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Abstract

Akbari et al. [MATCH Commun. Math. Comput. Chem. 84
(2020) 325–334] defined orderenergetic graphs as those graphs whose
energy is equal to their order. They observed that complete tripar-
tite graphs Kp,p,6p are orderenergetic for every p ≥ 1, and stated
an expectation that these might be the only complete multipartite
orderenergetic graphs with at least three parts. In this note we
show the existence of infinitely many other families of such graphs
with arbitrarily large number of parts, with Kp, . . . , p︸ ︷︷ ︸

10×

, 40p being an

example of such family with 11 parts.

1 Introduction

Let G = (V,E) be a simple graph with n = |V | vertices, and let λ1, . . . , λn

denote the eigenvalues of its adjacency matrix. The energy of G is defined
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[13] (see also [24]) as

E(G) =

n∑
i=1

|λi|.

Graphs whose energy may be simply related to their order received a lot

of attraction from researchers. Among such graphs we find:

• hypoenergetic graphs with E(G) < n [4, 14,16,17,20,23,31];

• hyperenergetic graphs with E(G) > 2n− 2 [14,18,19,29,32];

• borderenergetic graphs with E(G) = 2n− 2 and G ̸∼= Kn [7–9,11,12,

15,25,27]

• and orderenergetic graphs with E(G) = n [1, 2, 21,22,26,28].

In the paper [1], in which they have introduced orderenergetic graphs,

Akbari et al. observed that complete tripartite graphs Kp,p,6p are orderen-

ergetic for every p ≥ 1, and remarked that their computer-based search

suggests that these graphs are the only complete multipartite orderener-

getic graphs with at least three parts [1, Remark 4]. The main goal of this

note is to show that there do exist many other infinite classes of complete

multipartite orderenergetic graphs. Our extended computer search led to

the new families described in the following theorem.

Theorem 1. For an integer p ≥ 1, the following complete multipartite

graphs are orderenergetic:

a) K2p, 2p, 9p, 39p

b) Kp, . . . , p︸ ︷︷ ︸
5×

, 5p, 5p, 55p

c) Kp, . . . , p︸ ︷︷ ︸
8×

, 3p, 43p

d) Kp, . . . , p︸ ︷︷ ︸
8×

, 7p, 55p
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Our further study of the conditions for orderenergeticity of complete

multipartite graphs of the form

Kp, . . . , p︸ ︷︷ ︸
k×

, q

led to the following theorem which ensures the existence of complete mul-

tipartite orderenergetic graphs with arbitrarily many parts.

Theorem 2. Let the sequence (am, bm)m≥1 be defined as(
am

bm

)
=

1

2m

(
3 5

1 3

)m(
2

0

)
.

Then for each m ≥ 1 and each p ≥ 1, the complete multipartite graph

K
p, . . . , p︸ ︷︷ ︸

b2m+1

, p(2b2m + ambm + 1)

is orderenergetic.

Details of the computer search and the proof of Theorem 1 are given

in Section 2, while Theorem 2 is proved in Section 3. Discussion and

concluding remarks are given in Section 4.

2 Computer search and proof of Theorem 1

In our computer search we first used Wolfram Mathematica to generate

partitions of all integers up to 70, and then used graph6java [10] to com-

pute energy of the complete multipartite graphs determined by these par-

titions. Apart from the existing family Kp,p,6p, this search yielded four

new examples of complete multipartite orderenergetic graphs: K2, 2, 9, 39,

K1, . . . , 1︸ ︷︷ ︸
8×

, 3, 43, K1, . . . , 1︸ ︷︷ ︸
5×

, 5, 5, 55 and K1, . . . , 1︸ ︷︷ ︸
8×

, 7, 55. As it turns out,

each of these graphs can be turned into a family of graphs simply by mul-

tiplying the size of each part by an integer p ≥ 1, as stated in Theorem 1.

We now need the following well known result.
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Lemma 1 ([5, 6]). The characteristic polynomial of the complete multi-

partite graph Kn1,n2,...,nk
is equal to

ϕ(Kn1,n2,...,nk
, λ) = λn−k

(
1−

k∑
i=1

ni

λ+ ni

)
k∏

j=1

(λ+ nj). (1)

We are now in position to prove Theorem 1.

Proof of Theorem 1. We compute the characteristic polynomial and the

energy of each family of graphs using (1).

a) We have

ϕ(K2p,2p,9p,39p, λ)

= λ52p−4

(
1− 4p

λ+2p
− 9p

λ+9p
− 39p

λ+39p

)
(λ+2p)2(λ+9p)(λ+39p)

= λ52p−4(λ+ 2p)(λ− 26p)(λ2 + 24λp+ 81p2)

= λ52p−4(λ+ 2p)(λ− 26p)
(
λ+ 3p(4−

√
7)
)(

λ+ 3p(4 +
√
7)
)

Hence the non-zero eigenvalues of K2p,2p,9p,39p are 26p, −2p, −3p(4−√
7) and −3p(4 +

√
7), which shows that E(K2p,2p,9p,39p) = 52p.

b) After simplification we have

ϕ(Kp, . . . , p︸ ︷︷ ︸
5×

, 5p, 5p, 55p, λ)

= λ70p−8(λ+ p)4(λ+ 5p)(λ− 35p)(λ2 + 26λp+ 55p2).

Hence the non-zero eigenvalues ofKp, . . . , p︸ ︷︷ ︸
5×

, 5p, 5p, 55p are 35p, −5p,

−p with multiplicity 4, −p(13 −
√
114) and −p(13 +

√
114), which

shows that E(Kp, . . . , p︸ ︷︷ ︸
5×

, 5p, 5p, 55p) = 70p.
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c) After simplification we have

ϕ(Kp, . . . , p︸ ︷︷ ︸
8×

, 3p, 43p, λ) = λ54p−10(λ+p)7(λ−27p)(λ2+20pλ+43p2).

Hence the non-zero eigenvalues ofKp, . . . , p︸ ︷︷ ︸
8×

, 3p, 43p are 27p, −p with

multiplicity 7, −p(10 −
√
57) and −p(10 +

√
57), which shows that

E(Kp, . . . , p︸ ︷︷ ︸
8×

, 3p, 43p) = 54p.

d) After simplification we have

ϕ(Kp, . . . , p︸ ︷︷ ︸
8×

, 7p, 55p, λ) = λ70p−10(λ+p)7(λ−35p)(λ2+28λp+99p2).

Hence the non-zero eigenvalues ofKp, . . . , p︸ ︷︷ ︸
8×

, 7p, 55p are 35p, −p with

multiplicity 7, −p(14 −
√
97) and −p(14 +

√
97), which shows that

E(Kp, . . . , p︸ ︷︷ ︸
8×

, 7p, 55p) = 70p.

Thus the graphs K2p, 2p, 9p, 39p, Kp, . . . , p︸ ︷︷ ︸
5×

, 5p, 5p, 55p, Kp, . . . , p︸ ︷︷ ︸
8×

, 3p, 43p

and Kp, . . . , p︸ ︷︷ ︸
8×

, 7p, 55p are orderenergetic.

3 Pell’s equation and proof of Theorem 2

Motivated by the original example Kp,p,6p, we will prove Theorem 2 by

looking for sufficient conditions which ensure that the complete multipar-

tite graph of the form

Kp, . . . , p︸ ︷︷ ︸
k×

, q
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is orderenergetic. In this special case, the characteristic polynomial reads

ϕ(Kp, . . . , p︸ ︷︷ ︸
k×

, q, λ)

= λkp+q−k−1

(
1− k

p

λ+ p
− q

λ+ q

)
(λ+ p)k(λ+ q)

= λkp+q−k−1[(λ+ p)(λ+ q)− kp(λ+ q)− q(λ+ p)](λ+ p)k−1

= λkp+q−k−1[λ2 − p(k − 1)λ− kpq](λ+ p)k−1.

Hence the non-zero eigenvalues of Kp, . . . , p︸ ︷︷ ︸
k×

, q are −p with multiplicity

k − 1 and two simple eigenvalues

p(k − 1)±
√

p2(k − 1)2 + 4kpq

2
,

of different signs, so that its energy is equal to

E(Kp, . . . , p︸ ︷︷ ︸
k×

, q) = p(k − 1) +
√

p2(k − 1)2 + 4kpq.

The requirement that Kp, . . . , p︸ ︷︷ ︸
k×

, q is orderenergetic implies

p(k − 1) +
√
p2(k − 1)2 + 4kpq = pk + q,

or, after simplification and reordering of terms,

q2 + 2p(1− 2k)q − k(k − 2)p2 = 0.

If we consider this equality as a quadratic equation in q, its solutions are

q1,2 = p
(
2k − 1±

√
(5k − 1)(k − 1)

)
.

Since q has to be a positive integer, we further require that (5k−1)(k−1) is

a perfect square (and we take only + sign instead of ± to make q positive).

As gcd(5k − 1, k − 1) ∈ {1, 2, 4}, the product (5k − 1)(k − 1) is a perfect
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square if and only if either for some integers a and b,

Case I: 5k − 1 = a2 and k − 1 = b2

or for some integers c and d,

Case II: 5k − 1 = 2c2 and k − 1 = 2d2.

Case I implies a2 − 5b2 = 4, which is an instance of the general Pell’s

equation with the minimal positive solution (a1, b1) = (3, 1). According

to [3, Eq. (4.4.5)], all its positive solutions (am, bm) are of the form(
am

bm

)
=

1

2m

(
3 5

1 3

)m(
2

0

)
,

from where we obtain

k = b2m + 1 and q = p(2b2m + ambm + 1),

which then yields the orderenergetic complete multipartite graph

K
p, . . . , p︸ ︷︷ ︸

b2m+1

, p(2b2m + ambm + 1)
,

as stated in the theorem.

Case II implies c2−5d2 = 2, but this equation has no integer solutions.

Namely, modulo 4 the squares of integers are equal to either 0 or 1, so that

c2 − 5d2 belongs to {0, 1, 3} modulo 4, and hence it cannot be equal to 2.

At the end, note that the conditions determined in this section are

both sufficient and necessary, so that Theorem 2 actually describes all

orderenergetic complete multipartite graphs of the form Kp, . . . , p︸ ︷︷ ︸
k×

, q .
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4 Discussion and concluding remarks

The first few entries of the sequence (am, bm) from Theorem 2 are:

(a1, b1) = (3, 1),

(a2, b2) = (7, 3),

(a3, b3) = (18, 8).

The choice m = 1 leads to the already known family Kp,p,6p, while m = 2

and m = 3 lead, respectively, to the families

Kp, . . . , p︸ ︷︷ ︸
10

, 40p and Kp, . . . , p︸ ︷︷ ︸
65

, 273p.

Since bm → ∞ for m → ∞, we see that Theorem 2 provides examples of

orderenergetic complete multipartite graphs that have more than M parts

for any fixed M .

The family Kp, . . . , p︸ ︷︷ ︸
10

, 40p further solves [1, Problem 20], which asks for

connected orderenergetic graphs (other than balanced complete bipartite

graphs) of orders 8t+2, 8t+4 and 8t+6 for some t. Since Kp, . . . , p︸ ︷︷ ︸
10

, 40p

has order 50p, taking p = 4p′+1 yields a connected orderenergetic graph of

order 200p′+50 = 8t+2 for t = 25p′+6, as required. Similarly, taking p =

4p′+2 yields a connected orderenergetic graph of order 200p′+100 = 8t+4

for t = 25p′+12, while taking p = 4p′+3 yields a connected orderenergetic

graph of order 200p′+150 = 8t+6 for t = 25p′+18, thus completely solving

Problem 20. Note that the family Kp, . . . , p︸ ︷︷ ︸
65

, 273p could be similarly used

for the same purpose, as its elements have order 338p ≡ 2p (mod 8).

Theorem 2 in some part also resolves [1, Problem 19], which asks for a

method of constructing connected orderenergetic graphs that does not use

the direct product. However, if Problem 19 is more naturally understood

as finding graph operations that will construct a new orderenergetic graph

from the existing orderenergetic graphs, then one should pay attention

to [30], where it was proved that the direct product is the only instance of
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NEPS (a rather general graph operation) for which the energy of NEPS can

be actually represented as a function of the energy of its factor graphs. This

result shows that potential solutions to Problem 19 should be preferably

sought among non-NEPS-based graph operations.

One also has to note that it is not possible to extend Theorem 2 to

complete multipartite graphs of the form Kp, . . . , p︸ ︷︷ ︸
a×

, q, . . . , q︸ ︷︷ ︸
b×

. Following

analogous reasoning to that in the proof above, one can get that the energy

of complete multipartite graphs of this form is equal to

p(a− 1) + q(b− 1) +
√
[p(a− 1) + q(b− 1)]2 + 4pq(a+ b− 1).

However, if both a ≥ 2 and b ≥ 2, then√
[p(a− 1) + q(b− 1)]2 + 4pq(a+ b− 1) > p+ q,

so that such graphs cannot be orderenergetic.

However, the examples of orderenergetic complete multipartite graphs

Kp, . . . , p︸ ︷︷ ︸
8×

, 3p, 43p and Kp, . . . , p︸ ︷︷ ︸
8×

, 7p, 55p

from Theorem 1 make it very probable that Theorem 2 could actually be

extended to complete multipartite graphs of the form

Kp, . . . , p︸ ︷︷ ︸
k×

, q, r,

which we leave as an exercise for the reader.
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