Sombor Index of a Graph and of Its Subgraphs

Mohammad Reza Oboudi ${ }^{a, *}$
${ }^{a}$ Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, Iran mr_oboudi@yahoo.com, mr_oboudi@shirazu.ac.ir

(Received December 15, 2023)

Abstract

Recently a new vertex-degree based molecular structure descriptor was defined as Sombor index. Let G be a simple graph. The Sombor index of G, denoted by $S O(G)$, is $\sum_{u v \in E(G)} \sqrt{d_{u}^{2}+d_{v}^{2}}$, where d_{v} is the degree of v. In this paper we investigate the relation between the Sombor index of a graph and the Sombor index of its subgraphs. As a concequence we find some relations between $S O(G)$ and $S O(\bar{G})$, where \bar{G} is the complement graph of G. In particular, we show that if G is a graph of order n, then $S O(G)+S O(\bar{G}) \leq \frac{n(n-1)^{2}}{\sqrt{2}}$ and the equality holds if and only if $G \cong K_{n}$ or $G \cong \overline{K_{n}}$.

1 Introduction

In this paper all graphs are simple, that is they are finite and undirected, without loops and multiple edges. Let $G=(V(G), E(G))$ be a simple graph. The order of G is the number of vertices of G. By $e=u v$ we mean the edge e between u and v. For a vertex $v \in V(G)$, the degree of v is the number of edges incident with v and is denoted by $\operatorname{deg}_{G}(v)$ or $\operatorname{deg}(v, G)$. A pendant vertex is a vertex with degree one and a pendant

[^0]edge is an edge such that one of its end points is pendant vertex. A $k-$ regular graph is a graph such that every vertex of that has degree k. For two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, the disjoint union of G_{1} and G_{2} denoted by $G_{1} \cup G_{2}$ is the graph with the vertex set $V_{1} \cup V_{2}$ and the edge set $E_{1} \cup E_{2}$. The graph $r G$ denotes the disjoint union of r copies of G. The edgeless graph (or empty graph), the complete graph, the cycle, and the path of order n, are denoted by $\overline{K_{n}}, K_{n}, C_{n}$ and P_{n}, respectively. Let t and n_{1}, \ldots, n_{t} be some positive integers. By $K_{n_{1}, \ldots, n_{t}}$ we mean the complete multipartite graph with parts size n_{1}, \ldots, n_{t}. In particular, the complete bipartite graph with part sizes m and n denoted by $K_{m, n}$. The star of order n, denoted by S_{n}, is the complete bipartite graph $K_{1, n-1}$.

In chemical graph theory, there are many topological indices. Recently, a new index, Sombor index, has been defined by Ivan Gutman in [5]. For a graph G, the Sombor index of G, denoted by $S O(G)$, is defined as

$$
S O(G)=\sum_{u v \in E(G)} \sqrt{d_{u}^{2}+d_{v}^{2}}
$$

where d_{v} is the degree of v. For example the Sombor index of the star S_{n} is $(n-1) \sqrt{(n-1)^{2}+1}$. There are many papers related to properties of Sombor index, for instance see $[1-12]$ and the references cited therein.

In this paper, we study the relation between the Sombor index of a graph and the Sombor index of its subgraphs. As a concequence, we find some relations between $S O(G)$ and $S O(\bar{G})$, where \bar{G} is the complement graph of G. In particular, we show that if G is a graph of order n, then

$$
S O(G)+S O(\bar{G}) \leq \frac{n(n-1)^{2}}{\sqrt{2}}
$$

and the equality holds if and only if $G \cong K_{n}$ or $G \cong \overline{K_{n}}$.

2 Main results

Let G be a graph. By $G=\left(H_{1}, \ldots, H_{k}\right)$ we mean that H_{1}, \ldots, H_{k} are some spanning subgraphs of G such that the edge sets of H_{1}, \ldots, H_{k} are disjoint $\left(E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset\right.$ for every $\left.i \neq j\right)$ and $E(G)=E\left(H_{1}\right) \cup \cdots \cup$
$E\left(H_{k}\right)$. For example $K_{4}=\left(C_{4}, 2 K_{2}\right)$. In this section we investigate the relation between the Sombor index of a graph and the Sombor index of its subgraphs. For every graph H, by $\operatorname{deg}(v, H)$ we mean the degree of a vertex v of H in H. For every vertices u and v of H by $f(u v, H)$ we mean

$$
f(u v, H)= \begin{cases}\sqrt{(\operatorname{deg}(u, H))^{2}+(\operatorname{deg}(v, H))^{2}}, & \text { if } u \text { and } v \text { are adjacent } \\ 0, & \text { otherwise }\end{cases}
$$

Therefore

$$
\begin{equation*}
S O(H)=\frac{1}{2} \sum_{u, v \in V(H)} f(u v, H) \tag{1}
\end{equation*}
$$

Now we prove one of the main results of this paper.
Theorem 1. Let G be a connected graph. Assume that $G=\left(H_{1}, \ldots, H_{k}\right)$. Then

$$
S O(G) \geq S O\left(H_{1}\right)+\cdots+S O\left(H_{k}\right)
$$

Moreover, the equality holds if and only if for some $j \in\{1, \ldots, k\}, H_{j}=G$ and the other subgraphs are empty graphs.

Proof. If $k=1$, then there is nothing to prove. Now suppose that $k \geq 2$. Without loss of the generality we can assume that all spanning subgraphs H_{1}, \ldots, H_{k} are non-empty graphs. To complete the proof it suffices to show that if for $i=1, \ldots, k, H_{i} \neq G$, then

$$
S O(G)>S O\left(H_{1}\right)+\cdots+S O\left(H_{k}\right)
$$

Thus assume that $H_{1} \neq G, \ldots, H_{k} \neq G$. Let n be the order of G and $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Since $k \geq 2, n \geq 2$. We claim that there exist a vertex v_{r} and the spanning subgraph H_{s} such that $\operatorname{deg}\left(v_{r}, H_{s}\right) \neq 0$ and $\operatorname{deg}\left(v_{r}, H_{s}\right) \neq \operatorname{deg}\left(v_{r}, G\right)$. In other words, there exist a vertex v_{r} and the spanning subgraph H_{s} such that $1 \leq \operatorname{deg}\left(v_{r}, H_{s}\right) \leq \operatorname{deg}\left(v_{r}, G\right)-1$. By contradiction, assume that for $i=1, \ldots, n$ and $j=1, \ldots, k$,

$$
\begin{equation*}
\operatorname{deg}\left(v_{i}, H_{j}\right)=0 \text { or } \operatorname{deg}\left(v_{i}, H_{j}\right)=\operatorname{deg}\left(v_{i}, G\right) \tag{2}
\end{equation*}
$$

We note that for every vertex v of G,

$$
\begin{equation*}
\operatorname{deg}(v, G)=\operatorname{deg}\left(v, H_{1}\right)+\cdots+\operatorname{deg}\left(v, H_{k}\right) \tag{3}
\end{equation*}
$$

Since $\operatorname{deg}\left(v_{i}, H_{j}\right)=0$ or $\operatorname{deg}\left(v_{i}, H_{j}\right)=\operatorname{deg}\left(v_{i}, G\right)$, by (3) we conclude that for every vertex v_{i} there exists a spanning subgraph H_{j}, such that $\operatorname{deg}\left(v_{i}, H_{j}\right)=\operatorname{deg}\left(v_{i}, G\right)$ and $\operatorname{deg}\left(v_{i}, H_{l}\right)=0$ for $l \neq j$. Without loss of the generality assume that $\operatorname{deg}\left(v_{1}, H_{1}\right)=\operatorname{deg}\left(v_{1}, G\right)$ and $\operatorname{deg}\left(v_{1}, H_{l}\right)=0$ for $l \neq 2$. Now we show that $H_{1}=G$.

Consider a vertex $v \neq v_{1}$ in G. Since G is connected, there is a path, say $v_{1} v_{j_{1}} \cdots v$, in G between v_{1} and v. Since $\operatorname{deg}\left(v_{1}, H_{1}\right)=\operatorname{deg}\left(v_{1}, G\right)$, the neighbors of v_{1} in G and the neighbors of v_{1} in H are the same. This shows that $\operatorname{deg}\left(v_{j_{1}}, H_{1}\right) \neq 0$, and so by $(2), \operatorname{deg}\left(v_{j_{1}}, H_{1}\right)=\operatorname{deg}\left(v_{j_{1}}, G\right)$. Using this procedure we find that $\operatorname{deg}\left(v, H_{1}\right)=\operatorname{deg}(v, G)$. This shows that $H_{1}=G$, a contradiction. Thus the claim is proved. Therefore there exist a vertex v_{r} and the spanning subgraph H_{s} such that $1 \leq \operatorname{deg}\left(v_{r}, H_{s}\right) \leq \operatorname{deg}\left(v_{r}, G\right)-1$. This shows that v_{r} is not an isolated vertex of H_{s}. Suppose that v_{t} is a neighbor of v_{r} in H. Since $\operatorname{deg}\left(v_{r}, H_{s}\right) \leq \operatorname{deg}\left(v_{r}, G\right)-1$, we find that

$$
\begin{equation*}
f\left(v_{r} v_{t}, G\right)>f\left(v_{r} v_{t}, H_{s}\right) \tag{4}
\end{equation*}
$$

On the other hand for every vertices u and v of $G, f(u v, G) \geq f\left(u v, H_{i}\right)$, for $i=1, \ldots, k$. Hence by (1) and (4),

$$
S O(G)=\frac{1}{2} \sum_{1 \leq i, j \leq n} f\left(v_{i} v_{j}, G\right)>\sum_{l=1}^{k} \frac{1}{2} \sum_{1 \leq i, j \leq n} f\left(v_{i} v_{j}, H_{l}\right)=\sum_{l=1}^{k} S O\left(H_{l}\right)
$$

Thus $S O(G)>\sum_{l=1}^{k} S O\left(H_{l}\right)$ and the proof is complete.
Remark. Since $S O\left(H \cup r K_{1}\right)=S O(H)$ (for every graph H), Theorem 1 holds when H_{1}, \ldots, H_{k} are some subgraphs of G (not necessary spanning subgraphs) such that the edge sets of H_{1}, \ldots, H_{k} are disjoint $\left(E\left(H_{i}\right) \cap\right.$ $E\left(H_{j}\right)=\emptyset$ for every $\left.i \neq j\right)$ and $E(G)=E\left(H_{1}\right) \cup \cdots \cup E\left(H_{k}\right)$.

Remark. Let G be a graph and $e=u v$ be an edge of G. Clearly, $f(e, G) \geq$ $\sqrt{2}$. This shows that $S O(G) \geq \sqrt{2} m$, (where m is the number of edges of
$G)$ and the equality holds if and only if $G \cong r K_{2} \cup s K_{1}$.
Using Remark 2 we find the next result.
Theorem 2. Let G be a graph of order n. Then

$$
S O(G)+S O(\bar{G}) \geq \frac{n(n-1)}{\sqrt{2}}
$$

and the equality holds if and only if $1 \leq n \leq 2$.
We conclude the paper by the following result.
Theorem 3. Let G be a graph of order n. Then

$$
S O(G)+S O(\bar{G}) \leq \frac{n(n-1)^{2}}{\sqrt{2}}
$$

and the equality holds if and only if $G \cong K_{n}$ or $G \cong \overline{K_{n}}$.
Proof. Clearly $K_{n}=(G, \bar{G})$. Thus by Theorem 1 ,

$$
S O(G)+S O(\bar{G}) \leq S O\left(K_{n}\right)=\frac{n(n-1)^{2}}{\sqrt{2}}
$$

and the equality holds if and only if $G \cong K_{n}$ or $\bar{G} \cong K_{n}$.

Acknowledgment: The author is grateful to the referee for their helpful comments.

References

[1] R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021) \#126018.
[2] K. C. Das, A. S. Cevik, I. N. Cangul, Y. Shang, On Sombor index, Symmetry 13 (2021) \#140.
[3] K. C. Das, I. Gutman, On Sombor index of trees, Appl. Math. Comput. 412 (2022) \#126575.
[4] T. Došlić , T. Réti, A. Ali, On the structure of graphs with integer Sombor indices, Discr. Math. Lett. 7 (2021) 1-4.
[5] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.
[6] I. Gutman, TEMO theorem for Sombor index, Open J. Discr. Appl. Math. 5 (2022) 25-28.
[7] H. Liu, I. Gutman, L. You, Y. Huang, Sombor index: Review of extremal results and bounds, J. Math. Chem. 66 (2022) 771-798.
[8] M. R. Oboudi, Non-semiregular bipartite graphs with integer Sombor index, Discr. Math. Lett. 8 (2022) 38-40.
[9] M. R. Oboudi, On graphs with integer Sombor index, J. Appl. Math. Comput. 69 (2023) 941-952.
[10] M. R. Oboudi, The mean value of Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 89 (2023) 733-740.
[11] T. Réti, T. Došlić , A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021) 11-18.
[12] Z. Wang, Y. Mao, Y. Li, B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math. Comput. 68 (2022) $1-17$.

[^0]: * Corresponding author.

