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Abstract

The energy E(G) of a graph G is defined as the sum of the
absolute values of the eigenvalues of its adjacency matrix. If the
energy of a graph G of order n is equal to its order, then G is
said to be orderenergetic. In this paper, we give two methods to
construct orderenergetic graphs. Infinitely many connected non-
complete multipartite orderenergetic graphs can be constructed by
using regular graphs.

1 Introduction

In this paper we are concerned with simple undirected graphs, without self-

loops and weighted edges. LetG be such a graph of order n, with the vertex

set V (G) = {v1, v2, · · · , vn} and the edge set E(G). The complement graph

of G is denoted by G. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2))

be the simple undirected graphs. Then the unionG = G1∪G2 ofG1 andG2

is defined as G = (V (G1)∪V (G2), E(G1)∪E(G2)). The join G = G1∨G2
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of G1 and G2 is defined as G = G1 ∪G2. The degree of a vertex vi is

the number of edges adjacent to the vertex vi. A graph is called regular, if

degree of each vertex is same number. Following the standard terminology,

we use the Kn1,n2,...,nt , Cn, nG to denote the complete multipartite graph

of order n1 + n2 + · · ·+ nt, the cycle of order n, and n copies of graph G.

Let A(G) be the (0, 1)−adjacency matrix of a graph G and its (i, j)−
element is

A(G)ij =


1 if vivj ∈ E(G)

0 if vivj /∈ E(G)

0 if i = j.

The eigenvalues of A(G) are denoted by λ1, λ2, . . . , λn and then the spec-

trum Sp(G) of graph G is Sp(G) = {λ1, λ2, . . . , λn} . The energy of graph

G is defined by E(G) and is defined as

E(G) =

n∑
i=1

|λi| .

This concept was first introduced by Gutman [11] as a way to model the

total π−electron energy of a molecule. Details and more properties on

graph energy can be found in the book [17] and the most recent works

[1, 5–8, 10, 19, 21]. A graph G of order n is said to be borderenergetic if

its energy equals the energy of the complete graph Kn, i.e., if E(G) =

2(n − 1). The definition was first proposed in [13]. The borderenergetic

graph attracted much attention and are being studied in these papers

[9, 12–14,20].

Recently, S. Akbari et al. [2] proposed the concept of orderenergetic

graphs, namely graphs of order n satisfying E(G) = n. It is shown in [2]

that there are infinitely many connected orderenergetic graphs, all non-

singular connected graphs only the path P2 is orderenergetic and there

is no orderenergetic graph with nullity η = 1. It is known that the en-

ergy of graph is never an odd integer [3]. Therefore, orderenergetic graphs

must have even number of vertices. In [2], the authors use a computer-

aided search all orderenergetic connected graphs up to 10 vertices and

propose the complete multipartite graph Kp,p,K6p,p,p is orderenergetic for
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all p ≥ 1. A novel general graph operation was presented in [15]. It is

shown in [15] that two different sequences of orderenergetic graphs from

a given orderenergetic graph and some orderenergetic graphs from non-

orderenergetic graphs are constructed by means of the general graph op-

eration. And then, another general unary graph operation was proposed

and several methods for generating orderenergetic graphs using this new

operation are given in [16]. It is worth mentioning that these two graph

operations can also be used to generate integral and equienergetic graphs.

It is shown in [18] that if the cycle C4 is not an induced subgraph of a

graph G with nullity η = 3, then G is not orderenergetic and there are con-

nected orderenergetic graphs aKp,p ∨K2p(4a−1) for integers a ≥ 1, p ≥ 1.

In [2], the authors proposed several open problems and conjectures. For

example, the following problem:

Problem 1. Find a method for constructing connected orderenergetic gr-

aphs, not using the direct product.

In [18], it was shown that there are connected orderenergetic graphs on

10k + 8 vertices for all k ≥ 0. Motivated by Problem 1 and this result, we

show that there are connected orderenergetic graphs G = pG1 ∨Kq and if

E(G1) = n+ 2r − 2t+ 2, then E(G1) = n, where G1 is a r−regular graph

of order n with t non-negative eigenvalues.

2 Constructing orderenergetic graphs

We now show how to construct (n− 1− r)−regular (r > 2) orderenergetic

graphs by using some r−regular graphs.

Lemma 1. [4] Let G be a r−regular graph of order n with spectrum

Sp(G) = {r, λ2, . . . , λn} . Then Sp(G) = {n− 1− r,−1− λ2, . . . ,−1− λn} .

Lemma 2. [4] If G1 is an r1 regular with n1 vertices and G2 is r2 regular

with n2 vertices, then the characteristic polynomial of the join G1 ∨G2 is

given by

ϕ(G1 ∨G2, x) =
ϕ(G1, x)ϕ(G2, x)

(x− r1)(x− r2)
((x− r1)(x− r2)− n1n1) .
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Theorem 1. Let G be r−regular integral graph of order n with t non-

negative eigenvalues. If E(G) = n+ 2r − 2t+ 2, then E(G) = n.

Proof. From Lemma 1 and λ1 = r, the energy of the complement of G is

E(G) = n− 1− r +

n∑
j=2

|1 + λj |

= n− 1− r +

t− 1 +

t∑
j=2

|λj |

+

n∑
j=t+1

(−1− λj)

= n− 1− r + t− 1− r +

t∑
j=1

|λj |+
n∑

j=t+1

|λj | − (n− t)

= n+ t− 2r − 2 + E(G) + t− n

= 2t− 2r − 2 + n+ 2r − 2t+ 2 = n

A class of non-complete connected (n− 1− r)−regular borderenergetic

graphs can be constructed in [9].

Theorem 2. [9] Let r be an even integer. Let G = pG1 ∪ qKr+1 be a

disconnected r−regular graph consisting of p copies of G1 and q copies of

Kr+1, where G1 is a r−regular integral graph with r+ 2 vertices, having t

non-negative eigenvalues, and satisfying E(G1) = 2r+4−2t+ 2r
p , p|2r, p ≥

1, q ≥ 1. Then G is a connected non-complete borderenergetic graph.

From Theorem 2, when n = r+2, p = 2, the E(G1) = 2r+4−2t+ 2r
p =

n+ 2r − 2t+ 2. According to Theorem 1, the graph G1 is orderenergetic.

The graph G needs not be connected (see Example 1).

Example 1. G1 is a connected 2−regular graph with 6 vertices whereas

G1 is a connected 3−regular orderenergetic graph, see Fig.1. Note that

Sp(G1) = {2, 2,−1,−1,−1,−1} and E
(
G1

)
= 8 = 6 + 4− 4 + 2

whereas

Sp(G1) = {3,−3, 0, 0, 0, 0} and E
(
G1

)
= 6.
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Figure 1. The graphs from Example 1

It is easy to find examples of disconnected orderenergetic graphs. A

more interesting task is to construct connected non-complete multipartite

orderenergetic graphs. Such a construction is achieved by means of the

following theorems:

Theorem 3. Let G be r−regular orderenergetic graph with n vertices then

for m ̸= 0, G ∨Km is orderenergetic if and only if m = 4n− 2r.

Proof. Let r = λ1, λ2, · · · , λn be the eigenvalues of G. As G is orderener-

getic of n vertices, E(G) = n which imply that

n∑
i=2

|λi| = n− r. (1)

By Lemma 2, the characteristic polynomial of G ∨Km is given by

ϕ(G ∨Km) = xm−1(x− λ2)(x− λ3) · · · (x− λn)(x
2 − rx− nm).

Let θ1 and θ2 are roots of polynomial x2 − rx− nm. It is easy to observe

that θ1 and θ2 are of opposite sign. With out loss of generality we assume

that θ1 > 0, θ2 < 0. Also,

θ1 + θ2 = r, (2)

θ1θ2 = −nm. (3)
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Here,

Sp(G) =


m−1︷ ︸︸ ︷

0, · · · , 0, λ2, λ3, · · · , λn, θ1, θ2

 .

Hence,

E(G ∨Km) =

n∑
i=2

|λi|+ |θ1|+ |θ2| =
n∑

i=2

|λi|+ θ1 − θ2 = n− r + θ1 − θ2.

If G ∨Km is orderenergetic then

E(G ∨Km) = n+m = n− r + θ1 − θ2 ⇔ θ1 − θ2 = m+ r (4)

By (2) and (4)

θ1 =
m+ 2r

2

θ2 = −m

2
.

From (3)

θ1θ2 = −nm

⇔ m(m+ 2r) = 4nm

⇔ m2 +m(2r − 4n) = 0

⇔ m = 4n− 2r .

Let G = Kp,p, n = 2p, r = p. Then we have:

Corollary. (Lemma 3 in [2]) The graph Kp,p ∨K6p
∼= K6p,p,p is orderen-

ergetic.

Let G = aKp,p, n = 2ap, r = p. Then we have:

Corollary. (Theorem 5 in [18]) The graph aKp,p ∨K2p(4a−1) is orderen-

ergetic.

Furthermore, we have the following result.

Theorem 4. Let G = pG1 ∨ Kq be a connected graph consisting of p

copies of G1 joined Kq, where G1 is a connected r−regular graph with n
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vertices. Then G is a connected orderenergetic graph if and only if E(G1) =
1
p

(
np+ q + r −

√
4npq + r2

)
, p|

(
q + r −

√
4npq + r2

)
, p ≥ 1, q ≥ 1.

Proof. Let r = λ1, λ2, · · · , λn be the eigenvalues of G1. Then

n∑
i=2

|λi| = E(G1)− r. (5)

By Lemma 2, the characteristic polynomial of pG1 ∨Kq is given by

ϕ(pG1 ∨Kq)

= xq−1(x− r)p−1(x− λ2)
p(x− λ3)

p · · · (x− λn)
p(x2 − rx− npq).

Let θ1 and θ2 are roots of polynomial x2 − rx− npq. It is easy to observe

that θ1 and θ2 are of opposite sign. With out loss of generality we assume

that θ1 > 0, θ2 < 0. Also,

θ1 =
1

2
(r +

√
4npq + r2), θ2 =

1

2
(r +

√
4npq + r2). (6)

θ1 − θ2 =
√
4npq + r2. (7)

Hence,

E(G) = r(p− 1) + p

n∑
i=2

|λi|+ |θ1|+ |θ2|

= r(p− 1) + p

n∑
i=2

|λi|+ θ1 − θ2

= r(p− 1) + p (E(G1)− r) + θ1 − θ2.

If G is orderenergetic then

E(G) = np+ q = r(p− 1) + p (E(G1)− r) + θ1 − θ2

⇔ θ1 − θ2 = np+ q − r(p− 1)− p(E(G1)− r)
(8)
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By (7) and (8)

θ1 − θ2 = np+ q − r(p− 1)− p(E(G1)− r)

=
√
4npq + r2.

Then E(G1) =
1
p

(
np+ q + r −

√
4npq + r2

)
.

By Theorem 4, it is easy to construct connected orderenergetic graphs

by starting from graphs of small order. Here are some examples.

Corollary. If integers p ≥ 1, q ≥ 1 satisfy q = 7p− 2− 2
√

12p2 − 6p+ 1,

then pC3 ∨Kq is orderenergetic graph.

For example, the energy of graph 4C3 ∨K52 is exactly 64.

Corollary. If integers p ≥ 1, q ≥ 1 satisfy q = 15p−2−2
√
56p2 − 14p+ 1,

then p(C3 ∪ C4) ∨Kq is orderenergetic graph.

For example, the energy of graph 4(C3 ∪ C4) ∨K116 is exactly 144.

Corollary. If integers p ≥ 1, q ≥ 1 satisfy q = 20p−6−2
√
96p2 − 48p+ 9,

then pG0 ∨Kq is orderenergetic graph, where G0 is a connected 6−regular

graph with 8 vertices and E
(
G0

)
= 12, see Fig.2.

For example, the energy of graph 3G0 ∨K108 is exactly 132.

 

Figure 2. The graph G0
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