. The outputs of the nodes and the method by

which their variables can be changed to reduce a specified error measure

are both specified in the node variables. To get the intended mapping be-

tween input and output, the parameters are changed using gradient-based

techniques and training data. Considering that people understand a type

of logic and often store input-output information as combinations, ANFIS
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(a) Υ, Π0 vs retrial rate G∗(γ) (b) Π0, Ls vs hybrid vacation rate ζv

(c) Π0, ∆v vs lower service rate ω

Figure 4. 3D visualization of G∗(γ), ζv , and ω

may be utilized to construct an input-output mapping. The direct search

approach is cumbersome to utilize due to the time restrictions produced

by the repetitive repeating of the procedure to discover the best attainable

response. ANFIS has the capacity to execute flexible data processing. The

general configuration of the ANFIS is seen in Fig. 5. When exact solutions

for particular performance indices are difficult to get the accurate approx-

imations, one can use of ANFIS. In this part, we compare the neuro-fuzzy

findings of SVT and PGF analyses utilizing ANFIS technology.

Some elements are identified as linguistic words and used as inputs

to connect a fuzzy method to ANFIS technique. Assuming a Gaussian

membership function for each of these input variables which is depicted

in its corresponding form in Fig. 6. Table 4 shows the membership count

function, as well as the relevant parameter values and languages.

We use MATLAB programme for analytically determining ANFIS val-
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Figure 5. Pictorial representation of ANFIS

Table 4. Terms of the membership functions determined on the input
parameters’ language

Input values Count of membership-
related functions

Linguistic types

G∗(γ), ζv, ω 3 Low, Medium, High

ues. For each of the following values of Lq, Ls, and ∆v, we compute the

ranges of G∗(γ), ζv, and ω from 0 to 8. The results of the ANFIS are shown

by the discrete lines in Fig. 7, whereas the continuous lines represent the

exponential function. Fig. 8 illustrates the usage of ANFIS to depict the

G∗(γ), ζv, and ω in 3-D visualization. Ultimately, we found that there

were similarities between the ANFIS and exponential function outcomes.
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(a) Membership Function of
G∗(γ)

(b) Membership Function of ζv

(c) Membership Function of ω

Figure 6. Membership Function

(a) Lq vs G∗(γ), (b) LS vs ζv

(c) ∆v versus ω

Figure 7. Relation between exponential function and ANFIS
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(a) Lq and Π0 vs G∗(γ) (b) Ls and Π0 vs ζv

(c) ∆v and Π0 versus ω

Figure 8. ANFIS-based 3D visualization of G∗(γ), ζv and ω

7 Conclusion

In summary, we have developed the first chemical retrial queue model

for the Ullmann reaction when combined with a hybrid vacation policy.

We observed that stabilization of the system is possible if all necessary

and sufficient conditions are satisfied. While using the PGF method and

the supplementary variable technique, we can determine the PGF of the

number of systems and their orbits when the systems are free, busy, or

on hybrid vacation. Ultimately, a variety of numerical results are pre-

sented and used to analyze the effect of system characteristics. Moreover,

the performance indices are computed using the numerical method of the

soft computing approach ANFIS in order to confirm the validity of the

existing model for real-time systems. We anticipate that the suggested

model, which makes use of fuzzy parameters using an ANFIS approach,

will be especially helpful for chemists conducting high-throughput reac-

tion discovery as well as improving Ullmann’s reaction performance. It
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also finds application among system engineers who are developing the ac-

curate queueing models.
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