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Abstract

This research provides analytical insights in connection with
the solutions of the Oregonator model, a refined iteration of the
iconic Belousov-Zhabotinsky (BZ) reaction problem. This chemical
process, initially observed by B. P. Belousov while replicating the
Krebs cycle in vitro and later modified by Zhabotinsky using Fe-
phenanthroline (ferroin), has become a hallmark example of non-
linear dynamics, chaos theory, and has parallels in various biolog-
ical systems. Our study systematically delves into the bounded-
ness, regularity, and possible symmetries of weak solutions. We ex-
plore traveling waves using the Tanh-method, alongside examining
asymptotic solutions entrenched in self-similar forms and exponen-
tial scaling leading to a Hamilton-Jacobi equation. This research
emphasizes on mathematical arguments along with the dynamics
of the involved chemical concentrations. We provide new forms of
analytical solutions showing them in a comprehensive manner that
connects with the interpretation of the Oregonator model and its
broader implications in chemical systems.
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1 Introduction

The issue explored in this research dates back to the mid-20th century, ini-

tiated by B. P. Belousov while endeavoring to emulate the Krebs cycle ”in

vitro.” As documented in the referenced source [1], Belousov formulated a

chemical mixture comprising cerium ions, bromate, and citric acid. During

his experimentation, he noticed periodic oscillations in the reaction, lead-

ing to a transition between a yellow and a transparent state. Subsequent to

Belousov’s foundational work, Zhabotinsky enhanced the investigation by

replacing the cerium reactant with Fe-phenanthroline (commonly known

as ferroin). In this modified system, Zhabotinsky documented oscillations

alternating between blue and red hues. After exhaustive research and

documentation over the years, this chemical phenomenon was formally

christened the Belousov-Zhabotinsky (BZ) reaction problem.

Beyond mere oscillations, the BZ reaction, under specific conditions,

exhibits spiraling waves of chemical concentration, reminiscent of patterns

observed in certain biological systems [3]. This wave phenomenon offers

invaluable insights into reaction-diffusion systems, and the Turing mecha-

nism postulated for pattern formation in morphogenesis [4].

The significance of the BZ reaction transcends its immediate chemical

context. It serves as an archetypical example of non-linear dynamics and

chaos theory. Furthermore, its oscillatory behavior finds parallels in bi-

ological systems, such as cardiac rhythms, neural activity, and circadian

rhythms [5]. The ability of simple chemical reactions to produce complex

temporal oscillations and spatial patterns has further inspired research into

the origins of life and protocells [6].

Modern-day explorations of the BZ reaction delve into microfluidic sys-

tems and the impact of environmental heterogeneity on reaction dynamics.

There’s also an increasing interest in harnessing the BZ reaction for com-

putational tasks, effectively creating chemical-based logic gates [7].

It is worth noting that the Belousov-Zhabotinsky reaction is a highly

complex process, and developing a precise mathematical model for it based

on the PDE theory is generally challenging. This model involves ten chem-

ical processes with up to seven intermediates (for more details, the reader
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is referred to [2]).

Subsequent to Belousov and Zhabotinsky’s initial research, Noyes and

Field proposed a refined iteration of the Belousov-Zhabotinsky problem,

now widely recognized as the ”oregonator” [9]. This refined model suc-

cinctly captured the core chemical dynamics from the original intricate

process, providing a conduct for more straightforward mathematical and

biophysical investigations. Budrene and Wang demonstrated the presence

of chaotic oscillations in the Belousov-Zhabotinsky reactions [10]. Notably,

they identified the emergence and subsequent dissolution of chaos, con-

sistent with the Ruelle-Takens-Newhouse scenario (as described in [12]),

across both cerium- and ferroin-catalyzed reaction systems. Another note-

worthy study explored the intricacies of spatiotemporal chaos in both the

ferroin and cerium-catalyzed systems, shedding light on aperiodic transient

regimes [11]. A more granular exposition of Hopf bifurcations, along with

the phase plane characterization of critical junctions, is documented in [1].

Such elucidations are crucial for forecasting dynamical behaviors proxi-

mate to equilibrium and spotlighting potential heteroclinic links between

nodes.

In contrast to the aforementioned inquiries, our research offers a dis-

tinctive approach. We are driven by the ambition to unearth analytical

solutions that capture the spatiotemporal evolution of reactants within

the Belousov-Zhabotinsky framework. Eschewing the standard oregona-

tor paradigm, our work delineates these solutions, offering a comprehensive

breakdown of their specific analytical incarnations.

In the search of novel solutions for the Oregonator model, we initially

investigate the boundedness and singularity of weak solutions, paving the

way for a detailed analysis of various solution symmetries. As direct evi-

dences of such symmetries remain elusive, we pivot to examining solutions

based on traveling waves, utilizing the Tanh-method and subsequently

solving the emergent ODE system to ascertain traveling wave profiles. We

probe for asymptotic solutions embedded within self-similar frameworks,

transitioning to stationary solutions and other categories of asymptotic so-

lutions rooted in exponential scaling. Our investigative journey culminates

in the derivation of cohesive Hamilton-Jacobi equations.
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Transitioning to the mathematical foundation of our study, we uti-

lize the functions u1 and v1 to represent the concentration dynamics of

bromous acid (HBrO2) and bromide ions (Br−), respectively. A compre-

hensive exposition of this model is available in Equations Ia, Ib and Ic

of [9]. It is important to highlight that the model proposed in [9] is formed

of a system of ODEs that studies the evolutions of the variables X (con-

centration of HBrO2), Y (concentration of Br−) and Z (concentration of

Ce). In addition, some values for the involved constants are provided in

IIa, IIb, IIc and IId of [9]. It is to be highlighted that the constant kM1 in

IIa of [9] is negliglible when compared with the other involved constants.

When Ce(IV ) is absent in the Oregonator model, it means the model is

either using a different redox catalyst or is structured in such a way that

it does not require this specific component to demonstrate the oscillatory

behavior. This absence can affect the dynamics and characteristics of the

modeled reaction, leading to different patterns or types of oscillations (or

even no oscillations) compared to those seen in the classic BZ reaction

with Ce(IV ).

It is remarkable to state that we consider the oregonator model and

we show that in the absence of Ce(IV ), the BZ reaction does not lead to

oscillatory patterns, and hence we characterize the behaviour of the sys-

tem when the catalyst is removed or simply dissipated due to the process

irreversibly. Investigating the non-oscillatory solutions in the BZ reac-

tion presents an intriguing area of study, particularly because traditional

observations of the BZ reaction have predominantly focused on its oscil-

latory behaviors. Typically characterized by rhythmic changes in color

and concentration, the BZ reaction is known for its dynamic oscillatory

patterns. However, exploring the conditions and dynamics that lead to

non-oscillatory, or steady-state, behaviors can provide deeper insights into

the underlying chemical and physical processes. This exploration could

reveal new aspects of the reaction kinetics and mechanisms that are not

apparent in oscillatory states, contributing to a more comprehensive un-

derstanding of non-equilibrium thermodynamic systems. Our objective

is hence to answer several key questions about the BZ reaction includ-

ing: What is the behavior of the BZ reaction in the absence of oscillatory
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patterns? Does the reaction exhibit any tendencies towards blow-up phe-

nomena, or are the solutions confined within certain bounds? And finally,

what can be said about the long-term or asymptotic behavior of the so-

lutions in these non-oscillatory states? It is relevant to discuss that the

author in [8] demonstrates that BZ equations can admit limit cycle solu-

tions of the relaxation type within a certain range of dimensionless ratios

of rate constants. The relaxation condition is actually relevant for us, and

we try to characterize it based on the mentioned asymptotic behaviour of

solutions.

In the absence of Ce, we consider that Z = 0 in Ia, Ib and Ic of [9]. To

further articulate the behaviour of the system under spatial diffusion, we

include a diffusive principle based on the Laplacian operator. Hence, the

intertwined system is given as follows:

∂u1
∂t

= D1∆u1 + u1
(
a− bu1 − cv1

)
∂v1
∂t

= D1∆v1 − du1v1

u1(x, y, 0) = u0(x, y) > 0, v1(x, y, 0) = v0(x, y) > 0. (1)

If we consider the oregonator [9] and the constants used there A2, k1, k2

and k3 such that a = k2A2, b = 2k3 and typically c ∼ d = k1, we have

∂u1
∂t

= D1∆u1 + u1
(
k2A2 − 2k3u1 − k1v1

)
∂v1
∂t

= D2∆v1 − k1u1v1

u1(x, y, 0) = u0(x, y) > 0, v1(x, y, 0) = v0(x, y) > 0. (2)

For clarity and without any compromise on generality, we may consider

in some cases that D1 = D2 = 1. When required and to enrich some dis-

cussions concerning the diffusion mechanisms we may assume that D1, D2

are different from the unity. This will be further specified. It is relevant to

remark that comprehensive discussions regarding the values of several con-

stants inherent to the system have been elucidated in preceding studies (re-

fer to page 629 of [15]): k1 = 1.6·109M/s, k2 = 8·103M/s, k3 = 4·107M/s,
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and A2 = 0.06M .

The equation denoted by (2) underpins the subsequent analyses. It

is remarkable that this system is drafted without imposing specific con-

straints on boundary conditions, enabling a more comprehensive span of

mathematical solutions.

We incorporate Lebesgue measurable and bounded initial data into

our formulation. This strategy ensures the provision of results under a

broad spectrum of initial conditions. In essence, the anticipated initial

data should represent a finite initial concentration distribution as per the

L1 norm and should also be constrained by the traditional L∞ norm.

u1(x, y, 0), v1(x, y, 0) ∈ L∞(R2) ∩ L1(R2). (3)

The remainder of this paper is structured as follows: Section 2 lays

the mathematical groundwork, establishing the framework and assump-

tions required for the analysis of weak solutions, including their bounded-

ness and uniqueness. In Section 3, we introduce solutions arising from the

equation symmetries. In Section 4, we delve into the examination of travel-

ing wave solutions, applying the Tanh-method to derive explicit analytical

forms and discussing their physical significance. Section 5 is dedicated to

the exploration of asymptotic behavior and self-similar solutions, where we

elucidate the connection between exponential scaling and the emergence

of Hamilton-Jacobi equations. Section 6 provides a detailed discussion on

the new analytical stationary solutions, illustrating their application to

the Oregonator model and highlighting their implications for understand-

ing chemical reaction-diffusion systems. Finally, Section 7 examines the

behaviour of non-stationary solutions based on a single point exponential

scaling. Eventually, the paper ends with a summary of our findings, their

relevance to the study of non-linear chemical dynamics, and suggestions

for future research avenues.
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2 General analysis of solutions

We first show the boundedness of weak solutions departing from general

initial data. This is actually relevant if we compare with the classical

strong formulations. We recall that our research is mainly mathematical

and working withing a weak formulation allows for flexibility in choosing

the function spaces for the solution and test functions. This flexibility of-

ten makes it possible to tailor the formulation to better match the chemical

process linked with the oregonator model. For example, by selecting dis-

continuous functions for problems with discontinuous material properties.

In addition, a weak formulation allows for a more straightforward incorpo-

ration of complex geometries and potential intricate boundary conditions.

Theorem 1. Under the assumption that
(
u0(x, y), v0(x, y)

)
∈ L1

(
R2

)
∩L∞(

R2
)
, we can infer that the solutions u1(x, y, t) and v1(x, y, t) remain

bounded in a weak sense over the spatial domain R2 and within the time

interval [0, T ].

Proof. To discuss the weak formulation of equation (2), we begin by con-

sidering a test function ξ1 ∈ C∞(R2). We integrate this function over the

domain R2 × [τ, t] where 0 < τ < t < T . The integral of u1 with ξ1 can be

expressed as follows:

∫
R2

u1(t)ξ1(t) =

∫
R2

u1(τ)ξ1(τ)

+

∫ t

τ

∫
R2

[
u1
∂ξ1
∂t

+ u1∆ξ1 + k2A2u1 − 2k3u
2
1 − k1u1v1

]
ds

≤
∫
R2

u1(τ)ξ1(τ)

+

∫ t

τ

∫
R2

[
u1
∂ξ1
∂t

+ u1∆ξ1 + k2A2u1 +

(
k1
2

− 2k3

)
u21 +

k1
2
v21

]
ds.

(4)
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Similarly, the integral of v1 with ξ1 is given by:∫
R2

v1(t)ξ1(t) =

∫
R2

v1(τ)ξ1(τ)

+

∫ t

τ

∫
R2

[
v1
∂ξ1
∂t

+ v1∆ξ1 − k1u1v1

]
ds ≤

∫
R2

v1(τ)ξ1(τ)

+

∫ t

τ

∫
R2

[
v1
∂ξ1
∂t

+ v1∆ξ1 +
k1
2
u21 +

k1
2
v21

]
ds.

(5)

The inequalities in (4) and (5) are established through Young’s inequal-

ity.

We turn our attention to the problem described by equations (4) and

(5). It is imperative to emphasize that for adequately large values of x0

and y0 and under the conditions x ≫ x0 and y ≫ y0, within a localized

time interval, it holds that [14].

∫ t

τ

um ≤ cp (τ)
(
x2 + y2

) m
m−1 ,

∫ t

τ

u ≤ cq (τ)
(
x2 + y2

) 1
m−1 , (6)

and

∫ t

τ

vm ≤ cp (τ)
(
x2 + y2

) m
m−1 ,

∫ t

τ

v ≤ cq (τ)
(
x2 + y2

) 1
m−1 . (7)

For the specific case where m = 2, we have:

∫ t

τ

u2 ≤ cp (τ)
(
x2 + y2

)2
,

∫ t

τ

u ≤ cq (τ)
(
x2 + y2

)
, (8)

and

∫ t

τ

v2 ≤ cp (τ)
(
x2 + y2

)2
,

∫ t

τ

v ≤ cq (τ)
(
x2 + y2

)
, (9)

where cp and cq depend also on m, x0, y0 and T .

Now, we consider a specific test function ξ1 defined as follows:
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ξ1 (x, y, s) = eg(s)
(
1 + x2 + y2

)−k5
, (10)

where g(s) ≤ 0 and k5 is chosen in a manner that ensures the integrals

in (4) and (5) converge as x → ∞ and y → ∞. After differentiating ξ1

twice with respect to x and y, and then summing the results, we obtain

the Laplacian of ξ1:

∆ξ1 = −
4k5(k5 + 1)eg(s)

(
x2 + y2

)
(1 + x2 + y2)k5+2

− 4k5e
g(s)

(1 + x2 + y2)k5+1

≤ − 4k5(k5 + 2)eg(s)

(1 + x2 + y2)k5+1

≤ 4k5(k5 + 2)eg(s)

(x2 + y2)k5+1
. (11)

Using the estimates provided in (8), (9), and (11), we can bound the

integrals in (4) and (5) as follows:

−
∫ t

τ

∫
R2

u1∆ξ1ds ≤ 4k5(k5 + 2)

∫
R2

cq
(
τ
)
eg(s)(x2 + y2)−k5

−k2A2

∫ t

τ

∫
R2

u1ξ1ds ≤ k2A2

∫
R2

cq
(
τ
)
eg(s)(x2 + y2)1−k5

−
(k1
2

− 2k3
) ∫ t

τ

∫
R2

u21ξ1ds ≤
∣∣k1
2

− 2k3
∣∣ ∫

R2

cp
(
τ
)
eg(s)(x2 + y2)2−k5

−k1
2

∫ t

τ

∫
R2

v21ξ1ds ≤ k1
2

∫
R2

cp
(
τ
)
eg(s)(x2 + y2)2−k5

−k1
2

∫ t

τ

∫
R2

u1ξ1ds ≤ k1
2

∫
R2

cq
(
τ
)
eg(s)s(x2 + y2)1−k5 . (12)

Now, by choosing k5 > 2 and letting x and y tend to infinity, we can

simplify (12) and obtain:

∫ t

τ

∫
R2

u1
∂ξ1
∂t

ds ≤
(
ϵ1 + ϵ2 + ϵ3 + ϵ4

)
eg(s). (13)
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A similar estimation can be made for the integral involving v1:

∫ t

τ

∫
R2

v1
∂ξ1
∂t

ds ≤
(
ϵ1 + ϵ2 + ϵ3 + ϵ4

)
eg(s). (14)

Here, ϵi for i = 1, 2, 3, 4 are sufficiently small constants.

Further differentiating (13) and (14), we find:

∫
R2

u1
∂ξ1
∂t

ds ≤
(
ϵ1 + ϵ2 + ϵ3 + ϵ4

)deg(s)
ds

≤
(
ϵ1 + ϵ2 + ϵ3 + ϵ4

)(
k6e

g1(τ) + k7

∫ s

τ

eg1(r)dr
)
, (15)

and similarly for the integral involving v1:

∫ t

τ

∫
R2

v1
∂ξ1
∂t

ds ≤
(
ϵ1 + ϵ2 + ϵ3 + ϵ4

)deg(s)
ds

≤
(
ϵ1 + ϵ2 + ϵ3 + ϵ4

)(
k8e

g1(τ) + k9

∫ s

τ

eg1(r)dr
)
. (16)

These estimates provide bounds for the derivatives of the integrals of

u1 and v1 with respect to t.

In the previous derivation, we applied Grönwall’s inequality, and we

denoted the constants involved as k6, k7, k8, and k9. Since both ξ1 and its

time derivative ∂ξ1
∂t are bounded, and the integral in question converges,

we have successfully demonstrated that the solutions u1 and v1 remain

bounded over the entire spatial domain R2 throughout the time interval

[0, T ].

The objective at this point is to establish the uniqueness of the solu-

tions. Ensuring the uniqueness of solutions in our model is relevant for

the consistency, predictability, and reliability of the oregonator model. In

addition, It bridges the gap between the mathematical formulations and

the potential application to a chemical process (actually this application
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needs to be further explored and is not part of our current investigation).

As described in the Introduction, there exists a vast literature discussing

solutions for the BZ reaction problem. Nonetheless when the oregonator

model is transformed into the weak formulations (4) and (5), there is not a

definitive result concerning uniqueness. Motivated by such facts, we pro-

vide a complete analysis that connects the uniqueness of solutions with a

weak formulation of the oregonator model.

Theorem 2. Suppose that u3 > 0 and v3 > 0 represent minimal

solutions of equation (2). It can be concluded that both solutions u3 and

v3 are unique, as they coincide with the maximal solutions u2 and v2.

Proof. Consider the maximal solutions u2 and v2 of equation (2) within

the domain R2× [0, T ]. The initial conditions for these solutions are given

as:

u2(x, y, 0) = u0(x, y) + ϵ, v2(x, y, 0) = v0(x, y) + ϵ. (17)

We also introduce the following initial data for defining minimal solu-

tions:

u3(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y). (18)

The maximal solutions must satisfy the following system of equations:

∂u2
∂t

= D1∆u2 + u2
(
k2A2 − 2k3u2 − k1v2

)
, (19)

∂v2
∂t

= D2∆v2 − k1u2v2. (20)

Similarly, the minimal solutions must satisfy the following equations:
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∂u3
∂t

= D1∆u3 + u3
(
k2A2 − 2k3u3 − k1v3

)
, (21)

∂v3
∂t

= D2∆v3 − k1u3v3. (22)

For a test function ξ1 ∈ C∞ (R), the following inequalities hold:

0 ≤
∫
R2

(u2 − u3) (t) ξ1 (t) ≤
∫
R2

ϵξ1(x, y, 0)

+

∫ t

0

∫
R2

{(u2 − u3)
∂ξ1
∂t

+D1 (u2 − u3)∆ξ1

+ k2A2 (u2 − u3) ξ1 − 2k3k10 (u2 − u3) ξ1

− k1 (u2v2 − u3v3) ξ1}ds, (23)

0 ≤
∫
R2

(v2 − v3) (t) ξ1 (t) ≤
∫
R2

ϵξ1(x, y, 0)

+ k13

∫ t

0

∫
R2

{(v2 − v3)
∂ξ1
∂t

+D2 (v2 − v3)∆ξ1

− k1 (u2v2 − u3v3) ξ1}ds, (24)

where k10 = max
{
u2, u3

}
.

We define a radially symmetric test function (for us directionality does

not have a significant influence by hypothesis) to evaluate the integrals:

ξ1(x, y, s) = e−k11s(1 + x2 + y2)−k5 , (25)

where k10 > 0 and k5 > 0 are constants, and the following inequalities

hold for the function defined in (2.24):
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∂ξ1
∂s

= −k11ξ1(x, y, s), ∆ξ1 ≤ 4k5(k5 + 2)ξ1(x, y, s). (26)

Then, using these test functions and Theorem 1, we have the following

inequalities:

0 ≤
∫
R2

(u2 − u3) (t) ξ1 (t) ≤
∫
R2

ϵξ1(x, y, 0) + k12

∫ t

0

∫
R2

{(u2 − u3)

− k1 (u2v2 − u3v3) ξ1}ds, (27)

0 ≤
∫
R2

(v2 − v3) (t) ξ1 (t) ≤
∫
R2

ϵξ1(x, y, 0) + k13

∫ t

0

∫
R2

{(v2 − v3)

− k1 (u2v2 − u3v3) ξ1}ds. (28)

Now, we subtract (27) from (28) to obtain:

∫
R2

(v2 − v3) (t) ξ1 (t)−
∫
R2

(u2 − u3) (t) ξ1 (t)

≤ k12

∫ t

0

∫
R2

(v2 − v3) ds− k12

∫ t

0

∫
R2

(u2 − u3) ds

≤ k12

∫ t

0

∫
R2

(v2 − v3) ds− k12

∫ t

0

∫
R2

(u2 − u3) ds.

(29)

Differentiating with respect to t, we have:

d

dt

[∫
R2

(v2 − v3) (t) ξ1 (t)−
∫
R2

(u2 − u3) (t) ξ1 (t)

]
≤ k12

[∫
R2

(v2 − v3)−
∫
R2

(u2 − u3)

]
.

(30)

By applying Grönwall’s inequality, we have:
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∫
R2

(v2 − v3) (t) ξ1 (t)−
∫
R2

(u2 − u3) (t) ξ1 (t) ≤ 0. (31)

Since ξ1 is a test function, it follows that:

u2 − u3 = v2 − v3. (32)

Evaluating this expression using the initial data, we get:

u0(x, y) + ϵ− u0(x, y) = ϵ. (33)

Where ϵ is taken to be sufficiently small. Indeed, when two quantities

become closer by a margin of a small ϵ, they essentially become the same,

hence proving uniqueness. This is:

u2 − u3 = v2 − v3 = ϵ→ 0. (34)

This leads to the conclusion:

u2 = u3, v2 = v3. (35)

This demonstrates the postulated uniqueness of the solutions for equa-

tion (2).

3 Reduction techniques, scaling and symme-

tries

First, we propose the following scaling to (2):

t̃ = k2A2t, ũ1 =
u1
A2

, ṽ1 =
v1
A2

, and x̃ =

√
D1

k2A2
x (36)
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We can compute the derivatives with respect to the scaled variables:

∂

∂t
=

1

k2A2

∂

∂t̃
,

∆ =
k2A2

D1
∆x̃.

Substituting these, along with the scaled variables, into the original

equations, we get:

For u1:

1

k2A2

∂ũ1

∂t̃
= k2A2∆x̃ũ1 + ũ1 (k2A2 − 2k3A2ũ1 − k1A2ṽ1) , (37)

∂ũ1

∂t̃
= k2A2∆x̃ũ1 + ũ1 (k2A2 − 2k3A2ũ1 − k1A2ṽ1) . (38)

For v1:

1

k2A2

∂ṽ1

∂t̃
=
k2A2D2

D1
∆x̃ṽ1 − k1A2ũ1ṽ1, (39)

∂ṽ1

∂t̃
=
k2A2D2

D1
∆x̃ṽ1 − k1A2ũ1ṽ1. (40)

Now, looking for symmetries:

If D1 = D2, then both equations will have the same diffusion coeffi-

cients when scaled, giving a symmetry in terms of spatial diffusion, but

this has no substantial effect when seeking solutions. The term

ũ1 (k2A2 − 2k3A2ũ1 − k1A2ṽ1)

indicates a nonlinear interaction between the scaled concentrations ũ1 and

ṽ1. No obvious symmetries emerge here. The last terms in both equations

show the interaction between ũ1 and ṽ1 in the kinetics. Again, no straight-

forward symmetries are evident. Hence, we seek for other kind of more

complex symmetries by application of Lie algebra principles. Another im-

portant remark is that we will make the assessments under the assumption
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of oscillatory solutions. This hypothesis is intended to simplify the complex

operations typically encountered in Lie symmetry analysis and is actually

aligned with the real behaviour of BZ reactions. For this, we first define

the following Infinitesimal Generator:

X = ξ(x̃, t̃, ũ1, ṽ1)
∂

∂x̃
+ τ(x̃, t̃, ũ1, ṽ1)

∂

∂t̃
+

ϕ(x̃, t̃, ũ1, ṽ1)
∂

∂ũ1
+ ψ(x̃, t̃, ũ1, ṽ1)

∂

∂ṽ1
,

(41)

for appropriate functions ξ, τ, ϕ, ψ to be determined.

The prolonged infinitesimal generator X(1) is given by:

X(1) = X + ϕ(1)
∂

∂(∂ũ1/∂t̃)
+ ψ(1) ∂

∂(∂ṽ1/∂t̃)
, (42)

where ϕ(1) and ψ(1) are the first prolongations, calculated using the

total derivative. Now, the invariance under the action of X(1) requires

that:

X(1)

(
∂ũ1

∂t̃
− (k2A2∆x̃ũ1 + ũ1(k2A2 − 2k3A2ũ1 − k1A2ṽ1))

)
= 0, (43)

X(1)

(
∂ṽ1

∂t̃
− (

k2A2D2

D1
∆x̃ṽ1 − k1A2ũ1ṽ1)

)
= 0. (44)

The resulting system of partial differential equations obtained by ap-

plying the invariance condition to the given PDEs is provided as follows:

For ũ1 Equation:

A2k2
∂2ũ1
∂x̃2

+ ũ1(−A2k1ṽ1 +A2k2 − 2A2k3ũ1)−
∂ũ1

∂t̃

∂ξ

∂t̃

− ∂ũ1

∂t̃
− ∂ũ1

∂x̃

∂τ

∂t̃
+
∂ϕ

∂t̃
= 0.

(45)
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For ṽ1 Equation:

−A2k1ũ1ṽ1 +
A2D2k2
D1

∂2ṽ1
∂x̃2

− ∂ṽ1

∂t̃

∂ξ

∂t̃

− ∂ṽ1

∂t̃
− ∂ṽ1
∂x̃

∂τ

∂t̃
+
∂ψ

∂t̃
= 0.

(46)

The next step consists in solving the invariance condition for the un-

known functions ξ, τ , ϕ, and ψ. For this, we assume that we search for

oscillatory solutions. Hence, solving the system of equations, we obtained

solutions for the functions ϕ and ψ as functions of t̃. Given the complexi-

ties of the involved system, we have opted by a symbolic calculation using

Symbolic Math Toolbox. In addition, to represent the oscillatory condi-

tion of solutions, we admitted the simplify forms: ũ1(x̃, t̃) = sin(x̃ + t̃),

ṽ1(x̃, t̃) = sin(x̃− t̃). These are not our definitive solutions, on the contrary

they only provide preliminary guesses to obtain more general oscillatory

solutions based on symmetry properties. Based on this hypothesis, we

obtain the following particular functions:

For ϕ(t̃):

ϕ(t̃) =− A2k1t̃ sin(t̃− x̃) sin(t̃+ x̃)

2
− A2k1t̃ cos(t̃− x̃) cos(t̃+ x̃)

2

+
A2k1 sin(t̃− x̃) cos(t̃+ x̃)

2
+A2k3t̃ sin

2(t̃+ x̃)

+A2k3t̃ cos
2(t̃+ x̃)−A2k3 sin(t̃+ x̃) cos(t̃+ x̃)

+ C1 + sin(t̃+ x̃).

(47)

For ψ(t̃):

ψ(t̃) = −A2k1t̃ sin(t̃− x̃) sin(t̃+ x̃)

2
− A2k1t̃ cos(t̃− x̃) cos(t̃+ x̃)

2

+
A2k1 sin(t̃− x̃) cos(t̃+ x̃)

2
+
A2D2k2 cos(t̃− x̃)

D1
+ C2 − sin(t̃− x̃).(48)

Where C1 and C2 are constants of integration. The presence of sine and

cosine functions in the solutions suggests that the symmetries are related

to oscillatory behavior, which aligns with the initial assumption that u1
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and v1 are oscillatory in nature.

Finally, we integrate the symmetry functions ϕ(t̃) and ψ(t̃) with respect

to time t̃. This integration transforms the symmetry functions into explicit

expressions for ũ1 and ṽ1 representing general forms of solutions that are

consistent with the identified symmetries.

ũ1 =
A2k1t̃

2 sin2(x̃)

2
− A2k1t̃

2

4
− A2k1t̃ sin(x̃) cos(x̃)

2

+
A2k1 sin

2(t̃)

4
+
A2k1 sin

2(x̃)

4
− A2k1

4

+
A2k3t̃

2

2
+A2k3 sin

2(t̃) sin2(x̃)− A2k3 sin
2(t̃)

2

−A2k3 sin(t̃) sin(x̃) cos(t̃) cos(x̃)−
A2k3 sin

2(x̃)

2

+
A2k3
2

+ C1t̃− cos(t̃+ x̃),

(49)

ṽ1 =− A2k1t̃
2 cos(2x̃)

4
− A2k1t̃ sin(2x̃)

4
− A2k1 cos(2t̃)

8

− A2k1 cos(2x̃)

8
+
A2D2k2 sin(t̃− x̃)

D1
+ C2t̃+ cos(t̃− x̃).

(50)

In the BZ reaction, the solutions ũ1 and ṽ1, representing the scaled

concentrations of bromous acid (HBrO2) and bromide ions (Br−), exhibit

oscillatory behavior. This is consistent with the characteristic chemical

oscillations observed in the BZ reaction. The sinusoidal form of these so-

lutions reflects the periodic changes in the concentrations of these chemical

species. The presence of additional non-oscillatory terms concerning the

powers t̃0, t̃1 and t̃2 represent the gradual accumulation or depletion of re-

actants over time, reflecting aspects of the reaction kinetics not captured

by the oscillatory part alone. And this is actually an interesting discovery

of our solutions based on symmetries.
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4 The Tanh-method for travelling waves

profiles of solution

The transition state in a chemical reaction, particularly in the context of

the BZ reaction or other nonlinear oscillatory reactions, refers to a critical

configuration of reactant molecules that exists momentarily at the peak

of the potential energy barrier between reactants and products. It is a

state through which the system must pass in order to transform reactants

into products. For reaction-diffusion systems exhibiting traveling waves,

the transition state can often be associated with the wavefront, where the

rapid change between two stable states takes place.

This is actually the intention of this section, i.e. to determine the be-

haviour of such transition based on analytical expressions for the travelling

waves profiles emerging in tanh forms. To apply the tanh-method, we in-

troduce a traveling wave variable ξ = x − ct, where c is the wave speed.

We assume that the solutions have the form:

u1(x, t) = U(ξ) and v1(x, t) = V (ξ) (51)

Let us plug these into our system (2), assuming one-dimensional spatial

variation for simplicity.

We will then have:

−cU ′ = D1U
′′ + U (k2A2 − 2k3U − k1V ) (52)

−cV ′ = D2V
′′ − k1UV

where the prime denotes differentiation with respect to ξ.

The tanh-method involves seeking solutions of the form:

U(ξ) = a+ b tanh(mξ + n) (53)

and

V (ξ) = p+ q tanh(rξ + s) (54)
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Deriving these with respect to ξ gives:

U ′ = bmsech2(mξ + n) (55)

V ′ = qrsech2(rξ + s) (56)

and

U ′′ = −2bm2 tanh(mξ + n)sech2(mξ + n) (57)

V ′′ = −2qr2 tanh(rξ + s)sech2(rξ + s) (58)

Substitute the above expressions into (52) so that we will have equa-

tions involving terms of tanh and sech2.

Collecting coefficients from both sides give us a set of algebraic equa-

tions in terms of a, b,m, n, p, q, r, s. This system will allow us to determine

the constants and get the exact solution. This step is not straightforward

in our case, except if we consider the asymptotic condition ξ → ∞, so that

the tanh → 1 and the sech is infinitesimal. This approach leads to the

following solutions

m =
c

2D1
, r =

c

2D2
, a = 1, b = −1, q = 1, p =

k2A2

k1
− 1. (59)

Other combination of solution may be explored given the fact that in

general we arrive into a system that requires a+ b = 0 and p+ q = k2A2

k1
.

And we claim that specific forms of such solutions may require additional

checks with experimental data that are outside of our current mathematical

analysis.

It is worth noting that the transition states in the BZ reaction specifi-

cally relate to the bromide ion concentration, HBrO2 dynamics, and other

intermediate species. In our case, we claim that the tanh-method is ca-

pable of capturing such transitions via an heteroclinic connection between

the following states: For large negative ξ, U(ξ) → a+ b and V (ξ) → p+ q,

while for large positive ξ, U(ξ) → a and V (ξ) → p. Such a transition is
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reminiscent of the wavefronts seen in the BZ reaction, where a change in

the concentration of chemical species moves through the system.

5 Similarity solutions

In this section, the goal is to identify self-similar solutions to equation

(2). Given the nonlinearity and coupling of the terms, it is challenging to

definitively determine the existence of self-similar solutions without more

specific assumptions or simplifications. In our case, this will consist in

assuming local in time solutions with spatial asymptotic conditions.

Theorem 3: Provided that u1(x, y, t) and v1(x, y, t) are solutions to

equation (1.3), the subsequent local-in-time self-similar asymptotic solu-

tions are as follows: For u1(x, y, t):

u1(x, y, t) = −2D1t
−1e

− (x+y)2

4D1t1/4 .

And for v1(x, y, t):

v1(x, y, t) = t−
3
2 |x+ y|e

− (x+y)2

8D2t1/4 .

These solutions are derived based on the asymptotic condition that |x+y| →
∞. This condition signifies that as x and y tend towards infinity, the

provided expressions for u1 and v1 characterize the local in time self-similar

behavior of the solutions to the equation.

Proof. We initiate our investigation by examining the asymptotic solu-

tions corresponding to (1). As a foundational step, we propose self-similar

constructs as outlined in (60) and (61).

When we juxtapose these structures into (1), the emergent formulations

are encapsulated in (62) and (63).

u1(x, y, t) = t−γ1f1(ζ), ζ = |x+ y|tγ2 , (60)
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and

v1(x, y, t) = t−γ3g1(ζ), ζ = |x+ y|tγ4 . (61)

Then:

−α1t
−γ1−1f1 + γ2ζt

−γ1−1f ′1 = 2D1t
−γ1+2γ2f ′′1 + k2A2t

−γ1f1

− 2k3t
−2γ1f21 − k1t

−γ1−γ3f1g1, (62)

and

−γ3t−γ3−1g1 + γ4ζt
−γ3−1g′1 = 2D2t

−γ3+2γ4g′′1 − k1t
−γ1−γ3f1g1. (63)

To deduce the suitable values for γi, i = 1, 2, 3, 4, we tackle the sys-

tem of equations that is anchored on the power expressions within the

t-variable.

−γ1 − 1 = −γ1 + 2γ2; −γ1 + 2γ2 = −γ1 − γ3,

−γ1 − 1 = −2γ1; −γ3 − 1 = −γ3 + 2γ4.

The solutions are given by: γ1 = γ3 = 1, γ2 = γ4 = − 1
2 .

Building on the derived values of γi, i = 1, 2, 3, 4, our next objective is

to uncover explicit analytical representations for f1 and g1 that are valid

in a localized temporal frame. For the sake of brevity and clarity, we adopt

a temporal value of t = 1 in our preceding expressions, leading us to:

2D1f
′′
1 − γ2ζf

′
1 +

(
k2A2 + γ1

)
f1 − 2k3f

2
1 − k1f1g1 = 0, (64)

and

2D2g
′′
1 − γ4ζg

′
1 + γ3g1 − k1f1g1 = 0. (65)

Given the finite nature of resources in a chemical reaction, there is an

inherent cessation when the spatial parameters approach ∞ (a scenario

termed the ’relaxed condition’). Under this condition, any resulting so-
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lution is expected to diminish to near-zero magnitudes as ζ → ∞ for a

localized t. Consequently, by assuming boundary conditions f1(∞) = 0

and g1(∞) = 0, our equations (64) and (65) evolve asymptotically as

ζ → ∞.

2D1f
′′
1 +

1

2
ζf ′1 = 0, (66)

and

2D2g
′′
1 +

1

2
ζg′1 + g1 = 0. (67)

After solving (66), we get

f ′1 = e−
ζ2

4D1 . (68)

After integration

f1(ζ) =

∫
e−

ζ2

4D1 dζ. (69)

The analytical evaluation of the integral in (69) proves to be non-

trivial. Given our interest in solutions as ζ → ∞, we employ a compara-

tive methodology. Specifically, we juxtapose the integral
∫
e−

ζ2

4D1 dζ with

its computable counterpart,
∫
ζe−

ζ2

4D1 dζ. Notably, as ζ → ∞, the behav-

ior of the diminishing tail for both integrals is dictated by the Gaussian

distribution. As a result, the expression in (69) can be reformulated as:

f1(ζ) =

∫
ζe−

ζ2

4D1 dζ, (70)

which implies that

f1(ζ) = −2D1e
− ζ2

4D1 . (71)
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Now solving (67), we otain

g′1 =
(1
ζ
− ζ

4D2

)
g1, (72)

and solving now by standard separation of variables

g1(ζ) = ζe−
ζ2

8D2 . (73)

Using f1(ζ) and g1(ζ) into (60) and (61), we get

u1(x, y, t) = −2D1t
−1e

− (x+y)2

4D1t1/4 , (74)

and

v1(x, y, t) = t−
3
2 |x+ y|e

− (x+y)2

8D2t1/4 . (75)

The given solutions (74) and (75) describe the evolution of quantities u1

and v1 in a two-dimensional spatial domain (x, y) over time t (recall here

that the functions u1 and v1 represent the concentration of bromous acid

(HBrO2) and bromide ions (Br−), respectively). Let us discuss about the

behavior of these solutions to determine if they are physically plausible.

For (74), we discuss that

• The solution diminishes over time due to the factor t−1 and the

exponential term. The rate at which it diminishes increases as time

progresses.

• The spatial behavior depends on the sum (x + y). The value of u1

decreases as (x+ y)2 increases due to the exponential term.

• D1 can be interpreted as a dispersion or diffusion constant that con-

trols how u1 spreads over space. A larger D1 implies that u1 spreads

more quickly in space.

For (75), we note that
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• The factor t−
3
2 implies that v1 diminishes at a quicker rate over time

compared to u1.

• The presence of the absolute value |x + y| means that v1 will take

positive values regardless of the sign of (x+ y). It also suggests that

the values of v1 will be symmetric about the line x = −y.

• The exponential term indicates that v1 diminishes in magnitude as

(x+ y)2 becomes large.

• As with D1, the constant D2 can be viewed as a diffusion constant

for v1, controlling its spatial spread.

In summary, the solutions u1 and v1 describe entities that both dimin-

ish over time, but at different rates. The spatial behavior of these solutions

is centered around the line defined by the sum (x+y). While u1 diminishes

smoothly, v1 has a peculiar behavior due to the presence of the absolute

term, making it symmetric about the line x = −y. The constants D1 and

D2 are significant as they modulate the spatial behavior of the entities

represented by u1 and v1 respectively.

It is well known that the concentration of bromous acid, as well as other

species in the BZ reaction, oscillates over time. Nonetheless, in some cases

the concentration of HBrO2 may decay following the certain law (74) and

under the following conditions:

• Formation of Bromide Ions: Using cerium ions (commonly as cata-

lyst), HBrO2 can be transformed to bromide ions [21].

• Recombination Reactions: The autocatalytic step involves the bro-

mide ions’ reaction with bromate in the HBrO2 presence, further

consuming HBrO2.

• Dilution: If the reaction mixture undergoes dilution, the concentra-

tion of all species, including HBrO2, will decrease, which may not

necessarily suggest a decrease in the relative amount of HBrO2, but

the absolute concentration will be lower.
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• End of Reaction: As reactants are consumed, especially in a system

where no new reactants are introduced, the concentrations of inter-

mediate species, including HBrO2, will ultimately decline (see [22]

and [23] for additional chemical evidences)

6 Stationary solutions

We begin by examining the supersolutions to u1 and v1 :

∂u1
∂t

= D1∆u1 + u1
(
k2A2 − 2k3u1 − k1v1

)
≤ D1∆u1 + k2A2u1 − 2k3u

2
1 + k14u

2
1, (76)

and

∂v1
∂t

= D2∆v1 − k1v
2
1

≤ D2∆v1 + k15v
2
1 . (77)

Solutions were shown to be bounded in Theorem 1, hence we define k14u1 =

sup{k1u1} and k15v1 = sup{k1v1}. As a result, the supersolutions to (1)

are obtained by the solutions of the following equations:

∂u1
∂t

= D1∆u1 + k2A2u1 +
(
k14 − 2k3

)
u21, (78)

∂v1
∂t

= D2∆v1 + k15v
2
1 . (79)

To explore stationary super-solutions to (1), we depart from (78) and

(79), so that:

D1∆u1 + k2A2u1 +
(
k14 − 2k3

)
u21 = 0, (80)

and

D2∆v1 + k15v
2
1 = 0. (81)
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Let us consider solutions of the form u1(x, y) = u1(η), where η =

ax+ by. In this representation, a and b denote the wave number and the

frequency, respectively. Such solutions are reminiscent of the ’traveling

wave-fragments’ discussed in [13], which represent colliding wave patterns.

With this perspective, Equations (80) and (81) can be reformulated ac-

cordingly.

d2u1
dη2

+
k2A2u1

D1

(
a2 + b2

) +

(
k14 − 2k3

)
u21

D1

(
a2 + b2

) = 0, (82)

and

d2v1
dη2

+
k15v

2
1

D2

(
a2 + b2

) = 0. (83)

The considered solutions are those satisfying the following Hamiltoni-

ans (see [16] for additional insights):

1

2

(
u′1

)2
+

k2A2u
2
1

2D1

(
a2 + b2

) +

(
k14 − 2k3

)
u31

3D1

(
a2 + b2

) = 0, (84)

and

1

2

(
v′1
)2

+
k15v

3
1

3D2

(
a2 + b2

) = 0. (85)

As k14 > 2k3, therefore after solving (80) and (81) by separation of vari-

ables we get

u1(η) =
k2A2

k14 − 2k3

−3 +
3k2A2

D1

(
a2 + b2

)
1 + e

i

√
k2A2

D1(a2+b2)
η

1− e
i

√
k2A2

D1(a2+b2)
η


2
 , (86)

and

v1(η) = −
6D2

(
a2 + b2

)
k15η2

, (87)
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Hence and considering the exposed solutions for the simple mode a = b =

1, we have

u1(x, y) =
k2A2

k14 − 2k3

−3 +
3k2A2

2D1

1 + e
i
√

k2A2
2D1

(
x+y

)
1− e

i
√

k2A2
2D1

(
x+y

)
2

 , (88)

and

v1(x, y) = − 12D2

k15
(
x+ y

)2 . (89)

In the BZ reaction, the concentrations of the reactants and products

oscillate without any external perturbation. This oscillatory behavior is

attributable to the complex interplay between non-linear reactions and

diffusion processes.

Given the solutions (86) and (87) and recalling that u1 and v1 represent

the concentration dynamics of bromous acid (HBrO2) and bromide ions

(Br−) respectively, we state that:

• The solution for u1(x, y) exhibits spatial oscillations due to the pres-

ence of an exponential term with the imaginary unit i. This wave-

like nature, governed by the term
√

k2A2

2D1
, suggests that the reaction

rate k2, concentration A2, and the diffusion constant D1 control the

spatial periodicity. Such behavior is consistent with the expected

oscillations in the BZ reaction.

• The bromide ions serve an inhibitory role. As bromide concentra-

tions rise due to the reactions mentioned above, they act to slow

down the reaction rate, leading to a drop in bromide concentration.

Hence, v1(x, y) describes a pattern where the concentration dimin-

ishes as one moves away from the origin and this aligns with the BZ

mechanisms. This absence of oscillations and the decay governed by

constantsD2 and k15 is indicative of a bromide ion behavior that gets

consumed or inhibited as it diffuses outward from a central point.

• In the mechanism of the BZ reaction, the bromous acid acts as

an activator because it can autocatalytically produce more of itself.
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Specifically, the acid can oxidize the bromide ion to produce more

bromous acid. This autocatalytic loop is a significant contributor to

the oscillatory behavior of the BZ reaction. Indeed, the solution u1

represents an activator species, oscillating due to certain feedback

mechanisms. Meanwhile, v1 can be envisioned as an inhibitor, en-

suring the reaction does not proceed to completion immediately and

thus allows for the observed oscillations.

In conclusion, these solutions encapsulate some quintessential features

of the BZ reaction, like the spatial oscillations and inhibitor-like behavior.

However, a detailed suitability assessment would necessitate an under-

standing of the exact kinetics of the BZ reaction in consideration, as well

as the specific values for the involved constants.

7 Nonstationary solutions

In this section, we derive the nonstationary solutions. To achieve this, we

employ the nonlinear point scaling to shape the solution profiles of Eq.

(2). Adopting this approach, we can represent the solutions as:

u1(x, y, t) = eu2(x,y,t), (90)

and

v1(x, y, t) = ev2(x,y,t). (91)

Such scaling techniques have been widely adopted by researchers in the

engineering domain, as evidenced by the works cited in [18], [19] and [20].

We assert that certain analytical methods or techniques might be more

directly applicable to the transformed system than to the original one.

For example, the transformed system might be amenable to perturbation

methods, similarity solutions, or other analytical techniques that will come

after.

Drawing from these references, it is discerned that u2 and v2 adhere to
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the subsequent Hamilton-Jacobi-type equations:

eu2
∂u2
∂t

= D1e
u2

(∂u2
∂x

)2

+D1e
u2

(∂u2
∂y

)2

+ k2A2e
u2

+
(
k14 − 2k3

)
e2u2 ,

(92)

and

ev2
∂v2
∂t

= D2e
v2
(∂v2
∂x

)2

+D2e
v2
(∂v2
∂y

)2

+ k15e
2v2 . (93)

Taking into consideration the asymptotic boundary conditions, as x

and y tend towards infinity, we assume that both exponential forms e−u2

and e−v2 provide the terms driving the dynamics that connects with diffu-

sive principles acting through an exponential smoothing. Given this, the

aforementioned equations simplify to:

∂u2
∂t

= D1

(∂u2
∂x

)2

+D1

(∂u2
∂y

)2

, (94)

and

∂v2
∂t

= D2

(∂v2
∂x

)2

+D2

(∂v2
∂y

)2

. (95)

Assuming,

u2(x, y, t) = u2(ξ, t), and v2(x, y, t) = v2(ξ, t) where ξ = ax+ by, (96)

in which a and b, refer to the wave number and frequency respectively.

Substituting (96) into (94) and (95), we get:

∂u2
∂t

= D1

(
a2 + b2

)(∂u2
∂ξ

)2

, (97)

and

∂v2
∂t

= D2

(
a2 + b2

)(∂v2
∂ξ

)2

. (98)
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Assuming

u2(ξ, t) =
(
τ + t

)−1
ϕ1(ξ) (99)

and

v2(ξ, t) =
(
τ + t

)−1
ϕ2(ξ). (100)

After using (99) and (100) into (97) and (98)respectively, we obtain

D1

(
a2 + b2

)(dϕ1
dξ

)2

+ ϕ1 = 0, (101)

and

D2

(
a2 + b2

)(dϕ2
dξ

)2

+ ϕ2 = 0. (102)

After solving (101) and (102), we have

ϕ1(ξ, t) = − ξ2

D1

(
a2 + b2

) , (103)

and

ϕ2(ξ, t) = − ξ2

D2

(
a2 + b2

) , (104)

which implies that

u2(ξ, t) = − ξ2t−1

D1

(
a2 + b2

) , (105)

and

v2(ξ, t) = − ξ2t−1

D2

(
a2 + b2

) , (106)
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Returning (90) and (91), we have

u1(x, y, t) = e
−

(
ax+by

)2

D1t

(
a2+b2

)
, (107)

and

v1(x, y, t) = e
−

(
ax+by

)2

D2t

(
a2+b2

)
. (108)

We explore the behavior of these solutions based on the presented

forms. For this recall that u1 and v1 represent the concentration dynamics

of bromous acid (HBrO2) and bromide ions (Br−), respectively

1. Role of t: As t increases, the denominator in the exponential func-

tion increases, making the whole value inside the exponential de-

crease (in magnitude). This means that both u1 and v1 will tend

towards 1 as t goes to infinity.

2. Role of D1 and D2: These constants act as diffusion coefficients in

the equation. For a fixed value of (x, y, t), as D1 or D2 increases, the

value inside the exponential function decreases (in magnitude) and

therefore u1 or v1 will increase. In simpler terms, a larger diffusion

coefficient means a ”faster” diffusion or spreading, leading to a larger

value of the function for a given time and position.

3. Comparison between u1 and v1: For D1 < D2, u1 will generally

be larger than v1 for the same values of x, y, t (and vice-versa for

D1 > D2). This is because a smaller diffusion coefficient will result

in a slower spread, meaning the function remains larger for a longer

time.

4. Role of a and b: The terms ax and by determine the directionality

and rate of change of the functions. If a is larger than b, then changes

in x will have a more pronounced effect on the functions than changes

in y. The factors a2 and b2 in the denominator normalize this effect,

ensuring that the direction (a, b) acts as a unit direction vector.
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5. Behavior at the Origin: At x = 0 and y = 0, both u1 and v1 are

equal to 1 for any t > 0. This can be regarded as their maximum

concentrations before the diffusion process starts.

6. Spatial Spread: As x or y moves away from the origin, the value

inside the exponential increases (in magnitude). Thus, u1 and v1 will

decrease. The rate at which they decrease depends on the values of

a, b,D1, and D2.

For the line ax+ by = 0 or equivalently y = −a
bx:

1. Spatial Spread: Away from this line, as x or y moves, the value

inside the exponential increases (in magnitude). Thus, u1 and v1 will

decrease. The rate at which they decrease depends on the values of

a, b,D1, and D2. The steeper the slope of the line, the more rapidly

the functions will decrease as you move perpendicularly away from

it.

2. Role of t: Away from the line y = −a
bx, as t increases, the functions

will tend towards 1 as t goes to infinity, since the denominator in the

exponential function increases with t.

3. Comparison between u1 and v1: For D1 < D2 away from the

line y = −a
bx, u1 will generally be larger than v1 for the same values

of x, y, t (and vice-versa for D1 > D2).

4. Directional Dependence: The direction given by ax+by = 0 acts

as a ”ridge” or ”peak” for both functions, with the maximum value

of 1 along it. The functions decrease in value as one moves away

from this line.

In conclusion, the line ax + by = 0 is a special direction for the given

functions where their value remains constant at 1 regardless of time. Away

from this line, the functions exhibit the typical diffusion behavior, spread-

ing and decreasing in value over time and space.

The described mechanisms allow us to ellucidate the diffusion or dis-

persion of bromous acid (HBrO2) and bromide ions (Br−) over time and
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space. Certainly, additional experimental set up is required to further de-

termined if the line ax + by = 0 is chemically plausible as an invariant

ridge for both solutions regardless of the value of t.

8 Conclusion

Building upon the pioneering efforts of Belousov and Zhabotinsky and the

subsequent refinements by Noyes and Field, our research brought to the

fore unprecedented analytical solutions. We provided analyses in connec-

tion with the boundedness, regularity, and symmetries of solutions. Our

approach to the Tanh-method and the ensuing exploration of traveling

waves showcased the richness and depth of the Oregonator’s solution space.

Moreover, the foray into self-similar paradigms, the Hamilton-Jacobi equa-

tion, and the corresponding asymptotic solutions added new ideas for ex-

ploring further the oregonator model, possibly beyond the known oscilla-

tory solutions.

Encouragingly, the mathematical tools and methodologies we refined

may serve as robust platforms for future explorations concerning experi-

mental works. Such works are mainly required for the definition of specific

values for the involved constants and validation of the mathematical solu-

tions.
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