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Abstract

In this article we investigate the question which local symmetry
preserving operations can not only preserve, but also increase the
symmetry of a polyhedral map, e.g. modelling spherical or toroidal
fullerenes. Often operations that can increase symmetry, can nev-
ertheless not do so for polyhedral maps of every genus. So for maps
that can increase symmetry, we also investigate for which genera
they can do so. We give complete answers for operations with in-
flation factor at most 6 (that is: that increase the number of edges
by a factor of at most 6) and for the chemically relevant Goldberg-
Coxeter operations and the leapfrog operation.

1 Introduction

Polyhedral maps and operations on polyhedra became especially relevant

in chemistry after the discovery of fullerenes. For fullerenes, Goldberg-

Coxeter operations and the leapfrog operation were used to construct larger
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fullerenes from smaller ones – preserving the symmetry group. In the gen-

eral framework that we use, the leapfrog operation is in fact a special

Goldberg-Coxeter operation. The result of a leapfrog operation applied

to any fullerene – no matter of which symmetry – not only has the same

symmetry group, but also a closed shell [8], which makes this operation

especially interesting and well studied. Point group symmetry of a carbon

framework described by a polyhedral map has profound consequences for

structure and properties: for electronic structure (through patterns of de-

generacy in adjacency eigenvalues), for overall molecular chirality (through

presence or absence of improper symmetry elements), for 13C NMR spectra

(through size distribution of vertex orbits), and for infrared and Raman

spectra (through the irreducible representations of the fundamental vi-

brations) [8]. Any increase in symmetry may have profound implications

for all of these diagnostics. Knowledge of the symmetry implications of

the various inflation and decoration operations is therefore important to

chemists, both experimental and theoretical, who explore families such as

fullerenes, boranes and supramolecular cages. Next to fullerene polyhedra,

also higher genus analogues of fullerenes have been studied (see e.g. [5])

and – at least for the torus – even observed in nature [12]. So it is interest-

ing whether these operations also just preserve the symmetry on maps of

higher genus, or if they can increase it. We will answer this question in an

even more general context – that of local symmetry preserving operations.

Local symmetry preserving operations such as truncation, ambo or dual

were most likely already known to the ancient Greeks, who described the

Platonic solids and the Archimedean solids which can be constructed from

the Platonic solids by local operations preserving symmetries of the origi-

nal object. When rediscovering the Archimedean solids, also Kepler used

(and named) such operations in his book Harmonices Mundi [11]. Some

operations not only preserve symmetries, but sometimes even increase it.

For classical polyhedra (that is: 3-dimensional convex polyhedra) the only

known operation where this happens is ambo (or a combination of ambo

with another operation) applied to self-dual polyhedra. For polyhedral

maps on surfaces of higher genus, this can also happen with other opera-

tions, as shown in [16]. In 2017, a general description of local symmetry
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preserving operations encompassing all known operations was given [2].

That definition made it possible to give complete lists of local symmetry

preserving operations that increase the number of edges by a certain fac-

tor – the inflation factor. In this article we determine on which genera

operations with a small inflation factor can increase the symmetry of a

polyhedral map. Goldberg-Coxeter operations were independently – and

in slightly different ways – introduced by Goldberg [9] in a mathematical

context and by Caspar and Klug [4] in a biological context. Later these

operations also became relevant for chemistry, to construct all fullerenes

with icosahedral symmetry. Goldberg-Coxeter operations are described

by two parameters and there is an infinite number of them. We deter-

mine for which parameters and genera they can increase the symmetry of

a polyhedral map.

2 Definitions

The term polyhedron is used in different ways in the literature. As the

planar case is often special, we will use the term in the classical way only

for maps corresponding to 3-dimensional convex polyhedra – that is due

to Steinitz’ theorem: 3-connected simple graphs embedded in the plane.

For the more general case of a 3-connected graph G embedded in a 2-

dimensional surface S of possibly higher genus such that the closure of

every face (that is: a component of S \ G) is a closed disk and the inter-

section of the closure of two faces of the map is connected, we will use

the term polyhedral map. An equivalent definition of polyhedral map is

a 3-connected embedded graph of face-width – also known as representa-

tivity – at least 3 [14]. The boundary of a face f , denoted by ∂f , is the

closed walk of a polyhedral map P which is obtained intersecting P and

the topological closure of f . A rotation system is the specification of a

circular ordering of the edges incident at each vertex of a map. There is

a one-to-one correspondence between homeomorphism classes of maps on

oriented surfaces and rotation systems [10,13].

The barycentric subdivision BP of the polyhedral map P is the 3-

coloured map obtained from P by adding a vertex in every face of P
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and on every edge of P , and adding an edge between every vertex in a

face and the vertices on the boundary of this face such that every face

in BP is a triangle. The original vertices of P get colour 0, the vertices

corresponding to edges of P get colour 1, and the vertices corresponding

to faces of P get colour 2. These colours refer to the dimensions of the

corresponding parts of P . Every face of BP has exactly one vertex of each

colour. We call such a face a chamber. In places where more than one map

is considered, we write P -chamber for a chamber in BP . Automorphisms

of coloured maps preserve colours. In an equivalent, but purely combi-

natorial way, the chambers are sometimes also called flags and defined as

triples (v, e, f), so that the vertex v is incident with the edge e that is

again incident with the face f . The correspondence with chambers of BP

is obvious.

In [2] a general definition of local symmetry-preserving operations is

introduced. It includes all classical and individually defined operations,

such as dual, truncation, ambo, . . . and allows to prove results for all such

operations together. While [2] also aims at a non-mathematical audience

and uses a more intuitive and geometric definition citing a construction of

Goldberg, we will use the more general and more combinatorial definition

from [3]. This definition has the advantage to not rely on the knowledge

of periodic tilings of the plane. Knowing about periodic tilings of the

plane, one can think of an lsp-operation as a triangle that is cut out of the

barycentric subdivision of a tiling of the plane such that its edges are on

certain symmetry axes of the tiling.

Definition 1. Let O be a 2-connected plane map with vertex set V ,

together with a colouring c : V → {0, 1, 2}. One of the faces is called the

outer face. This face contains three special vertices marked as v0, v1, and

v2. We say that a vertex v has colour i if c(v) = i. This 3-coloured map

O is a local symmetry preserving operation, lsp-operation for short, if the

following properties hold:

1. Every inner face — i.e. every face that is not the outer face — is a

triangle and is called a chamber.

2. There are no edges between vertices of the same colour.
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Figure 1. From left to right: the c3-lsp-operations dual (from now on
denoted as D), ambo (denoted as A) and truncation (de-
noted as T ). Edges are assigned the unique colour that none
of the end vertices has. The colours 0, 1, 2 of vertices and
edges are in this and the following figures represented as
red, green, black in this order. So a red vertex is a vertex of
colour 0.

3. For each vertex that is not in the outer face:

c(v) = 1 ⇒ deg(v) = 4

For each vertex v in the outer face, different from v0, v1, and v2:

c(v) = 1 ⇒ deg(v) = 3

and

c(v0), c(v2) ̸= 1

c(v1) = 1 ⇒ deg(v1) = 2

To apply an lsp-operation O to a polyhedral map P , first take the

barycentric subdivision BP of P . Then – depending on the orientation of

the chamber – a copy of O or the mirror image of O is glued into each

chamber, identifying each vertex of colour i with a copy of vi and replacing

each edge between vertices of colours i and j by a copy of the path between

vi and vj in the outer face of O. The result of this gluing is a 3-coloured
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map that is the barycentric subdivision of a map O(P ) [3], which is the

result O(P ) of applying O to P . Lsp-operations do not change the genus

of the polyhedral map they are applied to, as a disc is just replaced by an-

other, subdivided, disc. In general the result of applying an lsp-operation

to a polyhedral map need not be polyhedral, e.g. if the operation has

an internal 2-cut. In [3] it is proven that the result of applying an lsp-

operation O to a specific polyhedral map P is polyhedral if and only if for

all polyhedral maps P ′ the result O(P ′) is polyhedral. These operations

are called c3-lsp-operations. So all operations transforming polyhedra to

polyhedra, especially all well known and relevant lsp-operations (e.g. the

ones named by Kepler or Conway) are c3-lsp-operations. Using the ap-

proach via tilings again, one can think of a c3-lsp-operation as a triangle

that is cut out of the barycentric subdivision of a 3-connected tiling of the

plane such that its edges are on certain symmetry axes of the tiling.

For examples of c3-lsp-operations see Figure 1.

The inflation factor of a c3-lsp-operation O is the ratio between the

number of edges after applying the operation O and the number of edges

before applying O. This is equal to the ratio between the numbers of

chambers after and before the operation and therefore equal to the number

of chambers in O [2].

Definition 2. Let x be a vertex, edge or chamber of BO(P ). Then x is a

copy of a vertex, edge or chamber y of O. Let π be the map that maps x

to y. The set of vertices, edges or chambers of BO(P ) mapped to π(x) is

called the class π(x).

If an automorphism φ of BP maps a chamber C to a chamber C ′,

then the function mapping a chamber CO in the copy glued into C to the

chamber C ′
O of the same class in the copy glued into C ′ defines an auto-

morphism of BO(P ), that we call the induced automorphism. Obviously all

induced automorphisms are different.

Definition 3. Let P be a polyhedral map and let O be a c3-lsp-operation.

The submap BS
O(P ) of BO(P ) is the submap of BO(P ) that consists of all

the vertices and edges that are mapped to vertices and edges in the outer

face of O by π. BS
O(P ) is isomorphic to a subdivision of BP .
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The symmetry (or automorphism) group of a (possibly coloured) map

P is denoted as Aut(P ). We consider the automorphisms – that is: the

elements of the group – as permutations of the set of vertices with an

obvious induced action on the set of edges and faces of P .

There is a natural isomorphism between the automorphism groups

Aut(P ) and Aut(BP ) mapping a permutation φ ∈ Aut(P ) to a permu-

tation φB ∈ Aut(BP ) that maps a vertex v with colour 0 to φ(v), a

vertex representing the edge e to the vertex representing the edge φ(e)

and a vertex representing the face f to the vertex representing the face

φ(f). In most proofs we will work with Aut(BP ). As BS
O(P ) is just

BP with its edges subdivided – and edges between vertices of the same

colour subdivided in the same way – φ ∈ Aut(P ) also induces an au-

tomorphism of BS
O(P ) and therefore of BO(P ) and O(P ), showing that

|Aut(P )| ≤ |Aut(O(P ))|. Given a c3-lsp-operation O and a polyhedral

map P such that |Aut(P )| < |Aut(O(P ))|, we say that O increases the

symmetry of P . So O increases the symmetry of P if and only if there is

an automorphism of O(P ) that is not induced by an automorphism of P .

We say that a c3-lsp-operation O can increase symmetry in genus g if there

exists a polyhedral map of genus g such that O increases the symmetry of

P .

3 General results

In this section we will show some general results that will be used in the

rest of the paper. Obviously the operation dual exactly preserves the

symmetries of a polyhedral map. Interpreted as acting on the barycentric

subdivision, it just interchanges the colours 0 and 2, so each automorphism

of the dual is also an automorphism of the original map. However, as the

dual is its own inverse and it preserves symmetries, if the dual map had

a larger automorphism group than the original map, then taking the dual

again would imply that the original map has a larger automorphism group

than itself.

Lemma 1 implies that when studying which c3-lsp-operations can in-

crease the symmetry of polyhedral maps of a certain genus, it is sufficient
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to decide this question for either the operation itself or an arbitrary com-

bination with the operation dual: one can increase the symmetry on this

genus if and only if the other can. C3-lsp-operations preserve polyhedral-

ity [3], so that the dual of a polyhedral map is also a polyhedral map.

For two operations O,O′ we write (O◦O′) for the operation that trans-

forms a map P into the map O(O′(P )). The operation (O◦O′) can also be

described as – similar to applying it to a map that already has a barycen-

tric subdivision – gluing a copy of O or its mirror image into every chamber

of O′, ignoring the outer face.

Lemma 1. Let O be a c3-lsp-operation and P a polyhedral map. Then

the following three statements are equivalent:

1. |Aut(O(P ))| > |Aut(P )| (that is: O increases the symmetry of P )

2. |Aut((D◦O)(P ))| > |Aut(P )| (that is: D◦O increases the symmetry

of P )

3. |Aut((O ◦ D)(D(P )))| > |Aut(D(P ))| (that is: O ◦ D increases the

symmetry of D(P )).

Proof. 1.⇔ 2.: This is immediate as |Aut(O(P ))| = |Aut((D ◦O)(P ))|.
1. ⇔ 3.: As D ◦ D is the identity operation, we have that |Aut((O ◦

D)(D(P )))| = |Aut(O(P ))| and as |Aut(D(P ))| = |Aut(P )| we get the

equivalence.

The following two lemmas are well known, but mentioned for complete-

ness and later use.

Lemma 2. Every (plane) polyhedron has a face of size at most 5.

Lemma 3. Let P be a polyhedral map. Then Aut(P ) = Aut(BP ) and

Aut(P ) acts freely on the set of chambers of BP , so the image of a single

chamber determines the whole automorphism.

Corollary. Let P be a polyhedral map, Bu
P the barycentric subdivision

with the colours removed and Si(BP ) the set of automorphisms of Bu
P in-

terchanging the former colours 0 and 2 and respecting colour 1 (which can

be interpreted as maps onto the dual of P ).
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Then (with Aut(BP ) also considered just as a set) the elements of the

group Aut(Bu
P ) are exactly the permutations in Aut(BP ) ∪ Si(BP ).

Proof. It is enough to show that an automorphism φ of Bu
P that is not

in Aut(BP ) interchanges vertices of former colour 0 and 2 and respects

colour 1 and therefore is in Si(BP ).

As P is 3-connected, every vertex in BP of colour 0 or 2 has degree

at least 6. Vertices of colour 1 always have degree 4. Therefore φ sends

vertices of colour 1 to vertices of colour 1. As φ does not preserve colours,

it needs to send at least one vertex of colour 0 to a vertex of colour 2. BP

is a connected tri-partite map, with partitions given by the colours. In fact

there is a path between any two vertices of colour 0 or 2 not containing a

vertex of colour 1. If φ sends a vertex of colour 0 to one of colour 2, then

it interchanges colours along all such paths, so all vertices of colour 0 are

sent to vertices of colour 2. Therefore, P is self-dual and this proves the

statement.

From the previous proof we obtain that |Aut(P )| < |Aut(Bu
P )| if and

only if P is self-dual, because there is an automorphism of Bu
P which sends

each vertex of P to a vertex of the dual.

Theorem 1. Let P be a polyhedral map and let O be a c3-lsp-operation

such that every automorphism in Aut(BO(P )) maps BS
O(P ) to BS

O(P ). If

O increases the symmetry of P , then P is a self-dual polyhedral map and

O = X ◦A, with A the ambo operation and X a c3-lsp-operation.

Proof. Let φ be an automorphism of BO(P ) which is not induced by an

automorphism of P . As an automorphism of BO(P ) it is colour-preserving.

As φ maps BS
O(P ) to BS

O(P ), it induces an automorphism φ̂ of Bu
P . This

automorphism φ̂ sends each vertex of colour 0 to a vertex of colour 2 by

Section 3. As the barycentric subdivision of the dual of P is just BP with

the colours 0 and 2 switched, φ̂ can be seen as an isomorphism between P

and its dual. It follows that P is self-dual.

As an automorphism of BO(P ), φ maps BS
O(P ) to B

S
O(P ). Our previous

argument implies that the boundary of a face in BS
O(P ) is mapped to the

boundary of a face in BS
O(P ) in such a way that the vertices corresponding
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to vertices of colour 0 in BP are mapped to vertices corresponding to

vertices of colour 2 in BP and the other way around. Vertices that are

of colour 1 in BP are not mapped to another colour. This implies that φ

maps each copy of O to a mirrored copy of O. More specifically, O must

be mirror symmetric with respect to a path joining v1 with the midpoint

between v0 and v2 in the outer face. The boundary path between v0 and

v2 contains an odd number of vertices, so that a midpoint v and also a

path M between v1 and v stabilized by the mirror symmetry exists, as

no chamber can be mapped to itself by a mirror symmetry because of the

colouring. The fact that each of the two parts into which M splits the

operation is in fact an lsp-operation (in fact one the mirror image of the

other) follows for the vertices not on the boundary between the two parts

directly from the fact that O is an lsp-operation. The conditions for the

other vertices and the special vertices can easily be checked. The fact that

they are c3-lsp-operations follows from the fact that O(P ) is polyhedral

for a polyhedral map P and O(P ) = X(A(P )) with X the lsp-operation

defined by one of the parts.

Lemma 4. Let P be a polyhedral map and O a c3-lsp-operation. The

following are equivalent:

1. The operation O increases the symmetry of P , that is:

|Aut(BO(P ))| > |Aut(BP )|.

2. There exists an automorphism of BO(P ) that maps a chamber to a

chamber in a different class.

3. There exists an automorphism of BO(P ) that maps every chamber to

a chamber in a different class.

Proof. 1. ⇒ 2.: If an automorphism φ of BO(P ) maps all chambers to

chambers of the same class, then it induces an automorphism of the cham-

bers of BP , so φ is one of the automorphisms of BO(P ) induced by an auto-

morphism of Aut(BP ). If all automorphisms of BO(P ) have that property,

then |Aut(BO(P ))| = |Aut(BP )|.
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1. ⇐ 2.: If an automorphism of BO(P ) maps a chamber to a cham-

ber in a different class, then it is none of the induced automorphisms, so

|Aut(BO(P ))| > |Aut(BP )|.
2. ⇒ 3.: If an automorphism maps a chamber C to a chamber in

the same class, then all chambers sharing an edge with C are mapped to

chambers in the same class and by induction all chambers in BO(P ) have

this property.

2.⇐ 3.: Immediate.

4 Goldberg-Coxeter operations

In chemistry and biology, 3-regular polyhedra that only have faces of size

five and six are also known as fullerenes. They are often studied for their

interesting chemical properties and technological applications. The most

common application of Goldberg-Coxeter operations is the construction

of fullerenes. The first publication describing these operations was by

Goldberg in 1937 [9] in a mathematical context. Later, in 1962, closely

related constructions with the same resulting structures were described

by Caspar and Klug [4], this time in a biological context as models for

virus capsids (that is: protein shells). These were later also described in

a survey paper by Coxeter [7]. For a detailed description of the history of

Goldberg-Coxeter operations we refer the reader to [2].

We will follow the approach in [2] and define Goldberg-Coxeter oper-

ations, GC-operations for short, as triangles cut out of the barycentric

subdivision of the regular hexagonal tiling TH of the plane. Some of the

statements in this paragraph are taken from that article. We use the fol-

lowing coordinate system to describe TH . The origin (0, 0) is in the middle

of a face f . One vertex of f is (0, 1) and the vertex of f that appears in

the boundary of f right before (0, 1) when following ∂f in clockwise order

is (1, 0). With this coordinate system, the point with integer coordinates

(x, y) is the center of a face of TH if and only if x− y ≡ 0 (mod 3), and a

vertex otherwise. The point (x, y) is the middle of an edge if and only if x

and y are not both integers, but they are multiples of 1/2 and 2(x−y) ≡ 0

(mod 3).
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Figure 2. The left image shows the Goldberg-Coxeter operation
GC(5, 0), and the right image shows the Goldberg-Coxeter
operation GC(3, 3).

Let l and m be two positive integers such that l = m or m = 0.

The Goldberg-Coxeter operation with parameters (l,m) (short GC(l,m))

is the labeled map that is obtained by cutting a triangle out of BTH
with

vertices v0 = (l,m), v1 =
(
l−m
2 , l+2m

2

)
and v2 = (0, 0). The point v1 is the

middle of the line segment between v0 and the image of v0 under a 60◦

counterclockwise rotation around the origin. Examples of GC-operations

GC(l, 0) and GC(l, l) are given in Figure 2.

GC-operations are also defined for non-negative integer parameters

(l,m) not satisfying the extra conditions l = m or m = 0 imposed here.

These operations are known as chiral GC-operations and do not neces-

sarily preserve all symmetries of a polyhedron, but only the orientation-

preserving ones. All GC-operations, also chiral ones, can be described as

c3-lopsp-operations – see [3] for a definition of c3-lopsp-operations. In this

article we only consider GC-operations preserving all symmetries.

We have the following lemma:

Lemma 5. Let O be a GC-operation GC(l, l) or GC(l, 0). Then it has the

following properties:

• v2 is in only one chamber of O

• If v0 has colour 0, then v0 is in only one chamber of O. Otherwise

it is in two chambers.
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Proof. • The angle at v2 in the triangle cut out of BTH
is always 30◦. In

BTH
, the 12 edges incident with each vertex of colour 2, i.e. the faces,

form angles of 30◦ with their successors and predecessors. Therefore,

v2 is in exactly one chamber of O.

• The angle at v0 in the triangle cut out of BTH
is always 60◦. If v0

corresponds to a face, it follows from the previous argument that it

is in exactly two chambers of O. Every vertex of colour 0 in BTH

has degree 6 and the incident edges form angles of 60◦. Therefore, if

v0 has colour 0, then it is in only one chamber of O.

Applying a GC-operation to TH results in a regular hexagonal tiling

with smaller hexagons. In this infinite case not only the symmetry group

of the result is the same as before applying the operation, but as there is

up to isomorphism only one hexagonal tiling of the plane, even the tiling

is the same (up to isomorphism). This is not the case when we apply a

GC-operation that is not the identity to a finite 3-regular map with only

hexagonal faces. The result is another 3-regular map with only hexagonal

faces, but the map and also the symmetry group are larger. We use the

following result by Negami to prove that every non-trivial GC-operation

increases the symmetry of every map on the torus with only hexagons as

faces.

Lemma 6 (S. Negami [15]). Every (simple) 6-regular map of genus 1 is

vertex-transitive.

Lemma 7. Let P be any polyhedral map of genus 1 that has only faces of

size 6. Then any GC-operation GC(l, l) or GC(l, 0) that is not the identity

(that is: GC(1, 0)) increases the symmetry of P .

Proof. It is not difficult to prove using the Euler characteristic that any

map of genus 1 that only has faces of size 6 is 3-regular. If such a map

is also polyhedral, its dual is a simple, 6-regular map of genus 1. By

Lemma 6, it is vertex-transitive. Therefore any polyhedral map of genus

1 that only has faces of size 6 is face-transitive.

Let O be any GC-operation that is not the identity. If follows from

the definition of GC-operations that all faces of O(P ) have size 6 and
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v2

v1 v0

v2

v1 v0

Figure 3. The operation leapfrog is shown on the left, truncation is on
the right.

therefore it is face-transitive. The vertex v2 is of colour 2 and it is in only

one chamber C in O by Lemma 5. This means that for every face in P ,

there is exactly one face in O(P ) that consists entirely of chambers of class

C. All the chambers of class C are in such faces. As there is at least one

other chamber in O, there is a face in O(P ) that contains no chambers of

class C. However, as O(P ) is face-transitive, this implies that there is an

automorphism that maps a chamber of class C to a chamber of another

class. By Lemma 4, O increases the symmetry of P .

4.1 Truncation and Leapfrog

The only GC-operation that we will consider by itself is GC(1, 1), also

known as leapfrog, bitruncation, and zip. We will use the results in this

section to determine when other GC-operations can increase symmetry. As

the name bitruncation suggests, leapfrog is closely related to truncation,

or to be exact: leapfrog is the truncation of the dual map. Both c3-

lsp-operations are shown in Figure 3. Informally, truncation ‘cuts off’

the vertices of a polyhedron, replacing a vertex v by a cycle of length

deg(v). Leapfrog will be denoted by L and truncation by T . We will prove

that truncation cannot increase the symmetry of a polyhedron, but it can

increase the symmetry for polyhedral maps of higher genus. As L = T ◦D,

Lemma 1 implies that that is also true for leapfrog.

Lemma 8. Let P be a (plane) polyhedron and T the c3-lsp-operation trun-

cation. Then

Aut(P ) = Aut(T (P )).
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Proof. Let φ be any automorphism of T (P ). As T (P ) is plane, there exists

a face in T (P ) of size at most 5 by Lemma 2 and a corresponding vertex

f in BT (P ) of degree at most 10. The only vertices of colour 2 in T are

v0 and v2, so f is mapped to v0 or v2 by π. However, as every face of P

has size at least 3, the colour 2 vertices of T (P ) that are mapped to v2 by

π must have degree at least 12. Therefore π(f) = v0. As automorphisms

map vertices to vertices of the same degree, π(φ(f)) is also v0. Let C be

a T (P )-chamber containing f . Then C and φ(C) both contain a vertex

in π−1(v0). As v0 is in only one chamber in T , the T (P )-chambers C and

φ(C) are in the same class. The lemma now follows from Lemma 4.

We now define a class {Hg | g ∈ N \ {0, 1}} of polyhedral maps. Each

polyhedral map Hg will have genus g, and T (Hg) will have strictly more

automorphisms than Hg. In [16] the map H2 – a polyhedral map of genus

2 – is defined and it is shown that truncation increases its symmetry. That

example can be extended to higher genera. Figure 4 shows for g = 3 how

the polyhedral map Hg of genus g is constructed from the polyhedral map

Hg−1 of genus g− 1. The map H2 is the map that is obtained by ignoring

the slices with orange and red arrows, and gluing the dashed lines together.

The map H3 is obtained by inserting the slices with red and orange arrows

into H2 as shown, gluing dashed lines together. For larger g this process

can be iterated.

More formally, Hg is defined as follows. The map Hg has 4g vertices

A0, . . . , A2g−1, B0, . . . , B2g−1. The rotation system is defined as follows –

where indices are taken modulo 2g:

Ai: Ai+1 Ai−1 Bi Bi+g Bi+g+1 Bi+1

Bi: Bi−1 Bi+1 Ai+g Ai Ai−1 Ai+g−1

The map Hg has two faces of size 2g, 2g faces of size 4, and 4g faces

of size 3. Every face of size 2g is adjacent to 2g different triangles, every

quadrangle is adjacent to four different triangles, and every triangle is

adjacent to one face of size 2g and two different quadrangles. The top

image in Figure 5 shows H3.
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Figure 4. This figure shows how H3 is constructed from H2. Arrows
with the same colour must be identified.

Lemma 9. For every g ∈ N \ {0}, there exists a polyhedral map P such

that truncation increases the symmetry of P .

Proof. For g = 1 this follows from Lemma 7.

For g = 2, it is stated in [16] that H2 has 2 chamber-orbits and its trun-

cation has 3 chamber-orbits. Truncation triples the number of chambers,

but the number of orbits of T (H2) is only 3/2 times the number of orbits

of H2. It follows from Lemma 3 that for any polyhedral map, the number

of elements in a chamber-orbit equals the size of the symmetry group. If

nP represents the number of chamber-orbits in a polyhedral map P and

CP the number of chambers in P , then

|Aut(T (H2))|
|Aut(H2)|

=

CT (H2)

nT (H2)

CH2

nH2

=
CT (H2)

CH2
· nH2

nT (H2)
= 3 · 2

3
= 2.

For g > 2, it can be checked that the map Hg has 6 chamber-orbits,
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A(0)

A(5)

A(4)

A(3)

A(2)

A(1)

B(0)

B(5)

B(4)

B(3)

B(2)

B(1)

Figure 5. The maps H3 and T (H3), each with one chamber from each
orbit drawn in red.
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one orbit consists of chambers in the faces of size 2g, 3 orbits of chambers

in the triangles, and 2 orbits of chambers in the quadrangles. The map

T (Hg) has 9 chamber-orbits, 6 in the faces of size 6, one in faces of size 4g

and two in the faces of size 8. For g = 3, the chamber-orbits are shown in

Figure 5. As in the case g = 2, we get
|Aut(T (Hg))|
|Aut(Hg)| = 2.

Corollary. There is a polyhedral map P of genus g so that truncation

increases the symmetry of P if and only if g > 0.

As GC(1, 1) = T ◦D, the same is true for GC(1, 1).

4.2 GC-operations where v0 has colour 0

In this section we look at GC-operations where v0 has colour 0, i.e. where

(l,m) is a vertex in TH . We have seen that this is the case if x − y ̸≡ 0

(mod 3) and thus l ̸= m. It follows that m = 0. We have already proven

in Lemma 7 that for genus 1 all GC-operations can increase symmetry. In

Lemma 10 we will prove that for GC-operations with v0 of colour 0, genus

1 is the only genus where they can increase symmetry.

Lemma 10. Let P be a polyhedral map of a genus g ̸= 1 and let O be

a GC-operation with parameters (l, 0) such that l is not a multiple of 3.

Then O does not increase the symmetry of P .

Proof. Let φ be any automorphism of O(P ). By Lemma 4 it suffices to

show that there is a chamber C such that φ(C) is in the same class as C.

As the genus is not 1, O(P ) has a vertex of degree at least 4 or a face of

size different from 6. Assume first that there is a vertex v in O(P ) with

deg(v) ̸= 3. Every vertex w in O(P ) such that π(w) ̸= v0, i.e. w does

not correspond to a vertex of P , has degree 3. Therefore, π(v) = v0 and

as deg(v) = deg(φ(v)) also π(φ(v)) = v0. Let C be a chamber in O(P )

containing v. The chamber φ(C) contains φ(v). It follows from Lemma 5

that v0 is incident to only one chamber in O. Therefore, C and φ(C) are

in the same class.

Now assume that there is a face f in O(P ) that is not of size 6. As

every face in O(P ) that does not correspond to a face of P has size 6, φ(f)

corresponds to a face of P . Similarly as in the previous case, Lemma 5
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implies that there is exactly one chamber C containing f such that C and

φ(C) are in the same class.

4.3 GC-operations where v0 has colour 2

In Subsection 4.1 it was proven that leapfrog and truncation can increase

symmetry on every genus except genus 0. As for leapfrog v0 is of colour

2, it is clear that the results from Subsection 4.2 do not hold if v0 is of

colour 2. In Corollary 4.3 it will be proven that, just like leapfrog, every

GC-operation with v0 of colour 2 can increase symmetry on every genus

except genus 0.

Lemma 11.

• If GC(l, 0) is a GC-operation such that v0 is of colour 2, then l = 3k,

k ∈ N, and GC(3k, 0) = GC(k, k) ◦GC(1, 1).

• For any GC-operation GC(l, l), GC(l, l) = GC(l, 0) ◦GC(1, 1).

Proof. We already mentioned that a point with coordinates (x, y) is the

center of a face of TH if and only if x − y ≡ 0 (mod 3). It follows that if

m = 0, then l = 3k for a natural number k. Assume first that m = 0 and

l = 3k for a natural number k. The center of the triangle with vertices

(0, 0), (0, 3k) and (3k, 0) has coordinates (k, k). As k−k ≡ 0 (mod 3), this

point corresponds to a face of TH and there are symmetry axis through

(0, 0) and (k, k), through (0, 3k) and (k, k) and through (3k, 0) and (k, k).

As shown in Figure 6, these symmetries imply that O consists of three

copies of the GC-operation GC(k, k) (shown in red) so that GC(3k, 0) =

GC(k, k) ◦GC(1, 1).

Now assume that l = m ̸= 0. In this case the center of the triangle

with vertices (0, 0), (l, l) and (−l, 2l) is (0, l). This is a vertex if l is not

a multiple of 3, and a face if it is. In any case, there are mirror axis

through (0, 0) and (0, l), through (l, l) and (0, l) and through (−l, 2l) and
(0, l). This is illustrated in Figure 6. It follows that GC(l, l) consists of

three copies of the GC-operation GC(l, 0) in such a way that GC(l, l) =

GC(l, 0) ◦GC(1, 1).
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(0, 0) (3k, 0)

(0, 3k)

(k, k)

(0, 0)

(l, l)

(−l, 2l)

(l, 0)

(0, l)

Figure 6. These images show the symmetries mentioned in the proof
of Lemma 11. The left image shows the case where m = 0,
and the right image shows the case where l = m.

Corollary. Let GC(l, l) or GC(l, 0) be a GC-operation where v0 has colour

2. Then there exist polyhedral maps of genus g for which GC(l,m) can

increase the symmetry if and only if g ̸= 0.

Proof. We prove this by induction on the inflation factor. The smallest

GC-operation with v0 of colour 2 is GC(1, 1). For this operation the result

follows from Corollary 4.1. Now assume that the result is true for every

GC-operation with v0 of colour 2 and inflation factor at most n− 1.

Let GC(l,m) be a GC-operation with l = m orm = 0, with v0 of colour

2, and with inflation factor n. By Lemma 11 there exists a GC-operation

GC(l′,m′) such that GC(l,m) = GC(l′,m′) ◦GC(1, 1).

The inflation factor of GC(1, 1) is 3, so the inflation factor of GC(l′,m′)

is n/3 < n. There exist polyhedral maps of every genus g > 0 for which

GC(1, 1) increases the symmetry. As GC(l′,m′) at least preserves the

symmetry, the symmetry of these polyhedral maps is also increased by

GC(l,m). GC(1, 1) cannot increase symmetry in polyhedra, so it suffices

to prove that GC(l′,m′) cannot increase symmetry in polyhedra. If the

v0 vertex of GC(l′,m′) is of colour 2, this follows by induction. If it is of

colour 0, it follows from Lemma 10. This proves the corollary.
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5 Operations with a small inflation factor

In this part we answer the question of which operations can increase sym-

metry and, if so, on which genus they can do so for all c3-lsp-operations

with inflation factor at most 6. This includes all well-known Conway op-

erations that preserve all symmetries.

The Conway polyhedron notation was introduced by John Conway [6]

to denote polyhedra obtained from operations such as truncation or dual.

In this notation, a polyhedron is denoted by a capital letter (e.g. T is

a tetrahedron) and the operation applied to the polyhedron is denoted

with a lowercase letter (e.g. t is truncation). For example, the truncated

tetrahedron is denoted by tT .

The operations named by Conway and later by Hart, Rossiter and Lev-

skaya can be described as c3-lsp-operations if they preserve all symmetries

and as c3-lopsp-operations (see [2]) if they are only guaranteed to preserve

orientation preserving symmetries.

5.1 Ambo

The Conway operation ambo plays a special role, as so far it is essentially

the only operation known to be able to increase the symmetry of (plane)

polyhedra. All other known operations that do so are combinations of

ambo. Ambo applied to a polyhedron P can be described as placing a

vertex in the midpoint of every edge of P and connecting two of these

vertices through the common face if the corresponding edges of P are

incident to the same vertex in P and belong to the same face of P . This

is equivalent to the graph theoretical construction of the medial graph.

Ambo is depicted as a c3-lsp-operation in Figure 1.

It is known (see for example [16]) that ambo increases the symmetry

of self-dual polyhedral maps and that it can only do so for self-dual maps.

In particular, the symmetry group of the polyhedral map after the ap-

plication of ambo will be twice as big as the original symmetry group,

where a new symmetry is obtained by composing an old symmetry with

a mapping on the dual. Since there exist self-dual polyhedra, ambo can

increase symmetry in genus zero. For example, ambo of a tetrahedron is
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an octahedron.

To prove that ambo can increase symmetry in every genus, we looked

for results stating that self-dual maps exist in every genus. Though this

is probably folklore, we found no such results in the literature. A con-

struction for self-dual maps by Archdeacon is sketched in [1]. There it is

said that the construction is described in more detail in another paper in

preparation, which seems not to have appeared. In general, the construc-

tion also does not guarantee that the result is a polyhedron, or even that it

is connected. In the rest of this section, we prove the existence of self-dual

polyhedral maps in every genus, using a special case of the construction

by Archdeacon for genus g ≥ 2.

Theorem 2. There exist self-dual polyhedral maps in every genus.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

A

B C

13 12 11 15 14 13

8 7 6 10

9

8

3 2 1 5

4

3

23 22 21 25 24 23

18 17 16 20 19 18

13 12 11 15 14 13

B

A

C

Figure 7. The maps G (in black) and G′ (in red) on the torus.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

A

B C

D

EF

13 12 11 15 14 13

8 7 6 10

9

8

3 2 1 5

4

3

23

22

21 25 24 23

18

17

16 20 19 18

13 12 11 15 14 13

B

A

C

E

D

F

Figure 8. The maps H (in black) and H′ (in red) on the torus.

Proof. In genus 0, the tetrahedron is a self-dual polyhedron. In genus 1,

the square tiling of a torus gives a self-dual polyhedral map.

For genus 2, consider the square tiling of the torus with three squares

replaced by a hexagon, a square, and two pentagons. This map G is

depicted in black in Figure 7. The tiling depicted in red in Figure 7 is a

map isomorphic to G, where the isomorphism ψ is given by sending vertices

with the same label to each other. Let G′ be this isomorphic copy of G.
Gluing two copies of G together along the hexagonal face F , identifying

vertices A with 10, B with 4, and C with 9, yields a map G ∪∂F G on an

oriented surface of genus 2.

Moreover, G ∪∂F G is 3-connected and all of its faces are closed 2-cells

that intersect either in a vertex, in an edge, or not at all. Therefore,

G ∪∂F G is a polyhedral map. In a similar fashion, we can construct

G′ ∪∂F ′ G′, gluing two copies of G′ together along the boundary of the face

F ′ isomorphic to F via ψ−1, identifying the vertices as before. Every face

of G ∪∂F G and G′ ∪∂F ′ G′ is either a 4-gon or a 5-gon. Every vertex of



154

G ∪∂F G and G′ ∪∂F ′ G′ has degree 4 or 5. In particular, G ∪∂F G and

G′ ∪∂F ′ G′ are isomorphic via ψ extended to the two copies.

Notice that G′∪∂F ′G′ is dual to G∪∂F G. Indeed, in Figure 7, we can see

which vertices of G′ correspond to which faces of G. This correspondence

is carried to G′ ∪∂F ′ G′. Thus, G ∪∂F G is a self-dual polyhedral map.

For genus 3, consider the square tiling of the torus with two triples of

squares replaced. This map H is depicted in Figure 8. The map H′ de-

picted in red in Figure 8 is a map isomorphic to H, where the isomorphism

ψ is given by sending vertices with the same label to each other. Gluing

each hexagonal face Fi to a different copy of G, identifying the vertices

A − 10, B − 4, C − 9 for one face and D − 10, E − 4, F − 9 for the other

one, yields a map G ∪∂F1
H∪∂F2

G on an oriented surface of genus 3. In a

similar fashion as before, G ∪∂F1
H ∪∂F2

G is a self-dual polyhedral map.

For genus g ≥ 4, we consider g−2 copies of H and two copies of G. We

glue the hexagonal face of a copy of G to a hexagonal face of a copy of H in

the same fashion described before. We then glue the second hexagonal face

of H to the first hexagonal face of another copy of H. We continue gluing

copies of H together in this fashion. In the end, we glue the remaining

hexagonal face of the last copy of H to the hexagonal face of the second

copy of G. This yields a map G ∪∂F1
H ∪∂F2

H ∪∂F3
H ∪∂F4

· · · ∪∂Fg−2

H∪∂Fg−1
G, which is a self-dual polyhedral map on an oriented surface of

genus g.

Corollary. There are polyhedral maps of every genus for which ambo in-

creases the symmetry.

For each c3-lsp-operation with inflation factor at most 6 we will now

give the set of genera on which the operation can increase the symmetry.

The results are given in Table 1 and Table 2. In each row, operations are

given that are equivalent in the sense that each can be written as a product

with the dual operation of any other. So due to Lemma 1 it is sufficient

to determine the set of genera for an arbitrary of the four operations. As

ambo can increase the symmetry in every genus and every c3-lsp-operation

at least preserves symmetry, an operation that can be written as O ◦ A
with a c3-lsp-operation O can increase the symmetry in every genus.
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Inflation Can increase
factor O D ◦O O ◦D D ◦O ◦D symmetry

in genus

1 ∅
Identity Dual

2 N
Ambo Join

3 N \ {0}
Truncate Needle Zip Kis

4 N
Expand Ortho

4 {1}
Chamfer Subdivide

5 ∅
Loft

Table 1. All c3-lsp-operations with inflation factor at most 5. The
third column gives the set of genera in which the operation
can increase symmetry.
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Inflation Can increase
factor O D ◦O O ◦D D ◦O ◦D symmetry

in genus

6 ∅
O6a

6 N
O6b

6 N
Bevel Meta

6 ∅
O6d Join-lace

6 N \ {0}
O6e

6 ∅
Quinto

Table 2. All c3-lsp-operations with inflation factor 6. The third column
gives the set of genera in which the operation can increase
symmetry.

1: The identity operation can obviously not increase symmetry.

2: The result for ambo is proven in Corollary 5.1.

3: For truncation the result is exactly Corollary 4.1.

4a: The operation expand can be written as A ◦ A and can therefore

increase the symmetry in every genus.

4b: The operation chamfer is the operation GC(2, 0), so it follows by

Lemma 10 and Lemma 7 that chamfer can increase symmetry only
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on genus 1.

5: We will prove the result for the operation loft. Let P be a polyhedral

map and L(P ) the polyhedral map obtained by applying loft to P .

In L(P ) the vertices labeled v0 double their degree from P , so they

have degree at least 6, as P is a polyhedral map. On the other

hand, the new vertices introduced by the loft operation have degree

3. Therefore, any automorphism of L(P ) maps vertices of class v0

to vertices of the same class.

Vertices of class v0 belong to two classes of chambers. One of them

contains (half) an edge of P that leads to a vertex of degree 3 and

one of them contains (half) an edge that leads to a vertex of degree

at least 6. So an automorphism can never map a chamber containing

a vertex of class v0 to a chamber in a different class and the result

follows from Lemma 4.

6a: Let P be a polyhedral map. The vertices inO6a(P ) have two different

degrees – once 3 and once 6. Vertices of class v2 are the only colour

2 vertices in the barycentric subdivision of O6a(P ) that neighbour

only colour 0 vertices with degree 6 in O6a(P ). So any automorphism

must map vertices of class v2 onto vertices of class v2 and as these

vertices belong to only one class of chambers, the result follows with

Lemma 4.

6b: O6b is T ◦D ◦ A. It follows that O6b can increase symmetry in any

genus.

6c: The operation bevel is T ◦ A. It follows that bevel can increase

symmetry in any genus.

6d: Let P be a polyhedral map. The vertices in O6d(P ) of class v0

are the only vertices that are only contained in 4-gons, as the faces

corresponding to the vertex of class v2 are at least hexagons. So

vertices of class v0 must be mapped on other vertices of class v0 by

any automorphism. As they are only contained in chambers of the

same class, the result follows from Lemma 4.
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6e: Operation O6e can be written as A ◦ T , so it follows from Lemma 9

that it can increase the symmetry in every genus higher than 0. We

still have to consider genus 0. Let P be a polyhedron. Truncation

cannot increase the symmetry in the plane, but ambo can. As trun-

cation cannot increase the symmetry of a polyhedron, ambo must

increase the symmetry of T (P ) if A ◦T (P ) has more symmetry than

P , so T (P ) must be self-dual. As the result of truncation is – no

matter on which genus – is always a 3-regular map that also con-

tains faces of size at least 6 (as already mentioned in the proof of

Lemma 8), the result of truncation is never self-dual and O6e = A◦T
never increases symmetry on genus 0. Note that this argument im-

plies that O6e increases symmetry for exactly the same polyhedral

maps as truncation and by the same factor.

6f: Let Q(P ) be the result of applying quinto to a polyhedral map. Then

the vertices of class v0 are the only vertices that neighbour only ver-

tices of degree 4. So the vertices of class v0 are mapped onto ver-

tices of class v0 by any automorphism of Q(P ) and as these vertices

are only contained in chambers of the same class, it follows from

Lemma 4 that quinto cannot increase the symmetry.

6 Future work

The most captivating question is whether each c3-lsp-operation that can

increase the symmetry of a polyhedron can be written as a product of an-

other operation with ambo, so that ambo is essentially the only operation

that can do it. We have proven that this is the case for all c3-lsp-operations

with inflation factor up to 6, but though the result could be extended to

slightly larger inflation factors, it is still not known whether it is true in

general. Solving this question would again emphasize the special role ambo

plays among all c3-lsp-operations as well as the special role of the plane

among all surfaces.

When writing a product of another operation with ambo it says nothing

about the order of operations. In fact so far we have only examples of
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operations that can increase the symmetry of polyhedra where the product

is of the form O◦A – with O an arbitrary operation. It is not clear whether

operations can make self-dual polyhedra out of polyhedra that are not self-

dual. If that is true, also operations of the form A ◦ O with O not being

of the form O′ ◦A could increase the symmetry of polyhedra.

In this text the arguments used for different operations differ from each

other. In [17] a simple criterion is given to judge whether a given operation

preserves 3-connectivity of maps. Such a general criterion that makes it

easy to judge whether a given operation can increase symmetry (or the

opposite: cannot increase symmetry on certain genera) would be a useful

achievement. For 3-connectivity it does not make a difference whether

one studies the map or the underlying graph, for other invariants it does.

Some of the results proven in this article imply corresponding results for

the automorphism group of the underlying abstract graph of the map. E.g.

for polyhedra the size of the automorphism group of the map is the same

as for the abstract graph (a consequence of Whitney’s unique embedding

theorem [18]) – for higher genus this is not necessarily the case and some

of the results might not hold. Given a map P and a c3-lsp-operation O,

the genus of O(P ) is obviously the same as that of P . But even if P is

a minimum genus embedding of the underlying abstract graph, so that

the genus of the graph (defined as the minimum genus in which it can

be embedded) and that of the map coincide, the genus of the underlying

graph of O(P ) is always the same for some operations and can differ a lot

for others. There is e.g. for each genus g a map that is a minimum genus

embedding of the underlying graph, but where the underlying graph of the

dual is planar.

So there are many open problems for c3-lsp-operations and of course all

these problems must also be posed for the more general class of c3-lopsp-

operations that can destroy symmetries. At least one of the problems is

easier for the more general class: for c3-lopsp-operations it is well known

that they can increase the symmetry of polyhedra even if they are not a

product with ambo. E.g. the c3-lopsp-operation snub applied to a tetra-

hedron produces an icosahedron.



160

Acknowledgment : We would like to thank Patrick Fowler for helping us
emphasise and understand the chemical relevance of increasing symmetry
of molecules after applying local operations.

References

[1] D. Archdeacon, A survey of self-dual polyhedra, Ann. Discr. Math.
51 (1992) 5–12.

[2] G. Brinkmann, P. Goetschalckx, S. Schein, Comparing the construc-
tions of Goldberg, Fuller, Caspar, Klug and Coxeter, and a general
approach to local symmetry-preserving operations, Proc. Royal Soc.
A: Math. Phys. Engin. Sci. 473 (2017) #20170267.

[3] G. Brinkmann, H. Van den Camp, On local operations that preserve
symmetries and on preserving polyhedrality of maps, Ars Math. Con-
temp. 24 (2023) #P2.01.

[4] D. L. D. Caspar, A. Klug, Physical principles in the construction of
regular viruses, Cold Spring Harbor Symp. Quant. Biol. 27 (1962)
1–24.

[5] C. Chuang, B. Y. Jin, Systematics of high-genus fullerenes, J. Chem.
Inf. Model. 49 (2009) 1664–1668.

[6] J. H. Conway, H. Burgiel, C. Goodman-Strauss, The Symmetries of
Things, A K Peters, Ltd., Wellesley, MA, 2008.

[7] H. S. M. Coxeter, Virus macromolecules and geodesic domes, in: J.
C. Butcher (Ed.), A Spectrum of Mathematics, Oxford Univ. Press,
Oxford, 1971, pp. 98–107.

[8] P. W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Oxford
Univ. Press, Oxford, 1995.

[9] M. Goldberg, A class of multi-symmetric polyhedra, Tohoku Math.
J. 43 (1937) 104–108.

[10] J. L. Gross, T. W. Tucker, Topological Graph Theory, Wiley, New
York, 1987.

[11] J. Kepler, Harmonices Mundi, Johann Planck, Linz (Austria), 1619.

[12] J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, Fullerene
‘crop circles’, Nature 385 (1997) 780–781.



161

[13] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins Univ.
Press, 2001.

[14] B. Mohar, Face-width of embedded graphs, Math. Slovaca 47 (1997)
35–63.

[15] S. Negami, Uniqueness and faithfulness of embedding of toroidal
graphs, Discr. Math. 44 (1983) 161–180.

[16] A. Orbanic, D. Pellicer, A. Ivić Weiss, Map operations and k-orbit
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