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Abstract

Suppose that G is a connected bipartite graph with bipartition
(U, V ) and f(G) be the algebraic structure count of G. Gutman
[Note on algebraic structure count, Z. Naturforsch. 39a (1984) 794–
796.] proved that, if uv is an edge of G, then there exists an ϵ ∈
{1,−1} such that

f(G) = |f(G− uv) + ϵf(G− u− v)|. (i)

Ye [Further variants of Gutman’s formulas, MATCH Commun.
Math. Comput. Chem. 90 (2023) 235–245.] obtained a variant of
the Gutman’s formula above and proved that if |U | = |V | = n, then
there exists a β = (ν1, ν2, . . . , νm) satisfying ν1, ν2, . . . , νm ∈ {1,−1}
such that

(m− n)f(G) =

∣∣∣∣∣
m∑
i=1

νif(G− ei)

∣∣∣∣∣ , (ii)

where the sum ranges over all edges e1, e2, . . . , em of G.
Both formulae (i) and (ii) are linear recurrences. But it is diffi-

cult to determine ϵ = 1 or −1 in (i) and νi = 1 or −1 in (ii). In this
paper, we obtain a quadratic recurrence of the algebraic structure
count of G as follows.

(|E(G)| − 2n)f2(G) =
∑

uv∈E(G)

[f2(G− uv)− f2(G− u− v)], (iii)

where the sum ranges over all edges of G. Meanwhile, we obtain a
quadratic recurrence of the number of perfect matchings of G which
is similar to formula (iii).
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1 Introduction

Suppose that G is a connected bipartite graph with bipartition (U, V )

satisfying |U | = |V | = n and E(G) is the edge set of G. Let U =

{u1, u2, . . . , un}, V = {v1, v2, . . . , vn}. Define the biadjacency matrix

BG = (bij)n×n as

bij =

{
1, if uivj is an edge of G;

0, otherwise.

Hence the adjacency matrix of G can be expressed by

AG =

(
0 BG

BT
G 0

)
.

Obviously,

det(AG) = (−1)ndet2(BG). (1)

Wilcox, a theoretical organic chemist, defined the algebraic structure

count of G = (U, V ) in [11,12], denoted by f(G), as the difference between

the number of so-called “even” and “odd” perfect matchings of G, which

is equivalent to the absolute value of the determinant det(BG). That is,

f(G) = |det(BG)|. (2)

By Eq. (1),

det(AG) = (−1)nf2(G). (3)

The algebraic structure count f(G) has a closed relation with the ther-

modynamic stability of the corresponding molecular graphs and has im-

portant applications in theoretical organic chemistry [5,8,9,13,14]. On the

further research on f(G), see references [1–4,6, 10,15–17].

Let uv be an edge of G. Gutman [6] proved that one of the following
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relations holds.

f(G) = f(G− uv) + f(G− u− v), (4)

f(G) = f(G− uv)− f(G− u− v), (5)

f(G) = f(G− u− v)− f(G− uv). (6)

Gutman’s formulas above show that there exists an ϵ ∈ {1,−1} such that

f(G) = |f(G− uv) + ϵf(G− u− v)|. (7)

Motivated by Eqs. (4)-(7), Ye [17] obtained a variant of Gutman’s

formulas and prove that there exist νi ∈ {1,−1} for 1 ≤ i ≤ m such that

(m− n)f(G) =

∣∣∣∣∣
m∑
i=1

νif(G− ei)

∣∣∣∣∣ , (8)

where the sum ranges over all edges e1, e2, . . . , em of G.

Both formulas (7) and (8) are linear recurences. But as the authors

in [6, 17] pointed out, it is very difficult to determine ϵ = 1 or −1 in (7)

and νi = 1 or −1 in (8). In this paper, we obtain a quadratic recurrence

on f(G) and {f(G− uv), f(G− u− v)|uv ∈ E(G)} as follows.

Theorem 1. Let G be a connected bipartite graph with bipartition (U, V )

satisfying |U | = |V | = n and edge set E(G). Then

(|E(G)| − 2n)f2(G) =
∑

uv∈E(G)

[f2(G− uv)− f2(G− u− v)], (9)

where the sum ranges over all edges of G.

On the other hand, Gutman and Hosoya [7] proved that the number of

perfect matchings of G, denoted by p(G), satisfies that

(|E(G)| − n)p(G) =
∑

e∈E(G)

p(G− e). (10)

Similarly, we can obtain the following result on p(G).
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Theorem 2. Let G be a connected bipartite graph with bipartition (U, V )

satisfying |U | = |V | = n and edge set E(G). Then

(|E(G)| − 2n)p2(G) =
∑

uv∈E(G)

[p2(G− uv)− p2(G− u− v)], (11)

where the sum ranges over all edges of G.

We will give the proofs of Theorems 1 and 2 in the next section.

2 Proofs of main results

In order to prove Theorems 1 and 2, we first introduce some notations in

linear algebra.

Let M = (mij)n×n be a matrix of order n. For any integers 1 ≤ i1 <

i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk ≤ n, let M i1,i2,...,ik
j1,j2,...,jk

be

the matrix obtained from M by deleting rows labelling i1, i2, . . . , ik and

columns labelling j1, j2, . . . , jk of M .

Let X = (xst)n×n be a symmetric matrix of order n over the complex

field. Then xst = xts for any 1 ≤ s, t ≤ n. For any 1 ≤ i, j ≤ n, define a

symmetric matrix X[ij] = (xij
st)n×n, where

xij
st =

{
xst, if (s, t) ̸= (i, j) and (s, t) ̸= (j, i);

0, otherwise.

That is,X[ij] = X[ji] is the symmetric matrix obtained fromX by replacing

the (i, j)-entry xij and the (j, i)-entry xji with 0. Obviously, if xij = 0,

then X = X[ij] = X[ji].

Now we can prove the following results which will play an important

role in the proof of main results in this paper.

Lemma 1. Let X = (xst)n×n be a symmetric matrix of order n over

the complex field and let X[ij] be defined as above. Then the determinant

det(X) of X satisfies:

(|Ii| − 2) det(X) =
∑
j∈Ii

[
det(X[ij]) + x2

ij det(X
i,j
i,j )
]
, (12)
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where Ii = {k|xik ̸= 0, 1 ≤ k ≤ n}.

Proof. Note that, for any 1 ≤ i ̸= j ≤ n,

det(X[ij])

= det(X)− (−1)i+jxij det(X
i
j)− (−1)i+jxji det(X

j
i )− x2

ij det(X
i,j
i,j ).

(13)

We have

n∑
j=1

det(X[ij])

=

n∑
j=1

det(X)−
n∑

j=1

(−1)i+jxij det(X
i
j)−

n∑
j=1

(−1)i+jxji det(X
j
i )

−
n∑

j=1

x2
ij det(X

i,j
i,j )

=ndet(X)− 2 det(X)−
n∑

j=1

x2
ij det(X

i,j
i,j )

=(n− 2) det(X)−
n∑

j=1

x2
ij det(X

i,j
i,j ). (14)

By Eq. (14),∑
j∈Ii

det(X[ij])+(n−|Ii|) det(X) = (n−2) det(X)−
∑
j∈Ii

x2
ij det(X

i,j
i,j ). (15)

Then

(|Ii| − 2) det(X) =
∑
j∈Ii

[
det(X[ij]) + x2

ij det(X
i,j
i,j )
]
. (16)

The lemma thus follows.

Note that the permanent of a matrix X = (xij)n×n is defined as

per(X) =
∑
α∈Sn

x1α(1)x2α(2) . . . xnα(n),

where α ranges over the set of the symmetric group of order n. Then we
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have a similar result to Lemma 1 as follows.

Lemma 2. Let X = (xst)n×n be a symmetric matrix of order n over the

complex field and let X[ij] be defined as above. Then the permanent per(X)

of X satisfies:

(|Ii| − 2)per(X) =
∑
j∈Ii

[
per(X[ij])− x2

ijper(X
i,j
i,j )
]
, (17)

where Ii = {k|xik ̸= 0, 1 ≤ k ≤ n}.

Proof. Note that, for any i, j ∈ {1, 2, . . . , n} and i ̸= j,

per(X[ij]) = per(X)− xijper(X
i
j)− xjiper(X

j
i ) + x2

ijper(X
i,j
i,j ). (18)

Similarly to the proof of Lemma 1, we obtain

n∑
j=1

per(X[ij]) = (n− 2)per(X) +

n∑
j=1

x2
ijper(X

i,j
i,j ). (19)

Then we have∑
j∈Ii

per(X[ij])+(n−|Ii|)per(X) = (n−2)per(X)+
∑
j∈Ii

x2
ijper(X

i,j
i,j ). (20)

Hence

(|Ii| − 2)per(X) =
∑
j∈Ii

[
per(X[ij])− x2

ijper(X
i,j
i,j )
]
. (21)

The lemma thus follows.

Let G be a connected bipartite graph with bipartition (U, V ) satisfying

|U | = |V | = n, where V (G) and E(G) are the vertex set and edge set of

G, respectively. Then the adjacency matrix AG of G is a 2n× 2n matrix.

Lemma 3. Let G be a connected bipartite graph with bipartition (U, V )

satisfying |U | = |V | = n. Then the algebraic structure count f(G) of G

satisfies:

(dG(u)− 2)f2(G) =
∑

v∈NG(u)

[
f2(G− uv)− f2(G− u− v)

]
, (22)
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where NG(u) is the set of neighbours of the vertex u in G and dG(u) =

|NG(u)| is the degree of u.

Proof. For any vertex u ∈ V (G), by Lemma 1,

(dG(u)− 2) det(AG) =
∑

v∈NG(u)

[det(AG−uv) + det(AG−u−v)] . (23)

For any edge uv ∈ E(G), by Eq. (3), we obtain

f2(G) = (−1)n det(AG), (24)

f2(G− uv) = (−1)n det(AG−uv), (25)

f2(G− u− v) = (−1)n−1 det(AG−u−v). (26)

Hence

(dG(u)− 2)f2(G) =
∑

v∈NG(u)

[
f2(G− uv)− f2(G− u− v)

]
, (27)

the lemma holds.

Similarly, we can obtain the following result on p(G).

Lemma 4. Let G be a connected bipartite graph with bipartition (U, V )

satisfying |U | = |V | = n. Then the number p(G) of perfect matchings of

G satisfies:

(dG(u)− 2)p2(G) =
∑

v∈NG(u)

[
p2(G− uv)− p2(G− u− v)

]
, (28)

where NG(u) is the set of neighbours of the vertex u in G and dG(u) =

|NG(u)| is the degree of u.

Proof. For any vertex u ∈ V (G), by Lemma 2,

(dG(u)− 2)per(AG) =
∑

v∈NG(u)

[per(AG−uv)− per(AG−u−v)] . (29)
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For any edge uv ∈ E(G), it is no difficult to show that

p2(G) = per(AG), (30)

p2(G− uv) = per(AG−uv), (31)

p2(G− u− v) = per(AG−u−v). (32)

Hence

(dG(u)− 2)p2(G) =
∑

v∈NG(u)

[
p2(G− uv)− p2(G− u− v)

]
, (33)

the lemma holds.

Proof of Theorem 1. By Lemma 3, we have∑
u∈V (G)

(dG(u)− 2)f2(G) =
∑

u∈V (G)

∑
v∈NG(u)

[
f2(G− uv)− f2(G− u− v)

]
.

(34)

Note that
∑

u∈V (G) dG(u) = 2|E(G)|. Then

(2|E(G)| − 4n)f2(G) = 2
∑

uv∈E(G)

[
f2(G− uv)− f2(G− u− v)

]
, (35)

i.e.,

(|E(G)| − 2n)f2(G) =
∑

uv∈E(G)

[
f2(G− uv)− f2(G− u− v)

]
. (36)

Hence we have finished the proof of Theorem 1.

Proof of Theorem 2. By Lemma 4, we have∑
u∈V (G)

(dG(u)− 2)p2(G) =
∑

u∈V (G)

∑
v∈NG(u)

[
p2(G− uv)− p2(G− u− v)

]
.

(37)

Similarly to the proof of Theorem 1, we obtain

(|E(G)| − 2n)p2(G) =
∑

uv∈E(G)

[
p2(G− uv)− p2(G− u− v)

]
. (38)
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Hence Theorem 2 holds.

3 Discussions

In this paper, we obtain two identities Eqs. (12) and (17), one is related

to the determinants, and the other is related to the permanents. Using

these two identities, we obtain two quadratic recurrences of the algebraic

structure count and the number of perfect matchings of G, respectively.
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orbitals, XI. Aromatic substitution, Tetradedron 31 (1975) 147–152.

[15] L. Z. Ye, The vertex graphical condensation for algebraic structure
count of molecular graphs, MATCH Commun. Math. Comput. Chem.
87 (2022) 579–584.

[16] L. Z. Ye, New variants of Gutman’s formulas on the algebraic struc-
ture count, MATCH Commun. Math. Comput. Chem. 89 (2023) 643–
652.

[17] L. Z. Ye, Further variants of Gutman’s formulas, MATCH Commun.
Math. Comput. Chem. 90 (2023) 235–245.


	Introduction
	Proofs of main results
	Discussions

