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Abstract

An edge of a graph can be geometrically represented by points
(dr, ds) and (ds, dr) in a 2D coordinate system, where coordinates
are, obviously, the degrees of the edge’s end-vertices. Recently, us-
ing such a geometrical point of view of a graph edge, a couple of
topological invariants were put forward. They have attracted con-
siderable attention among chemical graph theorists. This paper in-
troduces a novel approach for devising “geometrical” topological
indices. Finally, special attention is focused on the complementary
second Zagreb index as a representative of the introduced approach.

1 Introduction

Molecular descriptors are necessary tools for quantifying the structure of

a molecule [19, 20]. There are many molecular descriptors, and they are

grouped into several classes [2,20]. The class containing topological indices

is probably the largest one [2, 4]. They are heavily employed in diverse

chemical investigations [2–4, 19, 20]. This is one of the reasons for the

immense interest in these indices and the steep multiplication of their

number.
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Graph features used in the definition of a topological index determine

its affiliation to one of the distinct classes of these descriptors. Thus, one

can differentiate degree-based, distance-based, and eigenvalue-based topo-

logical indices, among others. The degree-based topological descriptors

are one of the largest groups among topological indices. There are myriad

degree-based topological indices.

The degree-based topological indices, defined using a “geometrical”

approach, have attracted significant attention and are being extensively

investigated. The first and most significant representative is certainly the

Sombor index [6]. Despite its juvenility, several hundreds of research pa-

pers have been published (e.g. see [8, 15, 17] and references cited therein),

where the Sombor index was treated from various aspects.

Searching for suitable degree-based topological indices has been an on-

going task. Recently, a novel approach was put forward for devising the

“geometrical” degree-based topological indices. Thus, an elliptic Sombor

index was introduced [8].

We present here a novel way of contemplating the concept of “geomet-

rical” degree-based topological indices, where the angle of an edge and its

complement are introduced. By applying this approach we come up with

the definition of the earlier introduced nano Zagreb index [11], or the F -

minus index [13], or the first Sombor index [10,18]. We think these names

are less adequate for this index and propose renaming it to the complement

second Zagreb index (cM2). We will use this name and notation in the rest

of the text.

2 Method

An edge rs of a graph G with degrees dr and ds of end-vertices may be

represented in a 2D coordinate system by the degree-point (dr, ds) and its

dual-degree-point (ds, dr) [6]. These vectors intersect at the origin of the

coordinate system and form an angle of the edge, αrs (see Figure 1).
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Figure 1. Degree-point, its dual-degree-point, and the edge angle.

The sine of the edge-angle can be calculated using the degrees of end-

vertices of an edge.

Theorem 1. Let rs be an edge of graph G. Let degrees of its end-vertices

be dr and ds. It is assumed that dr ⩾ ds, without loss of generality. Then,

sinαrs =
d2r − d2s
d2r + d2s

(1)

Proof. The area AAOB is equal to

AAOB =
1

2
·

∣∣∣∣∣∣∣
dr ds 1

ds dr 1

0 0 1

∣∣∣∣∣∣∣ =
1

2
·
(
d2r − d2s

)
(2)

Knowing the lengths of vectors | #    »

OA| = | #    »

OB| =
√
d2r + d2s, the area of

the same triangle can be calculated as follows:

AAOB =
1

2
· | #    »

OA| · | #    »

OB| · sinαrs =
1

2
·
(
d2r + d2s

)
· sinαrs (3)

Combining Eqs. (2) and (3), the formula given in Eq. (1) is obtained.
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The sine of the complement of the edge-angle βrs is given in the The-

orem 2.

Theorem 2. Assuming without loss of the generality that dr ⩾ ds, the

sine of the complement angle βrs of the edge-angle αrs is

sinβrs =
(dr + ds)

2 − (dr − ds)
2

(dr + ds)2 + (dr − ds)2
(4)

Proof. It is well-known that

sinβrs = sin (90◦ − αrs) = cosαrs .

The cosine of the edge-angle is calculated from its sine given in the

Eq. (4)

sinβrs =

√
1− sin2 αrs =

2dr ds
d2r + d2s

. (5)

Equation (5) is rewritten as follows:

sinβrs =
2 · 2dr ds
2d2r + 2d2s

=
(d2r + 2dr ds + d2s)− (d2r − 2dr ds + d2s)

(d2r + 2dr ds + d2s) + (d2r − 2dr ds + d2s)
.

Thus, we obtain the sine of a complement of the edge-angle given in

the Eq. 4.

By inspecting the Eq. (1) it is evident that the calculation of the sine of

the edge-angle is feasible by knowing the edge coordinates, i.e. the degree-

point A and dual-degree-point B, shown in Figure 1. Similarly, for the

calculation of the complement of the edge-angle using the Eq. (4) the

complementary edge coordinates A′(dr+ds, dr−ds) and B′(dr−ds, dr+ds)

are needed, as it is shown in Figure 2. The point A′ will be named as the

complementary degree-point, and B′ as the complementary dual-degree-

point.

There are two ways of devising topological invariants from the comple-

mentary degree-point and its dual. The first would be similar to the orig-

inal “geometric” degree-based topological indices by obtaining the length

of vectors, the circumference, or the area of geometrical shapes related to

these coordinate points. As an example, the length of the vector |
#     »

OA′| is
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equal to
√
2 d2r + 2 d2s. Summing this contribution over all edges we come

up to the Sombor index multiplied by
√
2 . So, it is interesting that we are

obtaining the Sombor index summing contributions of lengths either | #    »

OA|
or |

#     »

OA′| over all edges. Further, by summing contributions of the area of

the △OA′B′ (see Figure 2) over all edges, we get 2 ·M2(G) . This may be

seen as a geometrical interpretation of the second Zagreb index.

Figure 2. Complementary degree-point, its complementary dual-
degree-point, and the complement of the edge angle.

The other way to construct the indices using complement degree points

is by substituting end-vertex degrees dr and ds with dr +ds and dr −ds in

the definitions of the existing degree-based topological indices. Using this

approach we get a whole new group of degree topological descriptors that

we named as complementary topological indices. In this way, the comple-

mentary indices of some well-known degree-based topological indices can

be constructed, as shown in Table 1.

Table 1. Definitions of the complementary indices of some frequently
used degree-based representatives. It is assumed that dr ⩾ ds.

Degree-based TI Complementary TI

M1(G) =
∑

rs(dr + ds) cM1(G) = 2
∑

rs dr
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Degree-based TI Complementary TI

M2(G) =
∑

rs dr · ds cM2(G) =
∑

rs(d
2
r − d2s)

F (G) =
∑

rs(d
2
r + d2s) cF (G) = 2 · F (G) = 2

∑
rs(d

2
r + d2s)

GA(G) =
∑
rs

2
√
dr · ds

dr + ds
cGA(G) =

∑
rs

√
d2r − d2s
dr

AZI(G) =
∑
rs

(
dr · ds

dr + ds − 2

)3

cAZI(G) =
1

8

∑
rs

(
d2r − d2s
dr − 1

)3

ISI(G) =
∑
rs

dr · ds
dr + ds

cISI(G) =
1

2

∑
rs

d2r − d2s
dr

H(G) =
∑
rs

2

dr + ds
cH(G) =

∑
rs

1

dr

SCI(G) =
∑
rs

1√
dr + ds

cSCI(G) =
1√
2

∑
rs

1√
dr

HM(G) =
∑
rs

(dr + ds)
2 cHM(G) = 4

∑
rs

d2r

In Table 1 are given the definitions of the first and second Zagreb

indices (M1(G) and M2(G)), forgotten index (F ), geometric–arithmetic

index (GA(G)), augmented Zagreb index (AZI(G)), inverse sum indeg in-

dex (ISI(G)), harmonic index (H(G)), sum-connectivity index (SCI(G)),

hyper-Zagreb index (HM(G)), and their complementary indices respec-

tively.

However, it should be aware that the complementary counterparts of

some well-known degree-based topological indices are ill-defined, and as

such, they can be applied in some quite limited cases. In principle, the

complementary indices of degree-based topological invariants with a prod-

uct of degrees of end-vertices in the denominator belong to this group.

The Randić index, atom-bond connectivity index, and symmetric division

deg index are invariants with ill-defined complementary indices.

Since the complementary first Zagreb index fully neglects the influence

of the end-vertex with a smaller value of the degree, which is physically

unjustifiable, we have focused on the next simplest complementary index.
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In the next section, the main features of the complementary second Zagreb

index are going to be reviewed.

3 Complementary second Zagreb index

Replacing values of degrees of end-vertices of an edge in the formula for

the calculation of the second Zagreb index by the coordinates of the points

that form the complement of the edge-angle is obtained formula of the

complementary second Zagreb index (see Section 2):

cM2(G) =
∑

rs∈E(G)

d2r − d2s (6)

where dr ⩾ ds ∀rs ∈ E(G) .

However, this index is not put forward here for the first time. It was

introduced and reintroduced in several recent and unrelated papers, which

resulted in several names for this index. According to our best knowledge,

the first appearance of this index was in [11], where it was investigated for

some products of graphs. There, this quantity was named the nano Za-

greb index. This index was reintroduced in [13], where the author derived

close formulas for this index in the case of some classes of dendrimers.

He named it the minus-F index. Another appearance was found in [21],

which authors called the modified Albertson index. In that paper, the au-

thors considered this quantity as another measure of irregularity of graphs

and derived a sharp lower bound in the case of trees and, also, character-

ized trees with minimal and maximal values of this quantity. To the best

of our knowledge, the last reintroduction of this index was in [7], where

the 1/2 · |d2r − d2s| is the area of the △OAB depicted in Figure 1. There, it

was named the first Sombor index. In subsequent papers, this index was

investigated for some supramolecular chains [10], and maximal trees and

unicyclic graphs with some given parameters were determined in [14]. Ad-

ditionally, in [14] the correlations of this index with some physicochemical

properties of octanes and benzenoid hydrocarbons were displayed. This

situation produces confusion in investigating this newly devised topologi-

cal descriptor. So, according to the presented method of constructing this
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type of indices in the preceding section, we suggest that this index shall

be called the complementary second Zagreb index.

In the rest of the article, we will fill some gaps in the elementary analysis

of newly developed topological index.

3.1 Extremal graphs

It was already mentioned that trees, having minimum and maximum

cM2(G), were characterized in [21]. Also, the unicyclic graph with maxi-

mum complementary second Zagreb index was determined in [14].

Here, we will give a conjecture about the connected graph that max-

imizes cM2(G). Since the complementary second Zagreb index can be

viewed as an irregularity measure, it is obvious that the regular graphs are

one of the extrema among all connected graphs. In this particular case,

the regular graphs have the minimum values of the cM2(G) = 0. Finding

the graph(s) with the maximum value of the cM2(G) is a much more com-

plex problem. To get some feeling about the structure of a graph with the

maximum value of the complementary second Zagreb index we performed

a series of brute force searches over all connected graphs with 6 up to 10

vertices. Results are shown on the Figure 3.

(a) 5 vertices (b) 6 vertices
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(c) 7 vertices (d) 8 vertices

(e) 9 vertices (f) 10 vertices

Figure 3. Connected graphs having maximum value of the cM2(G)
index.

We failed to prove that the graphs depicted in Figure 3 maximize the

complementary second Zagreb index, but their structure can be conjec-

tured in the following manner:

Conjecture 1 (Structure of connected graph with the maximum cM2(G)).

Vertices in the connected graph with the maximal complementary second

Zagreb index are partitioned into two groups. Let’s label the number of ver-

tices in the first group with k, which is always smaller than ⌈n/2⌉. These

vertices form a k-complete subgraph. Each of the other n − k vertices in

this connected graph is connected to all vertices of the k-complete subgraph,

but they are not mutually interconnected.

Determining the order of the complete subgraph k, as a function of

the number of vertices n of the connected graph that maximizes the value

of the cM2(G), is far from being an easy task. We came up with a good
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linear correlation of k in terms of n, assuming that Conjecture 1 is valid.

This correlation is given in Figure 4.

1

11

21

31

41

51

3 23 43 63 83 103 123

Figure 4. Correlation between the number of vertices of the complete
subgraph versus the total number of vertices of a connected
graph that maximizes the value of cM2(G).

The approximate linear equation that relates k and n is

k ≈ ⌊0.391 · n+ 0.095⌉ ,

where the correlation coefficient is equal to R = 0.99995. The obtained

float number should be rounded to the closest integer.

3.2 Correlations with physicochemical properties

A large number of statistical data on linear regressions of the Sombor-like

indices (including the complementary second Zagreb index) correlated with

some common physicochemical properties of octanes and a set of benzenoid

hydrocarbons were presented in [14]. There, it was demonstrated that

cM2(G) model the heat of vaporization and, especially, the normalized

heat of vaporization quite well.

Here, we give a comparison in modeling the physicochemical properties

of octanes with the second Zagreb index versus the complementary second

Zagreb index.
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But, before presenting the main results of this comparative analysis,

the correlation between second Zagreb and complementary second Zagreb

indices was investigated. It was found that there is a fair correlation be-

tween these indices, but far from being good. This correlation for octanes

is shown in the Figure 5.

22 24 26 28 30 32 34 36 38 40 42
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Figure 5. Correlation between second Zagreb index and complemen-
tary second Zagreb index. The correlation coefficient is
0.867.

Table 2 displays correlation coefficients of linear models of the several

physicochemical properties of octanes with M2(G) and cM2(G).

Table 2. Correlation coefficients of the linear models of boiling point
(BP), heat of formation (HFORM), standard heat of forma-
tion (DHFORM), entropy (S), heat of vaporization (HVAP),
standard heat of vaporization (DHVAP), density (DENS), to-
tal surface area (TSA), acentric factor (AcentFac), octanol-
water partition coefficient (LogP), and molar volume (MV) of
octanes with second Zagreb index (M2(G)) and complemen-
tary second Zagreb index (cM2(G)), respectively.

M2(G) cM2(G)

BP -0.5007 -0.7849

HFORM -0.5421 -0.8234

DHFORM 0.4775 0.0500

S -0.9417 -0.8899

HVAP -0.7281 -0.9175
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M2(G) cM2(G)

DHVAP -0.8118 -0.9522

DENS 0.7303 0.4935

TSA -0.5888 -0.2825

AcentFac -0.9864 -0.9192

LogP -0.1324 0.0638

MV -0.7405 -0.4836

The linear models with cM2(G) of considerable quality are detected in

the case of the heat of vaporization, standard heat of vaporization, and

acentric factor. In all of these cases, the cM2(G) gives better linear models

than the M2(G).

3.3 Degeneracy of complementary

second Zagreb index

The degeneracy of a topological invariant informs us about its ability to

discriminate among the isomeric graphs. A measure of degeneracy was

proposed by Konstantinova in 1996 [12].

Using this way of measuring the degeneracy of topological descriptors,

we assessed it for the cM2(G). Similar to the other integer-valued degree-

based indices, the level of the degeneracy of the complementary second

Zagreb index is extremely high, and, as shown in Table 3, the degeneracy

rises with the number of vertices.

Table 3. Percentage of the degeneracy of cM2(G) in the case of all trees
and chemical trees from 6 to 20 vertices.

n # of trees # of chemical trees

06 16.7% 20.0%

07 27.3% 33.3%

08 43.5% 50.0%
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n # of trees # of chemical trees

09 57.4% 65.7%

10 70.8% 78.7%

11 80.0% 86.2%

12 87.3% 92.4%

13 92.3% 95.5%

14 95.5% 97.6%

15 97.5% 98.8%

16 98.7% 99.4%

17 99.3% 99.7%

18 99.7% 99.9%

19 99.8% 99.9%

20 99.9% 99.9%

According to these results for trees and chemical trees with 15 vertices

and above, values of the cM2(G) of two randomly chosen trees are most

likely the same. Such a behavior of a topological index is certainly not

desirable.

3.4 Relations of complementary second Zagreb index

with other topological indices

One of the features that tells us much about the behavior of a topolog-

ical descriptor is its relations with other previously introduced indices.

In Subsection 3.3, it was depicted the correlation between the considered

complementary second Zagreb index and its counterpart, the second Za-

greb index. This correlation is moderate, which implies that the cM2(G)

encodes rather different structural details of graphs compared with the

M2(G).

Since the cM2(G) is also the measure of irregularity in graphs, we an-

alyzed its correlations with some known irregularity measures. In this
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investigation, we considered the Albertson index (Alb), the sigma index

(σ), the degree variance (V ar), the discrepancy (Disc), the Gini index

(ζ), the normalized heterogeneity index (ρ), and the irregularity Sombor

index (ISO). More on these indices can be found in [1,9]. Results will be

illustrated with the correlation graph, given in Figure 6. There, the irreg-

ularity measures are represented by the vertices of the correlation graph.

Two vertices are connected if the correlation coefficient obtained between

two irregularity measures (represented by these vertices) is higher than

0.9. The edge is getting thicker with the higher value of the correlation

coefficient.

Figure 6. The correlation graph. Correlations coefficients needed for
the constructing this graph are obtained on trees with 10
vertices.

Depicted graph in Figure 6 shows that the complementary second Za-

greb index is highly correlated with the Albertson index (R ≈ 0.996), the

sigma index (R ≈ 0.991), and the irregularity Sombor index (R ≈ 0.990).

Also, a noticeable correlation is detected with the degree variance (R ≈
0.978), the Gini index (R ≈ 0.964), and the normalized heterogeneity

index (R ≈ 0.952). Therefore, the complementary second Zagreb index

is expected to measure irregularity following all investigated irregularity

measures, except the discrepancy index, defined based on the Randić in-

dex.
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3.5 Sensitivity of complementary second Zagreb index

A gradual change in the structure of a graph should invoke a gradual

change in the value of a topological index. Such a complex attribute of

an index is being measured by two quantities that are named structure

sensitivity (SS) and abruptness (Abr). There are two similar methods for

calculating these quantities. Here, we mixed these two methods and took

the best of them for assessing the structure sensitivity of cM2(G). Using

a way for gathering similar graphs from [5], and a way for calculating the

SS and the Abr from [16], we obtained results presented in Table 4 and

Figure 7.

Table 4. The structure sensitivity and abruptness of the complemen-
tary second Zagreb index.

n SS Abr

6 0.267 0.360

7 0.173 0.248

8 0.112 0.176

9 0.078 0.130

10 0.055 0.097

SS

Abr

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

6 7 8 9 10

SS Abr

Figure 7. The structure sensitivity and abruptness of the complemen-
tary second Zagreb index.

The obtained results reveal similar behavior to the other integer-valued

degree-based topological indices. In general, they have a low structure sen-
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sitivity that decreases as the number of vertices is increased. The abrupt-

ness follows the same line, but the ratio between structure sensitivity and

abruptness increases with the number of vertices.

4 Conclusion

A novel geometric approach for devising degree-based topological indices

is presented. We proposed to call this group of indices as complementary

topological indices. The complementary second Zagreb index was thor-

oughly analyzed, and its upsides and downsides were displayed. We believe

this approach will induce diverse investigations of this class of indices.
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