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Abstract

The energy of a graph GS with n vertices and σ self-loops is
defined as ε(GS) =

∑n
i=1 |λi − σ

n
|, where the eigenvalues of the

adjacency matrix of GS are λ1, λ2, . . . , λn. In this article, we have
established some upper and lower bounds for the energy of such a
graph. Those new bounds involve parameters like number of vertices
(n), number of edges (m), number of self-loops (σ), maximum vertex
degree (∆), and minimum vertex degree (δ). We show that for 1 ≤
σ < n, the quantity |λi− σ

n
| is always greater than 0, and using that

fact we establish a lower bound. We have compared and concluded
that the new bounds are either better than the existing bounds or
incomparable to a few bounds obtained by some researchers recently.

1 Introduction

A graph is considered simple if it has no parallel edges or has no self-loops.

If a graph contains m edges and n vertices, then the graph will be called

(n,m)-graph. The number of edges and vertices in a graph G determines

its size and order, respectively. Without loss of generality, let us suppose

that the vertices of G are labelled according to their degree in decreasing

∗Corresponding author.
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order, i.e., ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ, where di is the degree of the ith

vertex vi, ∆ is the maximum degree and δ is the minimum degree. If there

is an edge between vi and vj , we’ll use the notation i ∼ j or vi ∼ vj .

For a simple graph G with n vertices, the (i, j)-th element of the n×n

adjacency matrix A(G) equals 1 if i ∼ j and 0 otherwise. Let ϱ1 ≥ ϱ2 ≥
· · · ≥ ϱn are the eigenvalues of A(G). Gutman defined (see [9], also you

can see [5, 6, 12]) the energy of a simple G. Let ε(G) represent the energy

of graph G, which is the sum of the absolute values of the eigenvalues of

A(G). Mathematically, ε(G) =

n∑
i=1

|ϱi|.

A lot of work has been done in the last few decades involving the study

of the energy of graphs and its several variants (see [4–6,8–10,12]).

Let S be any σ-element subset of V (G), the vertex set of graph G,

and GS be the graph that is created by joining a self-loop to every vertex

v ∈ S in the simple graph G. In this paper, we will consistently use these

notations. The n × n real symmetric matrix representing the adjacency

matrix of graph GS is denoted as A(GS) or simply AS , with its (i, j)-th

element specified by

A(GS)ij =



1 if i ̸= j and i ∼ j

0 if i ̸= j and i ≁ j

1 if i = j and vi ∈ S

0 if i = j and vi /∈ S.

(1)

The eigenvalues of the graph GS mean the eigenvalues of the matrix

A(GS), just like the eigenvalues of simple graphs.

Let B = A(GS) − σ
nIn. Furthermore, consider that the eigenvalues of

A(GS) and B are, respectively, λi and µi for i = 1, 2, . . . , n with decreasing

order, i.e., λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn. The energy of the

graph GS was defined by Gutman et al. [7] as

ε(GS) =

n∑
i=1

∣∣∣λi − σ

n

∣∣∣ = n∑
i=1

|µi|. (2)

Readers are referred to [2, 14, 15] for studies on the energy of a graph
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with self-loops. The following Lemmas will be helpful in our present work.

Lemma 1. Let a1 ≥ · · · ≥ an be any n positive real numbers. Then

a1 + · · ·+ an ≤ a1 +
√
(n− 1)(a22 + · · ·+ a2n) ≤

√
n(a21 + · · ·+ a2n).

Proof. Using the relation between Arithmetic mean-Quadratic mean on

n positive real numbers a1 ≥ · · · ≥ an we can write a1 + · · · + an ≤√
n(a21 + · · ·+ a2n) and equality holds if and only if a1 = · · · = an. Also

a1 + · · · + an ≤ a1 +
√

(n− 1)(a22 + · · ·+ a2n) with equality holds if and

only if a2 = · · · = an. Let B = a1 +
√
(n− 1)(a22 + · · ·+ a2n) and A =√

n(a21 + · · ·+ a2n). Then A and B are two upper bounds of the sum

a1 + · · · + an. If a1 = an, then a1 + · · · + an = A = B. Now for any

a1 ≥ · · · ≥ an where a1 > an, the upper bound A of a1 + · · ·+ an is never

attained, but for a1 > a2 = · · · = an, the upper bound B of a1 + · · ·+ an

is attainable. So, B ≤ A, i.e.,

a1 + · · ·+ an ≤ a1 +
√
(n− 1)(a22 + · · ·+ a2n) ≤

√
n(a21 + · · ·+ a2n).

Lemma 2. [7] Assume that GS is a graph consisting of n vertices, m

edges, and σ self-loops. If the adjacency eigenvalues of the graph GS are

λ1 ≥ λ2 ≥ · · · ≥ λn, then

n∑
i=1

λ2i = 2m+ σ.

Lemma 3. [7] With the same notation as in Lemma 2,

n∑
i=1

∣∣∣λi − σ

n

∣∣∣2 = 2m+ σ − σ2

n
·

It may be noted that
∑n

i=1

∣∣∣λi − σ
n

∣∣∣2 = 2m + σ − σ2

n , and we will use

the notation 2Mσ = 2m+ σ − σ2

n .
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Lemma 4. [1] With the same notation as in Lemma 2,

2m

n
+
σ

n
≤ λ1.

Lemma 5. With the same notations as in Lemma 2,

λ1 ≤

∆+ 1, if there exists a loop on the vertex with degree ∆

∆, if there is no loop on the vertex with degree ∆

where ∆ is the maximum degree in G.

Proof. We have,

∥A(GS)∥1 = max
i

n∑
j=1

(A(GS)ij

=

∆+ 1, if there exists a loop on the vertex with degree ∆

∆, if there is no loop on the vertex with degree ∆.

Since λ1 is the spectral radius of A(GS), it is less than or equal to

any norm of A(GS). Then from the fact that λ1 ≤ ∥A(GS)∥1, the lemma

follows.

Lemma 6. Let B = A(GS) − σ
nIn, and µ1 is the spectral radius of B.

Then,

2m

n
≤ µ1 ≤

√
2Mσ(n− 1)

n
(3)

where 2Mσ = 2m+ σ − σ2

n ·
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Proof. Here, µ1 is the spectral radius of B. So,

µ1 = max
x∈Rn

x ̸=0

xTBx

xTx
≥ 1TB1

1T1
where 1 = (1, 1, . . . , 1)T

=
1

n

(
d1 + d2 + · · ·+ dn + σ(1− σ

n
)− (n− σ)

σ

n

)
=

2m

n
· (4)

Again,

n∑
r=1

µr = 0 ⇒ |µ1| =

∣∣∣∣∣−
n∑

r=2

µr

∣∣∣∣∣ ≤
n∑

r=2

|µr|.

Then,

2m+ σ − σ2

n
=

n∑
r=1

µ2
r = µ2

1 +

n∑
r=2

µ2
r ≥ µ2

1 +
1

n− 1

(
n∑

r=2

|µr|

)2

≥ µ2
1 +

µ2
1

n− 1
·

So,

µ1 ≤

√
(2m+ σ − σ2

n )(n− 1)

n
=

√
2Mσ(n− 1)

n
·

Now we put forward the following theorem.

Theorem 1. Consider a connected (n,m)-graph G, and let GS be the one

that is derived by joining a self-loop at σ (1 ≤ σ < n) number of distinct

vertices to the graph G. If the adjacency matrix of GS is A(GS), then –

(i) all the rational eigenvalues of A(GS) are integers, and

(ii) B = A(GS)− σ
nIn is non-singular.

Proof. Let us consider that the eigenvalues of A(GS) and B are, respec-

tively, λi and µi for i = 1, 2, . . . , n with decreasing order. Clearly, µi =

λi − σ
n for all i ∈ {1, 2, . . . , n}.
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(i) Consider the characteristic polynomial of A(GS) denoted as p(x) =

det (xIn −A(Gs)). Given that all elements of A(GS) are integers, and

the coefficients of p(x) are also integers. Additionally, as it is a monic

polynomial, any rational root of p(x) must be an integer.

(ii) Since 1 ≤ σ < n, we have 0 < σ
n < 1. If λi ∈ Q, then by case

(i) above, λi ̸∈ (0, 1) and so µi ̸= 0. If λi ̸∈ Q, then σ
n being a rational

number cannot be equal to λi and hence µi ̸= 0. Thus, in any case,

det(B) = Πn
i=1µi ̸= 0.

A simple graph G without edges has zero energy, which is a trivial

property. But, if the graph GS derived by joining a self-loop at σ (1 ≤
σ < n) number of distinct vertices to the graph G, then the energy of GS

is non-zero. In fact, we pose the subsequent theorem.

Theorem 2. Assume that graph G has n isolated vertices, i.e., G has no

edges. If the graph GS is the one that is derived by joining a self-loop at

σ (1 ≤ σ < n) number of distinct vertices to the graph G then

ε(GS) = 2σ
(
1− σ

n

)
.

Proof. Assume, without losing generality, that the self-loops are connected

to the vertices v1, v2, . . . , vσ. So,

A(GS) =

(
X1 X2

X3 X4

)

where X1 is σ × σ identity matrix and X2, X3, X4 are zero matrix with

order σ × (n− σ), (n− σ)× σ and (n− σ)× (n− σ) respectively. So the

eigenvalues of A(GS) − σ
nIn are {1− σ

n
, . . . , 1− σ

n︸ ︷︷ ︸
σ times

,−σ
n , . . . ,−

σ
n}. So, the

energy of the graph GS is

ε(GS) = σ
(
1− σ

n

)
+ (n− σ)

σ

n
= 2σ

(
1− σ

n

)
.
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2 Upper bound of energy of a graph with

self-loops

An upper bound of energy of a graph with self-loops provided by Gutman

et al. is as follows.

Lemma 7. [7] Let GS be a connected (n,m)-graph with σ self-loops. If

ε(GS) be the energy of GS, then

ε(GS) ≤
√
2Mσn.

where 2Mσ =
(
2m+ σ − σ2

n

)
.

Very recently, Liu et al. [11] have found the following upper bounds of

energy of a graph with self-loops.

Lemma 8. [11] Let G be a connected (n,m)-graph with maximum degree

∆. Let GS be the graph derived from G by joining σ self-loops. If ε(GS)

be the energy of GS, then

ε(GS) ≤

√
(n− 1)

(
2m+ σ − 4m2 + 4mσ + 2σ2

n2
+

2σ

n
(∆ + 1− σ

2
)

)
+∆+

n− σ

n
·

Lemma 9. [11] With the same notation as in Lemma 8,

ε(GS) ≤ ∆+ 1 +
(n− 2)σ

n
+

√
(n− 1)

(
2m+ σ − (2m+ σ)2

n2

)
.

Lemma 10. [11] Let GS be a connected (n,m)-graph with σ self-loops.

Then,

ε(GS) ≤

√
n2 + (2m+ σ − σ2

n )2

2
.

Lemma 11. [11] Let GS be a connected (n,m)-graph with σ self-loops.

Then,

ε(GS) ≤
n+ 2m+ σ − σ2

n

2
.
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Remarks: The upper bounds given in Lemma 10 and Lemma 11 are

weaker than the upper bound given by Gutman et al. in Lemma 7. That

can be easily verified, as shown below.

If the upper bound given in Lemma 10 is not weaker than that in

Lemma 7, then

√
2Mσn >

√
n2 + (2Mσ)2

2
where 2Mσ =

(
2m+ σ − σ2

n

)
⇒ 0 > (2Mσ − n)2,

which is impossible. So
√
2Mσn ≤

√
n2+(2Mσ)2

2 ·
Similarly, if the upper bound given in Lemma 11 is not weaker than

that in Lemma 7, then

√
2Mσn >

n+ 2Mσ

2

⇒ 0 > (2Mσ − n)2,

which is impossible. So
√
2Mσn ≤ n+2m+σ−σ2

n

2 ·
In the following subsection, we provide a new upper bound of ε(GS)

and we show that the new upper bound given in Theorem 4 is better than

the upper bound given by Gutman et al. in Lemma 7, and hence also

better than those given in Lemma 10 and Lemma 11.

2.1 Energy of a vertex of a graph with self-loops and

its bounds

For a square matrix X, we represent its trace as Tr(X). Additionally, we

use |X| to denote (XXT )
1
2 . Nikiforov [13] established that the energy of a

graph G can be obtained from Schatten 1-norm of A, i.e., ε(G) = Tr(|A|).
Considering this, the idea of a graph’s vertex energy was presented in [3]

by Arizmendi et al. as a new advancement in the theory of graph energy.

The energy of the i-th vertex, denoted by εi(G) or simply by εi, is given

by

εi = |A|ii for i ∈ {1, 2, . . . , n}
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and as such

ε(G) = ε1 + ε2 + · · ·+ εn.

Similarly, we introduce the notion of energy of a vertex of a graph with

self-loops. We denote the energy of the i-th vertex of the graph GS by

ε(GS) and define as

εi(GS) = |A(GS)−
σ

n
In|ii = |B|ii for i ∈ {1, 2, . . . , n}

and so

ε(GS) = ε1(GS) + ε2(GS) + · · ·+ εn(GS).

Definition 1. Let GS be a graph with n vertices and σ self-loops. A(GS)

denotes the adjacency matrix of the graph GS . For each i ∈ {1, 2, . . . , n},
the energy of the i-th vertex of GS , denoted by εi(GS) is given by

εi(GS) = |A(GS)−
σ

n
In|ii = |B|ii

where |B| =
(
BBT

) 1
2 =

(
B2
) 1

2 .

Theorem 3. Let GS be a graph with σ self-loops and n vertices which are

labelled as 1, 2, . . . , n. If di be the degree of the i-th vertex, then

εi(GS) ≤


√(

1− σ
n

)2
+ di if there is a self-loop on the vertex vi√

σ2

n2 + di if there is no self-loop on the vertex vi.

Proof. Let us define a positive linear functional ϕi :Mn(R) → R by

ϕi(Y ) 7→ (Y )ii.

Then

Tr(Y ) = ϕ1(Y ) + ϕ2(Y ) + · · ·+ ϕn(Y ).

If B = A(GS)− σ
nIn, then
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ε(GS) = Tr
(∣∣∣A(GS)−

σ

n
In

∣∣∣)
= Tr(|B|)

= ϕ1(|B|) + ϕ2(|B|) + · · ·+ ϕn(|B|). (5)

The Hölder’s inequality is satisfied by all ϕi, i ∈ {1, 2, . . . , n}, since

they are positive linear functionals on Mn(R). Thus for P,Q ∈ Mn(R)
and for positive real numbers p, q satisfying 1

p + 1
q = 1, we have

ϕi(|PQ|) ≤ ϕi(|P |p)
1
pϕi(|Q|q)

1
q . (6)

Choosing P = B,Q = In, p = 2, q = 2 and then squaring both sides,

we get

ϕi(|B|)2 ≤ ϕi(|B|2) = ϕi(B
2). (7)

Now,

ϕi(B
2) =


(
1− σ

n

)2
+ di if there is a self-loop on vertex vi

σ2

n2 + di if there is no self-loop on vertex vi.

So,

εi(GS) = ϕi(|B|) ≤
√
ϕi(B2)

=


√(

1− σ
n

)2
+ di if there is a self-loop on vertex vi√

σ2

n2 + di if there is no self-loop on vertex vi.
.(8)

Theorem 4. Let G be a graph with n vertices, m edges and GS be the one

obtained from G by attaching σ self-loops. If ∆ be the maximum vertex
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degree in G and ε(GS) be the energy of the graph GS then

ε(GS) ≤



√
(n− 1)

(
2Mσ −∆−

(
1− σ

n

)2)
+

√(
1− σ

n

)2
+∆, if v1 has a self-loop

√
(n− 1)

(
2Mσ −∆− σ2

n2

)
+
√

σ2

n2 +∆

if v1 has no self-loop

where 2Mσ = 2m+ σ − σ2

n ·

Proof. From Theorem 3 we have

εi(GS) ≤


√(

1− σ
n

)2
+ di if there is a self-loop on the vertex vi√

σ2

n2 + di if there is no self-loop on the vertex vi.

We know that,

ε(GS) =

n∑
i=1

εi(GS) = ε1(GS) +

n∑
i=2

εi(GS)

≤ ε1(GS) +

√√√√(n− 1)

n∑
i=2

ε2i (GS). (9)

From (7) and (8), we have

n∑
i=1

ε2i (GS) =

n∑
i=1

ϕi(|B|)2 ≤
n∑

i=1

ϕi(B
2) = 2m+ σ − σ2

n
= 2Mσ and

n∑
i=2

ε2i (GS) =

n∑
i=2

ϕi(|B|)2 ≤
n∑

i=1

ϕi(B
2)− ϕ1(B

2) = 2Mσ − ϕ1(B
2). (10)

Case - I: Let there be a self-loop on the vertex v1. Then ϕ1(B
2) =
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1− σ

n

)2
+ d1. So, from (10) and (8) we have

n∑
i=2

ε2i (GS) ≤ 2Mσ −
(
1− σ

n

)2
− d1 and ε1(GS) ≤

√(
1− σ

n

)2
+ d1.

So, the theorem follows from the relation (9).

Case - II: Let there be no self-loop on the vertex v1. Then ϕ1(B
2) =

σ2

n2 + d1. So, from (10) and (8) we have

n∑
i=2

ε2i (GS) ≤ 2Mσ − σ2

n2
− d1 and ε1(GS) ≤

√(
1− σ

n

)2
+ d1.

So, the theorem follows from the relation (9).

Remarks: The upper bounds of energy of a graph with self-loops given

in Theorem 4 are better than the upper bound given by Gutman et

al. in Lemma 7. We know that ε(GS) =
∑n

i=1 εi(GS). Using the

relation Arithmetic mean-Quadratic mean on n positive real numbers

ε1(GS), . . . , εn(GS) we have

ε(GS) =

n∑
i=1

εi(GS) ≤

√√√√n

(
n∑

i=1

ε2i (GS)

)
≤
√
n
(
2m+ σ +

σ

n

)
.

Let A =
√
n
(
2m+ σ + σ

n

)
and B =

√
(n− 1)

(
2Mσ −∆−

(
1− σ

n

)2)
+√(

1− σ
n

)2
+∆ or

√
(n− 1)

(
2Mσ −∆− σ2

n2

)
+
√

σ2

n2 +∆ according as

v1 = v∆ has a self-loop or not. Then by Lemma 1 we can write B ≤ A.

Also if d1 = ∆ > dn, then B < A. So, the upper bounds of energy of

a graph with self-loops given in the Theorem 4 is better than the upper

bound given by Gutman et al. in Lemma 7.

Theorem 5. Let G be a connected (n.m)-graph, and GS be the one ob-

tained from G by attaching σ self-loops. If ∆ and δ be the maximum and
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minimum vertex degrees in G and ε(GS) be the energy of the graph GS

then

ε(GS) ≤



√
(n− 2)

(
2Mσ −∆− δ − 2

(
1− σ

n

)2)
+

√(
1− σ

n

)2
+∆

+
√(

1− σ
n

)2
+ δ if both v1 and vn has a self-loop

√
(n− 2)

(
2Mσ −∆− δ − σ2

n2 −
(
1− σ

n

)2)
+

√
σ2

n2 +∆

+
√(

1− σ
n

)2
+ δ if v1 has no self-loop but vn has a self-loop

√
(n− 2)

(
2Mσ −∆− δ − σ2

n2 −
(
1− σ

n

)2)
+

√
σ2

n2 + δ

+
√(

1− σ
n

)2
+∆ if v1 has a self-loop but vn has no self-loop

√
(n− 2)

(
2Mσ −∆− δ − 2σ2

n2

)
+

√
σ2

n2 + δ +
√

σ2

n2 +∆

if both v1 and vn has no self-loop

where 2Mσ = 2m+ σ − σ2

n ·

Proof. From Theorem 3 we have

εi(GS) ≤


√(

1− σ
n

)2
+ di if there is a self-loop on the vertex vi√

σ2

n2 + di if there is no self-loop on the vertex vi.

We know that,

ε(GS) =

n∑
i=1

εi(GS) = ε1(GS) +

n−1∑
i=2

εi(GS) + εn(GS)

≤ ε1(GS) + εn(GS) +

√√√√(n− 2)

n−1∑
i=2

ε2i (GS). (11)

From (7) and (8), we have

n∑
i=1

ε2i (GS) =

n∑
i=1

ϕi(|B|)2 ≤
n∑

i=1

ψi(B
2) = 2m+ σ − σ2

n
= 2Mσ and
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n−1∑
i=2

ε2i (GS) ≤
n∑

i=1

ϕi(B
2)− ϕ1(B

2)− ϕn(B
2)

= 2Mσ − ϕ1(B
2)− ϕn(B

2). (12)

Case - I: Let there be a self-loop on the both vertices v1 and vn. Then

ϕ1(B
2) =

(
1− σ

n

)2
+ d1 and ϕn(B

2) =
(
1− σ

n

)2
+ dn. So, from (12) and

(8) we have

n∑
i=2

ε2i (GS) ≤ 2Mσ −
(
1− σ

n

)2
− d1 −

(
1− σ

n

)2
− dn and

ε1(GS) ≤
√(

1− σ

n

)2
+ d1 and ε1(GS) ≤

√(
1− σ

n

)2
+ dn.

So, the theorem follows from the relation (11).

Case - II: Let there be a self-loop on the vertex vn and no self-loop on

the vertex v1. Then ϕ1(B
2) = σ2

n2 + d1 and ϕn(B
2) =

(
1− σ

n

)2
+ dn. So,

from (12) and (8) we have

n∑
i=2

ε2i (GS) ≤ 2Mσ − σ2

n2
− d1 −

(
1− σ

n

)2
− dn and

ε1(GS) ≤
√
σ2

n2
+ d1 and ε1(GS) ≤

√(
1− σ

n

)2
+ dn.

So, the theorem follows from the relation (11).

Case - III: Let there be a self-loop on the vertex v1 and no self-loop on

the vertex vn. Then ϕ1(B
2) =

(
1− σ

n

)2
+ d1 and ϕn(B

2) = σ2

n2 + dn. So,

from (12) and (8) we have

n∑
i=2

ε2i (GS) ≤ 2Mσ −
(
1− σ

n

)2
− d1 −

σ2

n2
− dn and

ε1(GS) ≤
√(

1− σ

n

)2
+ d1 and ε1(GS) ≤

√
σ2

n2
+ dn.

So, the theorem follows from the relation (11).

Case - IV: Let there be no self-loop on both the vertices v1 and vn. Then
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ϕ1(B
2) = σ2

n2 + d1 and ϕn(B
2) = σ2

n2 + dn. So, from (12) and (8) we have

n∑
i=2

ε2i (GS) ≤ 2Mσ − σ2

n2
− d1 −

σ2

n2
− dn and

ε1(GS) ≤
√
σ2

n2
+ d1 and ε1(GS) ≤

√
σ2

n2
+ dn.

So, the theorem follows from the relation (11).

Remarks: The upper bounds of energy of a graph with self-loops given

in the Theorem 5 is a little bit more complicated than the bounds given in

in the Theorem 4. By the above way, it is easy to verify that the bounds

given in the Theorem 5 are better than the bounds given in the Theorem

4 and hence also better than the upper bound given by Gutman et al. in

Lemma 7.

In the following theorem, we give another upper bound of the energy

of a graph with self-loops.

Theorem 6. Suppose that G is a connected graph of size m and order

n (n ≥ 3). If GS is the graph derived from G by attaching σ number of

self-loops and εS(G) is the energy of GS, then

ε(GS) ≤
2m

n
+

√√√√(n− 1)

(
2Mσ −

(
2m

n

)2
)

where 2Mσ = 2m+ σ − σ2

n ·

Proof. Let us consider the matrix B = A(GS) − σ
nIn. Furthermore, con-

sider that the eigenvalues of A(GS) and B are, respectively, λi and µi for

i = 1, 2, . . . , n with decreasing order. Therefore, the energy ε(GS) of the

graph GS is given by

ε(GS) =

n∑
r=1

∣∣∣λr − σ

n

∣∣∣ = n∑
r=1

|µr|.

Now,
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ε(GS) =

n∑
r=1

|µr| = µ1 +

n∑
r=2

|µr|

≤ µ1 +

√√√√(n− 1)

n∑
r=2

µ2
r

= µ1 +

√√√√(n− 1)

(
n∑

r=1

µ2
r − µ2

1

)
(13)

≤ µ1 +

√
(n− 1)

(
2m+ σ − σ2

n
− µ2

1

)
(using Lemma 3)

= µ1 +
√
(n− 1)(K − µ2

1) where K = 2m+ σ − σ2

n
· (14)

It is easy to show that the function f(x) = x +
√
(n− 1)(K − x2) is

decreasing on the interval
[√

K
n ,

√
K
]
.

We shall now show that for n ≥ 3, 2mn ≥
√

K
n ·

Let us consider a real-valued function g(x) = x− x2 where 0 ≤ x ≤ 1.

Then g(x) has a maximum at x = 1
2 . As 0 ≤ σ

n < 1, the function g
(
σ
n

)
=

σ
n − σ2

n2 has a maximum at σ
n = 1

2 . Thus,√
K

n
=

√
2m

n
+
σ

n
− σ2

n2
≤
√

2m

n
+

1

2
− 1

4
=

√
2m

n
+

1

4
· (15)

Let us consider another real-valued function h(x) = (3x − 4)2 − 2x2.

Proving that the function h(x) ≥ 0 for x ≥ 3 is straightforward. So, for

n ≥ 3, we have

(3n− 4)2 ≥ 2n2 ⇒ 1

2
≤
(
4(n− 1)− n

2n

)2

· (16)

Since G is a connected graph with at least one edge, then m ≥ n − 1.

Again since n ≥ 3,(
2m

n
− 1

2

)2

=

(
4m− n

2n

)2

≥
(
4(n− 1)− n

2n

)2

≥ 1

2
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⇒
(
2m

n

)2

≥ 1

4
+

2m

n
·

With the positive square root applied to both sides, we get√
1

4
+

2m

n
≤ 2m

n
· (17)

Using the inequalities (15) and (17), for n ≥ 3

2m

n
≥
√

1

4
+

2m

n
≥
√

2m

n
+
σ

n
− σ2

n2
=

√
K

n
· (18)

Thus, f(x) is decreasing in
[
2m
n ,

√
K
]
also.

From Lemma 6, we have 2m
n ≤ µ1 <

√
K.

Hence,

f

(
2m

n

)
≥ f(µ1)

⇒ 2m

n
+

√√√√(n− 1)

(
K −

(
2m

n

)2
)

≥ µ1 +
√
(n− 1)(K − µ2

1).

Thus, from (14), we have

ε(GS) ≤ µ1 +
√
(n− 1)(K − µ2

1)

≤ 2m

n
+

√√√√(K −
(
2m

n

)2
)
(n− 1)

≤ 2m

n
+

√√√√(n− 1)

(
2m+ σ − σ2

n
−
(
2m

n

)2
)

=
2m

n
+

√√√√(n− 1)

(
2Mσ −

(
2m

n

)2
)
.
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3 Lower bounds of energy of a graph with

self-loops

Here are a few lower bounds of ε(GS), provided by Liu et al. [11].

Lemma 12. [11] Let G be an (n,m) graph and GS is the graph derived

from G by attaching σ self-loops. If ∆ and δ are the minimum and maxi-

mum degree in GS respectively, then

ε(GS) ≥
4σ
n (m+ σ)− 2∆

√
n(2m+ σ)

∆− δ
.

Lemma 13. [11] With the same notations as in Lemma 7,

ε(GS) ≥
√

2m+ σ − σ2

n
·

Lemma 14. [11] With the same notations as in Lemma 7,

ε(GS) ≥
4m+ 2σ − 2σ2

n

s(GS)

where s(GS) is the diameter of spectrum of A(GS).

The lower bound given in Lemma 12 is become meaningless if ∆ = δ

in GS . The following lower bound is given by Sehtty and Bhat [16].

Lemma 15. [14,16] With the same notations as in Lemma 7,

ε(GS) ≥

√
4m+ 2

(
σ − σ2

n

)
with equality holds if and only if GS is totally disconnected graph with

σ = 0 or σ = n.

Remarks: The above lower bound of energy of a graph with self-loops,√
4m+ 2

(
σ − σ2

n

)
, is better than the lower bound

√
2m+

(
σ − σ2

n

)
given

in the Lemma 13.

Now, we provide a lower bound of ε(GS) in terms of the number of

vertices n and the number of edges m.
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Theorem 7. With the same notations as in Theorem 1, if ε(GS) is the

energy of GS, then

ε(GS) ≥
4m

n
·

Proof. Let the eigenvalues of A(GS)− σ
nIn are µ1 ≥ µ2 ≥ · · · ≥ µn. Then

ε(GS) =

n∑
i=1

|µi| and
n∑

i=1

µi = 0.

If µ1 be the spectral radius of A(GS) − σ
nIn, then ε(GS) ≥ 2µ1. From

Lemma 6, we can write µ1 ≥ 2m
n . So, ε(GS) ≥ 4m

n ·

Theorem 8. Suppose G be an (n,m)-graph and let GS be the one obtained

from G by attaching a self-loop with σ (1 ≤ σ < n) number of vertices of

G. If A(GS) is the adjacency matrix of GS and B = A(GS) − σ
nIn, then

ε(GS), the energy of GS satisfies the following relation,

ε(GS) ≥
√
2m+ σ − σ2

n
+ n(n− 1) |det(B)|

2
n .

Proof.

ε2(GS) =

(
n∑

i=1

|µi|

)2

=

n∑
i=1

|µi|2 +
∑

1≤i,j≤n
i ̸=j

|µi||µj |. (19)

Using arithmetic mean-geometric mean inequality on |µi||µj |, we have

∑
1≤i,j≤n

i ̸=j

|µi||µj |

n(n− 1)
≥

 ∏
1≤i,j≤n

i ̸=j

|µi||µj |


1

n(n−1)

=

 ∏
1≤i≤n

|µi|

 2
n

.

Thus, From (19)

ε2(GS) ≥
n∑

i=1

|µi|2 +

 ∏
1≤i≤n

|µi|

 2
n

n(n− 1)
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= 2m+ σ − σ2

n
+ n(n− 1) |det(B)|

2
n ·

Therefore, the result follows.

Next, we obtain a lower bound of ε(GS) and show that in some cases,

that lower bound is better than all other existing lower bounds as observed

from the comparison table provided in Section 4.

Theorem 9. With the same notation as in Theorem 8,

ε(GS) ≥
2m

n
+ n− 1 + ln|det(B)| − ln

2m

n
·

Proof. Let the eigenvalues of B be µ1 ≥ µ2 ≥ · · · ≥ µn. From Theorem 1,

we know that B is non-singular, i.e., |µi| > 0 for i = 1, 2, . . . , n.

Consider a real-valued function g such that g : R+ → R and

g(x) = x− 1− ln(x).

It is trivial to verify that the function g(x) is decreasing on the interval

0 < x ≤ 1 and increasing on the interval [1,∞). So, for all x > 0

g(x) ≥ g(1) ⇒ x ≥ 1 + ln(x).

Thus,

ε(GS) = µ1 +

n∑
i=2

|µi|

≥ µ1 + n− 1 +

n∑
i=2

ln |µi|

= µ1 + n− 1 + ln

n∏
i=2

|µi|

= µ1 + n− 1 + ln |det(B)| − lnµ1. (20)

Again, consider the function h : R+ → R such that

h(x) = x+ n− 1 + ln |det(B)| − lnx.
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Clearly, in the interval 1 ≤ x ≤ n, the function h(x) is increasing. From

(3), we have µ1 ≥ 2m
n · Since 1 ≤ 2m

n ≤ µ1 ≤ n, it follows that

h(µ1) ≥ h

(
2m

n

)
⇒ h(µ1) ≥

2m

n
+ n− 1 + ln|det(B)| − ln

2m

n
·

Hence, the theorem follows from (20).

Remarks: Applying Theorem 9 to the Figure 3, the resultant lower bound

is 4.0364, which is better than all other existing lower bounds.

4 Comparison of bounds

In this section, we compare the numerical values of the upper bounds and

lower bounds of the energy of some graphs with self-loops (Figures 1 – 8).

It is found from Table 1 that the upper bounds given in Theorem 4 and

Theorem 5 are always better than that given in Lemma 7 and hence from

those given in Lemma 10 and Lemma 11, as already discussed in Section

2. It is also found that the bound given in Theorem 6 is better than all

other bounds for the considered graphs. Although the goodness of this

bound could not be established analytically, it is assured that at least in

some cases it outperforms.

It is found from Table 2 that the Lemma 12 for Figure 2 and Figure

6 gives no lower bounds as ∆ = δ for these graphs and yields negative

values for the other graphs. As already mentioned in Section 3, the lower

bounds obtained from Lemma 15 are always better than those obtained

from Lemma 13. Although we could not establish analytically, Lemma 14

yields better lower bounds than those obtained from Lemma 15 and from

Lemma 13. Again, the lower bounds obtained from Theorem 7, Theorem

8 and Theorem 9 are incomparable with those obtained from Lemma 14

and Lemma 15.
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Figure Lemma 7 Lemma 8 Lemma 9 Lemma 10 Lemma 11
1 5.9161 7.8579 7.9369 6.8030 6.3750
2 13.5277 14.3228 14.9058 17.1357 15.4375
3 4.4721 5.1611 5.0972 5.1694 4.8333
4 6.6332 10.2845 10.4000 7.1568 6.9000
5 6.5574 7.6711 7.7113 8.1106 7.3750
6 10.0499 10.9436 11.3645 12.6364 11.4167
7 7.1414 7.2678 7.2042 9.4489 8.3750
8 8.6023 10.3714 10.4990 11.0463 9.9000

Figure Theorem 4 Theorem 5 Theorem 6 Energy
1 5.8807 5.8222 5.7749 5.0164
2 13.5270 13.4846 13.1031 12.3012
3 4.4694 4.4694 4.3094 4.1617
4 6.2333 6.2333 6.5960 4.7232
5 6.5523 6.5402 6.1742 5.6858
6 10.0483 10.0020 9.6389 8.2400
7 7.1374 7.1374 6.3541 6.1056
8 8.5290 8.4045 8.0763 7.2000

Table 1. Comparison of different upper bounds.

Figure Lemma 12 Lemma 13 Lemma 15 Lemma 14
1 −14.333 2.9580 4.1833 4.4143
2 4.7828 6.7639 9.3528
3 −15.664 2.5820 3.6515 3.9053
4 −15.299 2.9665 4.1952 4.2685
5 −23.533 3.2787 4.6368 5.1726
6 4.1028 5.8023 6.5069
7 −32.555 3.5707 5.0498 5.9264
8 −20.051 3.8471 5.4406 6.7056

Figure Theorem 7 Theorem 8 Theorem 9 Energy
1 4.000 4.3659 4.0034 5.0164
2 5.500 11.2494 11.2020 12.3012
3 4.000 4.0528 4.0364 4.1617
4 3.200 3.7321 1.7278 4.7232
5 5.000 5.0078 4.9384 5.6858
6 5.333 6.5402 6.2496 8.2400
7 6.000 5.6776 5.8709 6.1056
8 5.600 6.4752 6.5324 7.2000

Table 2. Comparison of different lower bounds.
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