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Abstract

Organic synthesis plays a vital role in optimizing existing drugs
and innovating new drugs. As a significant and challenging research
frontier in the field of organic synthesis, cross-coupling reactions
have also attracted considerable attention. In the past few years,
machine learning has realized great potential in predicting the per-
formance of cross-coupling reactions. However, most of the existing
machine learning predictions are based on the two-dimensional fea-
ture information of the cross-coupling reactions. In order to obtain
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the coupling reaction feature in a multifaceted way, we exploit the
three-dimensional features of the molecules based on the molecular
stick-and-ball model and the persistent homology analysis of topo-
logical data, respectively. On this basis, a weighted light convo-
lutional neural network with multi-scale subtraction (OS-MSW) is
proposed to extract the deep abstract features of the input data, and
the extracted abstract features are applied to LightGBM for yield
prediction, thus constructing a highly efficient prediction system
OS-MSWGBM. In addition, the interpretability of the OS-MSW
model is analyzed in this paper. The experiments demonstrate that
OS-MSWGBM exhibits higher efficiency and more accurate predic-
tion results, as well as notably stable prediction performance, which
can provide reliable decision-making information for experimental
personnel or organizations.

1 Introduction

As an essential and challenging research in the field of organic synthesis,

the cross-coupling reaction has also attracted considerable attention, and

its products are widely used in chemical biology, materials science and the

pharmaceutical industry. In the past few decades, the rapid development

of transition metal-catalyzed cross-coupling reactions, particularly those

catalyzed by palladium (Pd), has been a significant advancement. This

type of reaction is highly efficient, exhibits good selectivity, and operates

under mild reaction conditions, making it an effective tool in modern or-

ganic synthesis.

The Buchwald-Hartwig amination reaction is one of the hotspots in the

field of palladium (Pd)-catalyzed cross-coupling reactions [1–4]. However,

the routes of such reactions are usually complicated, and the traditional

experiments rely on a lot of manual trials and modification, which is time-

consuming and costly, and the toxic by-products generated by the reaction

can cause serious environmental pollution. Machine Learning (ML) has a

unique advantage in reducing costs and increasing efficiency, and its perfor-

mance is centered on the ability to represent data and the interpretability

of results. The importance of machine learning and its huge superiority

over traditional statistical methods in terms of higher accuracy and elimi-

nation of the need for a large number of hazardous experiments have caught
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more attention from researchers in the field of chemistry and chemical en-

gineering. Machine learning has shown great potential for applications in

drug discovery [5], molecular material design [6], reaction prediction [7], in-

verse synthesis design [8], and automated synthesis [9], etc. Using machine

learning tools, the prediction of catalyst activation performance [10–12],

chemical reaction performance [13, 14], and compound properties [15, 16]

has been realized. Research in chemistry is also shifting to a data-based

scientific discovery paradigm, in which researchers use computer to con-

vert chemical data into descriptors. In this way, research in the field of

chemistry can be transformed into data-based research, hence reducing the

reliance on human resources to a certain extent.

In 2018, D. T. Ahneman et al. [7] transformed molecular structures

into descriptors that could be recognized and calculated by computers and

obtained reaction yield data under different reaction conditions through a

high-throughput experimental platform. They then used random forests to

predict the yield of Buchwald-Hartwig cross-coupling reactions, achieving

a prediction accuracy of =7.8. This represents advanced research in the

field of multidimensional chemical space prediction using machine learning

methods, opening up a new path for research in the chemical field. In 2021,

L. C. Peng et al. [17] supplemented and improved from the perspectives

of machine learning and statistics, using quantile regression forest proba-

bility density prediction models to predict the yield of Buchwald-Hartwig

cross-coupling reactions, attaining prediction intervals for the yield at dif-

ferent quantiles, extending the point predictions of D. T. Ahneman et

al. [7] to interval predictions. In 2022, J. Dong et al. [18] proposed a fea-

ture selection method based on importance and correlation, successfully

reducing feature dimensions, and employed the XGBoost (eXtreme Gra-

dient Boosting) model to predict reaction yields. In the same year, X.

C. Mu et al. [19] combined the high-dimensional characteristics of chemi-

cal reaction data and proposed a deep forest-based prediction method for

cross-coupling reaction yields. Deep learning, as a dominant force in ma-

chine learning, has shown tremendous potential over the past few decades,

and efforts have been made to use deep learning to solve chemical-related

problems. In 2021, Y. N. Zhao et al. [25] from Dalian University of Tech-
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nology used the dataset reported by D. T. Ahneman et al. [7] to predict

the performance of Buchwald-Hartwig cross-coupling reactions using Deep

Convolutional Neural Networks (DCNN). In 2022, H. X. Hou et al. [25]

proposed the AM-1D-CNN model (Attention Mechanism 1D convolutional

neural network) to predict reaction yields, further improving prediction ac-

curacy.

Figure 1. Flow chart of intelligent prediction and analysis.

But the relevant work of L. C. Peng et al. [17], Y. N. Zhao et al. [25],
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and H. X. Hou et al. [26] all input the two-dimensional feature descriptors

generated by the D. T. Ahneman team, without fully considering other

features of the molecules, such as three-dimensional and topological fea-

tures. While the random forest algorithm used by D. T. Ahneman et al.

achieved intelligent prediction of yield and interpretability to some extent,

the algorithm is outdated and slow in training. The XGBoost used by J.

Dong et al. [18] incurs a relatively large time cost due to the pre-sorted

algorithm. The network structure designed by Y. N. Zhao et al. [26] is

complex and lacks deep feature digging.

Building on the progress of these works, the focus of our study is to

extract the three-dimensional(3D) and topological features of molecules,

improve intelligent yield prediction models, and analyze the interpretabil-

ity of the models. The main contributions are as follows: (1) Extract

the three-dimensional and topological features of cross-coupling reactions

based on molecular stick-ball models and persistent homology of topolog-

ical data. (2) Design a lightweight deep learning model, OS-MSW (Multi-

scale subtraction, multi-scale weighted and CNN for organic synthesis),

based on multi-scale subtraction weighted network, and fuse it with the

LightGBM model to construct an efficient yield intelligent prediction anal-

ysis system, OS-MSWGBM (Organic Synthesis based on Multi-scale Sub-

traction Weighted, CNN and LightGBM). (3) Conduct feature attribution

to analyze the interpretability of the OS-MSW(Organic Synthesis based

on Multi-scale Subtraction Weighted and CNN) model.

2 Intelligent analysis and prediction model

for reaction yield—OS-MSWGBM

To achieve efficient yield prediction, this paper proposed an intelligent or-

ganic synthesis system called OS-MSWGBM. Firstly, a lightweight deep

learning model OS-MSW, based on CNN with multi-scale subtraction

weighted, is designed. The abstract features extracted by the OS-MSW

feature learning network are then input into the LightGBM model for

training and prediction. Finally, feature attribution is conducted to pro-
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vide interpretability analysis of the OS-MSW model. OS-MSWGBM is

an innovative approach for research and synthesis processes in the field of

organic chemistry, offering reliable decision-making information for exper-

imental researchers or institutions.

This section will introduce the construction of three-dimensional fea-

tures, topological features, and OS-MSWGBM model as well as three eval-

uation metrics.

2.1 Feature construction

Existing methods for predicting the yield of Buchwald-Hartwig cross-co-

upling reactions still depend on two-dimensional features and have not

fully considered other feature information of the coupling reaction. For

the purpose of obtaining the feature information of the Buchwald-Hartwig

cross-coupling reaction from multiple perspectives, we will extract the

three-dimensional features and topological features of the coupling reac-

tion based on the molecular stick-and-ball model and persistent homol-

ogy of topological data. By cascading two-dimensional features, three-

dimensional features, and topological features, we can describe compounds

from multiple angles, thereby improving the accuracy of prediction.

2.1.1 Construction of three-dimensional features

Two-dimensional features mainly quantify the physical properties of com-

pounds, like the highest (lowest) occupied molecular orbital energy level,

molecular dipole moment, electronegativity, hardness, atomic charges, nu-

clear magnetic resonance shifts, vibrational frequencies, and intensities.

Differently, three-dimensional features quantify the spatial structural and

physicochemical properties of compounds, such as molecular weight, va-

lence electron count, molecular fingerprint density, octanol-water partition

coefficient, molecular ring compactness index, geometric complexity and

diversity of the molecule, polarity, and solubility. The construction steps

of three-dimensional features are as follows:

1) Arrange all variables involved in the Buchwald-Hartwig amination

reaction, including halides, ligands, bases, and additives, in a certain order
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and draw the two-dimensional structure diagrams of each combination.

2) Use Chem3D software to convert the drawn two-dimensional struc-

ture diagrams of each combination into three-dimensional structure dia-

grams (hockey stick structure) and save them as mol format files.

3) Use the RDKit toolkit to calculate and output the three-dimensional

structure descriptors of each mol format file in Python, thereby quan-

tifying the structural features and physicochemical properties of organic

compounds.

Figure 2. Two-dimensional structures of the four reactants and corre-
sponding stick-ball structures.

2.1.2 Construction of topological features based on persistent

homology

The extraction of topological features based on persistent homology in-

volves identifying and analyzing the topological invariants such as average

lifetimes and persistent entropy of connected components, cycle structures,

and void structures.

As the parameter ε increases from 0, these topological features, such as

connected components (connected branches), cycle structures (1-dimensio-

nal loops), and void structures (2-dimensional voids), are tracked from



12

birth to extinction. The longer these topological features persist, the more

useful they are for data analysis. If a topological feature emerges and

disappears quickly, it is more likely to be noise. This process is known as

persistent homology. The fundamental concepts of persistent homology,

include simplex, simplicial complex, homology, and filtration.

(1) Simplices and simplicial complexes

Simplices are the basic geometric structures in topological data analysis

[27], extending the concept of triangles. They are used to approximate

complex shapes and are mathematically and computationally easier to

handle than primitive shapes.

Simplicial complexes describe the topological structure of a set of poi-

nts. There exist various definitions for different data types and different

types of complex structures have different properties. Most commonly

used type is the Vietoris-Rips complex (VR complex) [27], since the VR

complex is easily extendable to higher dimensions and provides a simple

and intuitive representation of the building process, making it suitable for

computational analysis. Therefore, VR complexes are used throughout the

data analysis in this paper.

The construction of a VR complex:

(a)Building a neighbor graph. The neighbor graph is an undirected

weighted graph, denoted by (G,ω), where G = (V,E) indicates undi-

rected graph, V is the set of vertices, E is the set of edges, and ω de-

notes the weight. Let Eε = {{u, v} |d (u, v) ≤ ε, u ̸= v ∈ V }, where d (u, v)
is the distance function between two points. Furthermore, the map ω :

E → R makes each edge weight the distance between the two points, i.e.,

ω ({u, v}) = d (u, v) ,∀ {u, v} ∈ Eε(V ).

(b)Expanding the VR complex in the neighbor graph obtained in step

(a). Given a neighbor graph, construct the VR complex (R(G), ω) using

the weight filtration ω, where:

R (G) = V ∪ E ∪

{
σ|

(
σ

2

)
⊆ E

}
. (1)

In summary, the VR complex is the union of all vertices, edges, and

simplex σ in the neighbor graph, where any combination of two points in
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the vertices of simplex σ belongs to the set of edges E.

(2) Homology and filtration

To construct and utilize these simplicial complexes in data analysis,

it is necessary to further compute meaningful topological features within

these complexes. Topological Data Analysis (TDA) employs tools from

persistent homology theory to compute the number of connected compo-

nents and n-dimensional cycles (such as holes in circles or voids in spheres)

in the topological space established from the dataset. This requires the

computation of homology groups and Betti numbers denoted as β [28].

For a simplicial complex K, a k chain can be represented in a sum-

mation form of K:
N∑
i=1

ci
[
σk
i

]
, where σk

i is a k-dimensional simplex in the

simplicial complex K, ci ∈ Z2. The collection of all k chains in K forms

an abelian group Ck(K).

We now can extend the definition of the boundary operator introduced

in Equation 2 to chains. The boundary operator applied to a k-chain ck is

defined as

∂kck =
∑

ai∂kσi, (2)

the boundary operator is a map from ck to ck−1, which is also named

boundary map for chains. Note that operator ∂k satisfies the property

that ∂k ◦ ∂k+1σ = 0 for any (k + 1)-simplex σ following the fact that any

(k− 1)-face of σ is contained in exactly 2 k-faces of σ. The chain complex

is defined as a sequence of chains connected by boundary maps with an

order of decaying in dimensions and is represented as

· · · → Cn(K)
∂n−1→ · · · ∂1→C0(K)

∂0→ 0. (3)

The k-cycle group and k-boundary group are defined as kernel and

image of ∂k and ∂k+1, respectively,

Bk = Im ∂k+1 = {∂k+1c|c ∈ Ck+1} ,

Zk = Ker∂k+1 = {∂k+1c|c ∈ Ck+1} ,
(4)

where Zk is the k-cycle group and Bk is the k-boundary group. Since ∂k ◦
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∂k+1 = 0, we have Bk ⊆ Zk ⊆ Ck. With the aforementioned definitions,

the k-homology group is defined to be the quotient group by taking k-cycle

group modulo of k-boundary group as

Hk = Zk/Bk, (5)

where Hk is the k-homology group. The kth Betti number is defined to be

rank of the k-homology group as

βk = rank(Hk) = rank(ZK)− rank(Bk). (6)

The Betti number βk exists because βk ≤ rank(Zp) < ∞. Betti num-

bers are important invariants of a topological space. β0 represents the

number of connected components and β1 represents the maximum num-

ber of cuts along closed curves that can be made while keeping the space

connected.

The Betti numbers obtained through homology groups can effectively

describe the topological structure of a simplicial complex. Intuitively, the

homology groupH0 represents connected components, H1 represents cyclic

structures, and H2 represents void structures. The k-th Betti number βk

denotes the number of k-dimensional voids.

The filtration of a simplicial complex K refers to a nested sequence of

subcomplexes of K, reflecting the data structure at different scales:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K. (7)

Through the filtration process of a simplicial complex, the homology

groups of each simplicial complex can be gained, and topological features

can be computed using these homology groups. During the filtration,

topological features that persist for a long time are more likely to be im-

portant attributes of the object we study. In other words, non-boundary

cycles that do not quickly map to the edge are probably vital features of

the internal structure of the data, which is the persistence of topological

features.

The persistence diagram [29] can provide a visualization of persistent
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homology analysis, illustrating the birth and death of topological features.

Figure 3. Persistence diagram.

(3) Construction of Topological Feature

In topological machine learning, topological methods concentrate on

invariants. Topological invariants are topological structures where prop-

erties stay unchanged under a specific type of continuous transformation,

e.g., connected components, loop structures, and void structures. The

barcodes or persistence diagrams of topological invariants are transformed

into structured features represented as quantized vectors, which are then

input into machine learning algorithms to train models. The persistence

diagram represents the results of persistent homology analysis as pairs of

birth and death times, with the horizontal and vertical axes representing

the birth and death values of the topological invariants, respectively. If we

use akj , b
k
j to symbolize the birth and death of the j-th topological invari-

ant of the k-dimensional homology group, then lkj represents its lifetime;

lkj = bkj − akj where k ∈ N, j = 1, 2, · · · , Nk is the total number of topolog-

ical invariants in the k-dimensional homology group. Table 1 summarizes

some methods for constructing topological features.
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Table 1. Construction of topological feature.

Feature name Dimension
of
homology
group

Feature description

Num rel holes 0,1,2 The number of components, cy-
cle structures, and void structures
with a survival time greater than
50% of their respective maximum
survival times.

Num holes 0,1,2 The total number of existing com-
ponents, cycle structures, and void
structures.

Sum lengh 0 The sum of survival times for all
components.

Avg lifetime 0,1,2 The average survival period of
components, cycle structures, and
void structures.

Length betti 0 The survival period of the second
longest-lasting component.

Onset longest betti 1 The birth time of the longest-
lasting cycle structure.

Polynomial feature 1 0 1
N

∑N
i=1 bi(di − bi).

Polynomial feature 2 0 1
N

∑N
i=1 b

2
i (di − bi)

4
.

Persistence entropy 0,1,2 E(D) = −
∑
α∈A

pα log pα,

pα = (dα−bα)∑
α∈A

(dα−bα) .

Persistence landscape 0,1,2 The p-Wasserstein distance be-
tween two persistence diagramsD1

and D2 is the infimum over all bi-
jections γ : D1 ∪ ∆ → D2 ∪ ∆ of( ∑

x∈D1∪∆

∥x− γ(x)∥p∞

)1/p

, where

∥−∥∞ is defined for (x, y) ∈ R2 by
max {|x| , |y|}.

Wasserstein distance 0,1,2 The p-Wasserstein distance be-
tween two persistence diagrams.

Bottleneck distance 0,1,2 The limit p → ∞ defines the
bottleneck distance. More explic-
itly, it is the infimum over the
same set of bijections of the value
sup

x∈D1∪∆
∥x− γ(x)∥∞.
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2.2 OS-MSWGBM

This section presents a light, multi-scale subtraction network with a CNN

backbone. To extract crucial features without significantly increasing

model complexity, multi-scale weighted is incorporated, therefore, the mu-

lti-scale subtraction weighted network, OS-MSW, is constructed. The fi-

nal fully connected layer is replaced with LightGBM in order to mitigate

overfitting risks associated with fully connected layers and improve model

interpretability and prediction performance. The resulting hybrid model

OS-MSWGBM, enhances prediction efficiency and significantly reduces

runtime while intensifying deep feature exploration.

2.2.1 Multi-scale subtraction network

Scale features greatly contribute to capturing the contextual information of

objects. Inspired by scale space theory, an increasing number of multi-scale

methods have been proposed to address natural scale variations. Current

approaches gradually fuse different scale features through addition or con-

catenation, which could lead to substantial redundancy and weaken the

complementarity among features at different scales. Aiming at resolving

the generation of redundant information, we apply a subtraction unit when

fusing features at different levels.

Suppose XA and XB represent adjacent level feature maps. They all

have been activated by the ReLU operation. We define a basic subtraction

unit (SU):

SU = Conv(|XA ⊖XB |), (8)

where ⊖ is the element-wise subtraction operation, | · | calculates the ab-

solute value and Conv(·) denotes the convolution layer. The SU unit can

capture the complementary information of XA and XB and highlight their

differences, thereby providing richer information for the decoder.

To obtain higher-order complementary information across multiple fea-

ture levels, we horizontally and vertically concatenate multiple SUs to cal-

culate a series of differential features with different orders and receptive

fields. The detail of the multi-scale subtraction module can be found in
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Figure 4. We aggregate the level-specific feature (M i
1) and cross-level dif-

ferential features (M i
n̸=1) between the corresponding level and any other

levels to generate complementarity enhanced feature (Ci). This process

can be formulated as follows:

Ci = Conv(

5−i∑
n=1

M i
n), i = 1, 2, 3, 4. (9)

Finally, all Ci participate in decoding.

Figure 4. SU subtraction.

2.2.2 Multi-scale weighted

Supposing there are i feature layers Xi, each with k feature maps Xik.

First, perform global average pooling on Xik to obtain its average value:

Xik mean =
1

|R|
∑

(p,q)∈R

Xik(p,q), (10)

where Xik(p,q) represents the element located at (p, q) in region R of the

k-th feature map of the i-th layer, |R| represents the total number of

elements in the k-th feature map. Thus the average value Xi mean =

(Xi1 mean, Xi2 mean, · · · , Xik mean) of each feature layer, is processed by a

fully connected layer using the sigmoid activation function to obtain the

corresponding weight:
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Xi weight = sigmoid(Wi ∗Xi mean + bi), (11)

where Wi and bi represent the weight and bias of the i-th fully connected

layer. Reshape X to a shape of (1,1,k), and then weight the i feature layers

by multiplying them with the corresponding weights to get the weighted

feature layers Xi weighted:

Xi weighted = Xi ∗Xi weight, (12)

Thus, the final weighted average value can be:

Xweighted = X1 weighted +X2 weighted + · · ·+Xi weighted, (13)

which can be used as the model’s input for the next classification and

regression tasks.

2.2.3 OS-MSWGBM prediction model

Based on what is discussed above, a carefully-designed feature learning

network is constructed. Firstly, we propose a multi-scale subtraction net-

work with a two-dimensional CNN as the backbone. And then without

significantly increasing the complexity of the model, multi-scale weighting

is added, making the network structure more scientifically efficient. This

feature learning network possesses powerful feature learning capabilities

of convolutional neural networks, promotes the complementary abilities

among features of different scales, as well as the ability to focus on core

features through multi-scale weighting.

However, it should be noted that the OS-MSW model ultimately uses

traditional fully connected layers, which require a huge number of neu-

rons and parameters. This results in two major limitations: on the one

hand, the model requires amounts of parameters, leading to computational

complexity; on the other hand, an excessive number of neurons in the fully

connected layers also easily increases the risk of overfitting. The advantage

of the LightGBM model lies in its ease of parameter tuning, resistance to

overfitting, and fast model training speed. Therefore, to reduce the risk
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of overfitting and the associated complex computations in the fully con-

nected layers, the OS-MSW model is combined with the LightGBM model.

Specifically, the abstract features extracted by the OS-MSW function as

input for training and prediction in the LightGBM model, while the rest

of the structure maintains unchanged. The final objective function is

L(φ) =
∑

l(ŷi, y
i
), (14)

whose idea is to iteratively generate multiple weak models and then add

the predictions of each weak model together, with each subsequent model

ft(x) being generated from the previous learning model ft−1(x).

Since ŷi = ϕ(xi) =
K∑

k=1

fk(xi) = ŷ
(t−1)
i + ft(xi), the objective function

can be transformed into:

L(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)). (15)

In summary, the workflow of OS-MSWGBM is as follows:

(1) Data preprocessing. Standardize the data and reshape the n-

dimensional dataset into an m ∗ m descriptor matrix, where m ∗ m = n.

If the dimension n is not enough to be converted into a matrix m ∗m, it

can be padded with zeros.

(2) Model training. Set the loss function of the OS-MSWGBM feature

learning network as Mean Square Error (MSE), and use the Adam opti-

mization algorithm. Continuously optimize loss through the optimization

algorithm to decrease the error value, update the parameters of the neural

network through error backpropagation, and save the network parameters

when convergence is achieved. Then, use the abstract features extracted

from the third fully connected layer as training data to input into the

LightGBM model for training.

(3) Model testing. The well-trained OS-MSW is used to extract fea-

tures from the test set. Subsequently, the extracted abstract features are

input into LightGBM to calculate the predicted yield ŷ. Regression fitting

analysis is then performed using evaluation metrics R2(y, ŷ), RMSE(y, ŷ),

MAE(y, ŷ) and actual yield y to evaluate the model.
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Figure 5. workflow of OS-MSWGBM hybrid model.

2.2.4 Feature attribution

By using deep models, we attain higher performance through greater ab-

straction (more layers) and tighter integration (end-to-end training). Nev-

ertheless, structural complexity makes these models difficult to interpret.

Therefore, deep models are striking a balance between interpretability and

accuracy. In this research, we utilize the Gradient Weighting technique to

multiply the gradient of the input with respect to the feature block by the

weight of the feature block itself, attaining attribution weights for each

input. These attribution weights indicate the contribution of eigenvalues

in the input eigenmatrix to the feature block, and can thus be used to

output the weight values of each feature descriptor. Calculation steps are:

Assume there is a deep neural network model, where f(x) represents

the output of the input x. We hope to trace the contribution of the input

x to the model output f(x) by Gradient Weighting technique.

First, calculate the gradient of the model output f(x) with respect to

the input x, i.e., ∇xf(x).

Next, compute the contribution of each input feature to the model

output. To do this, multiply the gradient ∇xf(x) with the feature block

A to obtain:
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αi =
∑
j,k

∇Aj,k
f(x) ∗Ai,j,k, (16)

where Ai,j,k denotes the weight of the i-th channel, j-th row, and k-th

column in the feature block A.

Then, normalize αi to obtain the attribution weights:

wi =
αi∑
i

αi
. (17)

Finally, multiplying the attribution weights wi by the input feature xi,

we get the contribution of each feature

Lgrad−CAM (x)c =
∑
i

wi ∗ xi. (18)

2.3 Evaluating indicators

In the regression prediction of yield, R2, Root Mean Square Error (RMSE)

and Mean Absolute Error (MAE) are selected to measure the regression

prediction effect of the model.

(1) R2, also known as coefficient of determination, reflects the inter-

pretable proportion of the independent variable to the dependent variable.

The value range of R2 is between 0 and 1. The closer R2 is to 1, the better

the fitting effect of the model.

R2 = 1− SSR

SST
= 1−

∑
i

(yi − ŷi)
2

∑
i

(yi − ȳ)
2 , (19)

where SST is the sum of squares, and the sum of squares of errors between

the original data yi and the mean value ȳ is calculated. SSR is the sum

of squares of regression, which calculates the sum of squares of the mean

value ȳ and the error of fitting data ŷi.

(2) RMSE is the square root of the ratio of the square of the deviation

between the observed value ŷi and the real value yi and the observation

times n. The smaller the value of RMSE, the better the regression pre-
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diction effect of the mode.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2
. (20)

(3) MAE is the average of the absolute value of the error between the

observed value and the real value. Similarly, it is used to measure the

deviation between the predicted value and the real value. The smaller the

MAE value, the better the regression prediction effect of the model.

MAE =
1

n

n∑
i=1

|yi − ŷi|. (21)

3 Experiments

In this section, three-dimensional features and topological features of the

Buchwald-Hartwig coupling reaction were extracted, and cascaded them

with 2D features selected based on feature importance and correlation.

The cascaded feature descriptor data is applied to test and analyze the

convergence and prediction of the OS-MSWGBM model.

3.1 Data sources

This paper selects the data with regard to the Buchwald-Hartwig cross-

coupling reaction published by D. T. Ahneman et al. [7]. The authors

generated a total of 3960 sets of valid experimental data through high-

throughput experiments (with 5 sets of experimental data missing yield

values, which are excluded from this study). To avoid time-consuming

analysis and recording of computational data, D. T. Ahneman et al. [7]

developed the software Spartan to calculate molecular, atomic, and vi-

brational property, and then extracted these features from the resulting

text files for general user access. Spartan extracted a total of 120 feature

descriptors to symbolize each reaction, which can be further categorized

into three types: molecular descriptors (28), atomic descriptors (64), and

vibrational descriptors (28).
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However, many descriptor may exhibit significant correlations, leading

to overfitting and an increase in computational time. The feature de-

scriptors selected by J. Dong et al. [18] based on feature importance and

correlation as input data for all subsequent algorithms were used in this

paper. The study has already suggested that the attained 21 descriptors

can effectively replace the original 120 descriptors. Hence, unless otherwise

specified, the 2D features used in this paper are all based on the selected

21 descriptors.

Figure 6. Reaction components of the Buchwald-Hartwig amination
reaction for the first 821 samples.

It is an extremely time-consuming and resource-intensive task gener-
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ating plenty of samples (3960). In practical scenarios, researchers may

sometimes only have access to relatively few samples. We conducted ex-

periments using a small subset of samples from the data published by D.

T. Ahneman et al. [7] on the Buchwald-Hartwig cross-coupling reaction,

specifically 821 samples. Such sample size is sufficient to support our re-

search while reducing resource consumption during the process.

Experimental environment: each experiment is the result of an aver-

age of 100 trials with the same configuration, training set: testing set

= 7:3. Computer configuration is as follows: Brand: Dell; CPU: In-

tel(R) Core (TM) i7-7700HQ CPU @2.80GHz(8CPUs), 2.8GHz; Memory

type: DDR4.Software: under Python3.7 scikit-learn module or MATLAB

R2020a on a 2.80GHz machine with 24.00GB RAM.

3.2 Feature analysis

To obtain feature descriptors for the Buchwald-Hartwig cross-coupling re-

action from multiple perspectives, we conduct the extraction of three-

dimensional (3D) and topological features. Specifically, 208 3D features

are extracted from molecular stick-and-ball models of the cross-coupling

reaction. 37 topological features are extracted by leveraging persistent

homology analysis based on the 3D features. Due to zeros in some of

the 3D descriptors, 10 columns were removed. Subsequently, the 21 two-

dimensional (2D) feature descriptors selected by J. Dong et al. [18] are

concatenated with the remaining 3D and topological features. It has been

previously demonstrated that these 21 2D feature descriptors efficiently

replace the original 120 descriptors [17, 18]. Eventually, this paper have a

total of 256 feature descriptors.

Furthermore, as shown in Figure 7, a comparison of the CNN prediction

results for the 2D features, 3D features, the concatenation of 3D and topo-

logical features (3D+T), and the concatenation of 2D, 3D, and topological

features (2D+3D+T) reveals that the concatenation of 2D, 3D, and topo-

logical features (2D+3D+T) achieved superior prediction accuracy. This

finding underscores the effectiveness of the extracted 3D and topological

features. Therefore, the concatenated data (256 feature descriptors) will

be used as the experimental data for the subsequent sections of this study.
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Figure 7. Comparison of CNN prediction results with different feature
descriptors.

3.3 Performance of OS-MSWGBM-based chemical re-

action yield prediction

This section will investigate the convergence and predictive performance of

the OS-MSWGBM. Through comparisons with other state-of-the-art mod-

els, we have demonstrated that OS-MSWGBM outperforms most other

models in predictive accuracy as well as operation speed. Moreover, the

model’s generalization performance has been validated through out-of-fold

predictions and Suzuki-Miyaura dataset predictions.

3.3.1 Convergence analysis

Figure 8 visualizes the changes in the average root mean square error and

average root mean square absolute error of the training and testing sets

over the iterations in ten-fold cross-validation. It is evident that the error

curves for both the training and testing sets show a decreasing trend with

increasing iteration numbers, ultimately stabilizing. This indicates that
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the OS-MSWGBM model converges after training.

Figure 8. (a)The RMSE of the training set varies with the number
of iterations. (b)The RMSE of the testing set varies with
the number of iterations. (c)The absolute error between ad-
jacent iteration steps of the training set. (d)The absolute
error between adjacent iteration steps of the testing set.

3.3.2 Model performance analysis

To better fit real data, this section employ ten-fold cross-validation and

grid search methods to obtain the optimal parameters for the LightGBM

model. Additionally, this study compares the results from eight other re-

gression methods, including CNN, XGBoost, Random Forest, Extra tree,

AdaBoost, Gradient Boost, Support Vector Machine Regression (SVR),

and Multilayer Perceptron Regression (MLPR). From Figure 9, it is ob-

vious that the OS-MSWGBM model demonstrates superior predictive ca-

pabilities, requiring only 0.9418 seconds runtime. In contrast, the con-
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ventional CNN model runs 245 times slower than OS-MSWGBM, repre-

senting a 99.59% improvement in runtime speed. This comes down to

the fact that CNN models typically utilize traditional fully connected lay-

ers, which demand numbers of neurons and parameters. On the other

hand, the LightGBM model leverages Gradient-based One-Side Sampling

(GOSS) and Exclusive Feature Bundling (EFB) techniques, allowing for

accelerated training without compromising accuracy.

While OS-MSWGBM model needs relatively longer runtime compared

to XGBoost, Gradient Boost, MLPR, and SVR models, it still outperforms

them in terms of predictive accuracy. Specifically, it shows improvements

of 4.05%, 8.21%, 16.43%, and 34.49% in prediction accuracy, with corre-

sponding reductions in RMSE of 24.26%, 35.40%, 47.26%, and 58.52%,

as well as reductions in MAE of 22.07%, 38.71%, 50.69%, and 61.11%,

respectively. Overall, OS-MSWGBM displays nearly perfect performance,

combining higher operational efficiency with more accurate predictive out-

comes.

Figure 9. Prediction results of different models.
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The boxplot of results from 100 experiments, as shown in Figure 10, in-

dicates that OS-MSWGBM outstrips the other eight methods (M1: CNN,

M2: XGBoost, M3: Random Forest, M4: Extra tree, M5: AdaBoost, M6:

Gradient Boost, M7: SVR, and M8: MLPR) in terms of both smaller R2

and larger RMSE and MAE. In addition, the boxplot for the 100 experi-

ment results is narrower, meaning more concentrated predictive outcomes

and more stable predictive performance.

Figure 10. Box plots of 100 prediction results for different models.

3.4 Ablation experiments

The ablation experiments are conducted to further validate the superior

performance of OS-MSWGBM. As illustrated in Figure 11, the predictive

accuracy of OS-MSWGBM surpassed that of other models. Although the

inclusion of LightGBM do not cause a significant improvement in predictive

accuracy, it notably shortens runtime, achieving a speed increase of nearly

80 times. Additionally, it becomes apparent that each module we introduce
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(multi-scale subtraction MS, multi-scale weighting MW, LightGBM) is

effective.

Table 2. Ablation experiments.

Symbol Model CNN MS MW LightGBM

Ours OS-MSWGBM ✓ ✓ ✓ ✓
A1 OS-MSW ✓ ✓ ✓
A2 OS-MSGBM ✓ ✓ ✓
A3 OS-MS ✓ ✓
A4 OS-MWGBM ✓ ✓ ✓
A5 OS-MW ✓ ✓
A6 OS-GBM ✓ ✓
A7 CNN ✓
A8 LightGBM ✓

Figure 11. Prediction results of ablation experiments.

The boxplots in Figure 12 display the results from 100 ablation experi-
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ments. Similarly, when comparing OS-MSWGBM with the eight methods

(A1: OS-MSW, A2: OS-MSGBM, A3: OS-MS, A4: OS-MWGBM, A5:

OS-MW, A6: OS-GBM, A7: CNN, and A8: LightGBM), OS-MSWGBM

exhibits both larger R2 and smaller RMSE and MAE. The boxes rep-

resenting the results of the 100 ablation experiments for OS-MSWGBM

are smaller, indicating more concentrated predictive outcomes. This in-

directly proves the effectiveness of each module we introduce (multi-scale

subtraction MS, multi-scale weighting MW, LightGBM).

Figure 12. Boxplot of 100 prediction results for ablation experiments.

3.5 Generalization analysis

To validate the generalization performance of the proposed method, two

experiments are conducted: (1) conducting out-of-fold predictions on the

same dataset and (2) testing predictions on Suzuki-Miyaura dataset
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3.5.1 Out-of-fold predictions

Out-of-sample predictions refer to making predictions on samples that are

not used during model training, and then estimating the model’s perfor-

mance in predicting new data. This approach is useful for predicting with

new data (data not seen during training) and assessing model performance.

It allows for the evaluation of the model’s generalization performance.

Scoring the model’s predictions made during each training iteration and

then calculating the average score is the most common method for model

evaluation.

In addition to averaging the prediction evaluations for each model,

out-of-fold predictions also aggregate the predictions for each model into

a list, which includes a summary of the reserved data used as the test

set for each training group. After all model training is completed, this

list is used as a whole to obtain a single accuracy score. This method

is used considering that each data point appears only once in each test

set. Each sample in the training dataset has a prediction during the cross-

validation process. Therefore, all predictions can be collected, compared

with the target results, and scores can be calculated at the end of the entire

training. This approach highlights the model’s generalization performance

more effectively.

Table 3. Comparison of out-of-fold prediction results of OS-
MSWGBM, CNN, and LightGBM.

Methods R2 RMSE MAE Time(s)

OS-MSWGBM 0.9588 5.8249 4.1238 1.1226
CNN 0.9451 6.4562 4.5157 196.9825
LightGBM 0.9397 7.0575 5.0407 0.4108

From Table 3, it can be observed that compared to CNN and Light-

GBM, OS-MSWGBM exhibits larger R2 and smaller RMSE and MAE,

with much shorter running time. Figure 13 shows the fitting and error

plots of the predicted values versus the original values for OS-MSWGBM,

CNN, and LightGBM. It is apparent from the plots that OS-MSWGBM

has the best fitting effect, with overall small error.
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Figure 13. Comparison of out-of-fold results of OS-MSWGBM, CNN,
LightGBM.

3.5.2 Suzuki-Miyaura dataset predictions

To confirm the generalization performance of our method, test is con-

ducted on the Suzuki-Miyaura dataset, which originates from an article

by the Pfizer team [30]. The authors conducted high-throughput screen-

ing of Suzuki-Miyaura C-C coupling reactions, comprising 11 reactants, 12

ligands, 8 bases, and 4 solvents, resulting in 5760 reactions. The predic-

tive target was the reaction yield, but Pfizer and others did not apply a

machine learning model in the original study. In 2018, Cornin et al. [31]

reported machine learning exploration of this dataset, using one-hot en-

coding for reaction encoding and training a two-layer neural network to

predict reaction yields. In 2021, Gong et al. [32] used GAT for direct im-

age input for feature learning and prediction. In this paper, according to

encoding of Cornin et al. we use the OS-MSWGBM model for prediction.

From Table 4, we can see that OS-MSWGBM shows a decrease in ac-

curacy compared to the DeepReac model, with a decrease of 1.40% in

R2 and an increase of 4.55% in RMSE. Nonetheless, running speed of

DeepReac is over 1000 times that of OS-MSWGBM, indicating a 99.91%

improvement in speed for OS-MSWGBM. The lower accuracy of CNOS-
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MSWGBM compared to DeepReac may be due to the one-hot encoding

data used by CNOS-MSWGBM not fully describing molecular features,

whereas DeepReac uses GAT to directly prossess molecular features. Un-

doubtedly, we are willing to compromise a small amount of accuracy to

improve model efficiency.

Table 4. Comparison of test results for Suzuki-Miyaura dataset

Methods R2 RMSE MAE Times(s)

OS-MSWGBM 0.8884 0.092 0.0641 1.69s
Neural network(NN) [31] 0.8413 0.1115 0.0755 18.09s
DeepReac [32] 0.901 0.088 −− About 3h

3.6 Interpretability analysis

Figure 14 is the feature weight plots for two samples in the test set, display-

ing the top 25 ranked feature weights for each sample. Notably, features

such as aryl halide ovality and SMR VSA3 play crucial roles in predict-

ing outcomes in the OS-MSW. Analysis of the feature weights for each

test set sample finds that aryl halide ovality and SMR VSA3 etc., con-

sistently rank among the top features, indicating their significant impact

within the OS-MSW. More exactly, the prediction error for the first sam-

ple is only 0.0861, while the error for the second sample is considerably

higher at 4.8495. This disparity may be attributed to the fact that for the

second sample, important features such as fr aryl methyl, PEOE VSA6,

and SlogP VSA6 have weights ranked outside the top 50, suggesting that

the significance of these features is overlooked for the second sample, thus

contributing to the increased prediction error. Also, this observation in-

directly underscores the effectiveness of the extracted geometric features

(e.g., SMR VSA3, PEOE VSA2).
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(a)

(b)

Figure 14. Feature weighting diagram.

3.7 Software of OS-MSWGBM

As shown in Figure 15, for the convenience of users, we has developed a

EXE software called OS-MSWGBM, which can implement 3D features,

topological features, intelligent prediction of reaction yields and inter-



36

pretability analysis. Specifically as follows: (1)Read the compound’s .mol

format file, click on [3D Features] for three-dimensional feature extraction.

(2)Read the compound’s three-dimensional feature data, click on [Topo-

logical Features] for extracting topological features. (3)Click on [Train

Model] to start training the OS-MSWGBM model, the training progress

will be displayed in [progress], click on [Stop Training] at any time to termi-

nate the training. (4)Click on [Intelligent Prediction] for intelligent predic-

tion with the OS-MSWGBM model. (5)Finally, click on [Interpretability

Analysis] to trace features and conduct interpretability analysis of the OS-

MSW model. Users can selectively click on the desired results. The tool

is powerful, easy to use, and offers very high accuracy in results, providing

convenience for chemists researching cross-coupling reactions.

Figure 15. The system interface of OS-MSWGBM.

4 Conclusion

This paper presents the construction of a more efficient organic chemical

synthesis system OS-MSWGBM, based on convolutional neural networks
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and LightGBM. First, molecular stickball models and persistent homology

from topological data analysis are used to extract three-dimensional and

topological features of molecules, which are then concatenated with origi-

nal two-dimensional features to obtain comprehensive feature information

for the Buchwald-Hartwig cross-coupling reaction. Subsequently, a multi-

scale subtraction network with a two-dimensional CNN as its backbone

is designed, incorporating multi-scale weighting to focus on key features

without significantly increasing model complexity, therefore, the multi-

scale subtraction weighted network, OS-MSW, is constructed. The learned

features are then fed into LightGBM to construct the efficient predic-

tion model, OS-MSWGBM. OS-MSWGBM enhances feature expression

through feature re-representation, while the introduction of LightGBM ac-

celerates the model’s operational efficiency. Experimental results demon-

strate that the OS-MSWGBM prediction model not only exhibits higher

operational efficiency and more accurate prediction results in forecasting

reaction yields, but also displays more stable predictive performance. In

addition, this paper conducted feature tracing analysis based on OS-MSW

to identify input features remarkably influencing reaction yields, aiding

advancements in the field of chemistry and providing more accurate assis-

tance to experimenters.

Similarly, the proposed intelligent predictive analysis system can be

applied to other chemical reactions beyond the Buchwald-Hartwig cross-

coupling reaction. In the future, combining the feature interpretability of

LightGBM with the feature tracing of OS-MSW appears another intriguing

and challenging avenue for researchers.
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