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Abstract

For a graph G with vertex set V (G) and edge set E(G), the
Lanzhou index of G is defined as

Lz(G) =
∑

υ∈V (G)

dG(υ)
2dG(υ),

where dG(υ) is the degree of vertex υ in G, G is the complement
of G. Vukičević, Li, Sedlar and Došlić [MATCH Commun. Math.
Comput. Chem. 86 (2021) 3–10] proved that for any tree T of order
n ≥ 11 with maximum degree ∆, Lz(T ) ≥ (n −∆ − 1)(4n +∆2 −
12) + ∆(n − 2). In this paper, we generalize the foregoing bound
and we show that for any unicyclic graph U of order n ≥ 11 with
maximum degree ∆, Lz(U) ≥ 4(n−3)(n−∆+1)+∆2(n−1−∆)+
(n−2)(∆−2), and we also characterize the corresponding extremal
unicyclic graphs.

1 Introduction

In this paper, we consider only simple, finite and undirected graphs.

Let G be a simple connected graph with vertex set V (G) and edge set

E(G). The degree of a vertex v ∈ V (G) is equal to the number of its
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neighbors and we denote it by dG(υ). A vertex of degree 1 is called a leaf .

We denote by ∆(G) and ∆′(G) the maximum and second maximum degree

of the vertices of G. For any u ∈ V (G), the neighborhood of u, written as

NG(u), is the set of vertices adjacent to u. The complement graph G of

G has the same vertex set V (G), and two vertices are adjacent in G if and

only if they are not adjacent in G. Let G = (V,E) be a connect graph. If

W ⊆ V (G), we denote by G−W the subgraph of G obtained by deleting

the vertices of W and the edges incident with them. If E′ ⊆ E(G), we

denote by G−E′ the subgraph of G obtained by deleting the edges of E′. If

W = {v} and E′ = {xy}, the subgraphs G−W and G−E′ will be written

as G−v and G−xy for short. Let G+uv denote the graph obtained from

G by adding the edge uv /∈ E(G). We denote by Un,∆ the set of unicyclic

graphs of order n and maximum degree ∆. The complete graph, the cycle,

the path and the star on n vertices are denoted by Kn, Cn, Pn and Sn.

A spider is a tree with at most one vertex of degree more than 2, called

the center of the spider (if no vertex is of degree more than two, then any

vertex can be the center). A leg of a spider is a path from the center to a

vertex of degree 1. The star Sn is a spider of n− 1 legs, each of length 1,

the path Pn is a spider of 1 or 2 legs. For other undefined notations and

terminology from graph theory, the readers are referred to [1].

The first Zagreb index M1(G) of a graph G is defined as

M1(G) =
∑

υ∈V (G)

dG(υ)
2 =

∑
uυ∈E(G)

(dG(u) + dG(v)),

while the Forgotten index of G is defined as

F (G) =
∑

υ∈V (G)

dG(υ)
3.

They were defined in the same paper [7]. The mathematical and chemical

properties of the first Zagreb index have been studied in [2–4,8]. Forgotten

index was reintroduced by Furtula and Gutman in [5].

In 2018, researchers Vukičević, Li, Sedlar and Došlić, proposed a new

topological index. When they came to Lanzhou for communication, they

showed that it behaves better than the existing ones in predicting a chem-
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ically relevant property. It is put forward according to Furtula−Gutman

linear combination M1(G)+λF (G), where λ was a free parameter ranging

from -20 to 20. A sharp peak was obtained at λ = −0.140 [6]. Later,

Vukičević et al, found that the absolute value of λ was very close to 1
7 ,

and the value of the denominator is the largest possible degree of a ver-

tex in octanes with 8 vertices, but nonanes are molecular graphs with 9

vertices. Therefore, Vukičević et al. defined a new index for a molecular

graph G named the Lanzhou index [6], which is denoted by Lz(G). They

first interpret the free parameter λ as −1
n−1 in the Furtula-Gutman linear

combination, then multiply n− 1 to get rid of fractions. That is,

Lz(G) = (n− 1)(M1(G)− F (G))

=
∑

υ∈V (G)

dG(v)
2[(n− 1)− dG(v)]

=
∑

υ∈V (G)

dG(v)
2dG(υ).

As is well known, finding extremal graphs and values of the topological

indices over some classes of graphs attracts the attention of many re-

searchers. In [6], extremal graphs with n vertices are illustrated. More

precisely, complete and empty graphs are of minimum Lanzhou index 0,

and 2
3 (n− 1)-regular graphs with n ≡ 1(mod 3) are of maximum Lanzhou

index 4
27n(n−1)3. For trees with n vertices, star and balanced double star

are the minimal and maximal graphs respectively.

Recently, many scholars have paid great attention to Lanzhou index.

Theorem 1. [6] For any tree T of order n ≥ 15, then

Lz(T ) ≥ (n− 1)(n− 2),

with equality if and only if T = Sn.

Theorem 2. [6] For any tree T of order n with maximum degree at most

4, then

Lz(T ) ≥ 4n2 − 18n+ 20,

with equality if and only if T = Pn.
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Theorem 3. [11] For any tree T of order n ≥ 11 with maximum degree

∆. Then

Lz(T ) ≥ (n− 1−∆)(4n+∆2 − 12) + ∆(n− 2),

with equality if and only if T is a spider with the center of degree ∆.

Theorem 4. [9] For any tree T ∈ T (n,∆,∆′) with n ≥ 11. Then

Lz(T ) ≥ (n−1)(∆2+∆′2)−(∆3+∆′3)−(3n−10)(∆+∆′)+(4n2−14n+4)

with equality if and only if T is a double spider with the degrees of center

∆ and ∆′.

In 2019 [10], Liu et al. proved the extreme value and the extremal

graph of the Lanzhou index of the unicyclic graph.

Therefore, in this paper we establish a best possible lower bound for the

Lanzhou index of unicyclic graphs in terms of their order and maximum

degree and characterize all extreme trees, as a generalization of aforemen-

tioned result.

2 Unicyclic graphs

In this section, we present a sharp lower bound for the Lanzhou index

of unicyclic graphs in terms of their order and maximum degree. We also

characterize all unicyclic graphs whose Lanzhou index achieves the lower

bound.

Transformation A. Let G is a unicyclic graph of order n with its unique

cycle Ck. Let Tu0
be a pendent tree of G attaching to the vertex u0 ∈

V (Ck). For a vertex v0 ∈ Tu0
not on Ck with dG(v0) ≥ 2. Let y

be a vertex on the path between u0 and v0 such that y is adjacent to

v0, and v1, · · · , vt be other neighbors of v0, u1u2 ∈ E(Ck). Let G′ =

G − {yv0, v0vt, u1u2} + {yvt, u1v0, u2v0}. Therefore, v0 is on the cycle of

graph G′, and dG(v0) = dG′(v0). For example, see Figure 1.
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Figure 1. Transformation A from graph G to G′

Remark 5. It is easily seen that any unicyclic graph G can be changed

into a unicyclic graph G′ with maximum degree on cycle Ck by repeating

Transformation A. During this process, we can see that graphs G and G′

have the same degree sequence, so Lz(G) = Lz(G′).

Transformation B. Suppose that G is a connected graph of order

n ≥ 11 with maximum degree ∆. Let u0, h0 ∈ V (G), P ′ = u0u1u2, · · · , uk

and P ′′ = h0h1h2, · · · , hs are two pendent paths in G, respectively, where

k, s ≥ 1, and uk, hs are are pendant vertices of G. Let G′ = G −
h0h1 + ukh1. Hence V (G) = V (G′) = n ≥ 11, and dG(uk) = 1 dG′(uk) =

2. Assume that dG(h0) = t ≥ 3, dG′(h0) = t − 1, and for any v ∈
V (G)\{uk, h0}, dG(v) = dG′(v). The above referred graphs have been

illustrated in Figure 2.

u0
u1 uk

v1

vr−2 h0 h1 hs

u0 u1 uk

h0

h1 hs

v1

vr−2

G G′

Figure 2. Transformation B from graph G to G′

Proposition 6. Let G′ be obtained from a connected graph G by Trans-

formation B. Then G′ is also a connected graph, and Lz(G′) < Lz(G).

Proof. Applying transformation B, we know that the degrees of all vertices
in graph G and graph G′ except for vertices h0 and uk have not changed.
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So, let D = {h0, uk}, then

Lz(G)− Lz(G′) =
∑
w∈D

[dG(w)2(n− 1− dG(w)2)]− [dG′ (w)2(n− 1− dG′ (w)2))].

(I) If h0 = u0, k = s = 1, and h1 = vr−2, then

Lz(G)− Lz(G′) = t2(n− 1− t) + 12(n− 2)− (t− 1)2(n− t)− 22(n− 3)

= t2(n− 1− t)− (t− 1)2(n− t) + (n− 2)− 4(n− 3)

= −3t2 + 2tn− 4n+ t+ 10

= 2n(t− 2)− 3t2 + t+ 10.

Since n ≥ 2t, Suppose n = 2t + y (y is a non-negative integer). Then

we have
Lz(G)− Lz(G′) = 2n(t− 2)− 3t2 + t+ 10

= t2 + (2y − 7)t− 4y + 10

= (t+ 2y − 5)(t− 2).

(1)

Since t ≥ 3, so t + 2y ≥ 7 when y ≥ 2 and hence from (1), we have

Lz(G) − Lz(G′) > 0 when y ≥ 2. Again since n ≥ 11 and n = 2t + y,

so t ≥ 6 and t ≥ 5 according to y = 0 and y = 1. Thus in this case, we

have t+ 2y ≥ 6 and hence we have Lz(G)− Lz(G′) > 0 in the case when

y = 0, 1.

(II) If h0 ̸= u0 and k = s = 1, then

Lz(G)− Lz(G′) = t2(n− 1− t)− (t− 1)2(n− t) + (n− 2)− 4(n− 3) (2)

By Eq. (2) and the fact that n ≥ 2t+ 2, and similar to the proof of type

(I), we can obtain Lz(G)− Lz(G′) > 0.

(III) If h0 ̸= u0 and k, s ≥ 2, then

Lz(G)− Lz(G′) = t2(n− 1− t)− (t− 1)2(n− t) + (n− 2)− 4(n− 3). (3)

By Eq. (3) and the fact that n ≥ 2t + k + s, and similar to the proof of

type (I), we can obtain Lz(G)− Lz(G′) > 0.

This completes the proof.

Let U ∈ Un,∆, C is the unique cycle of graph U . If U − E(C) is some

independent vertices and a spider, which center is on cycle C and has ∆−2
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legs, then denote the set of such graphs as US
n,∆. For any G ∈ US

n,∆, then

it’s easy to get the following results.

Lz(G) = 4(n− 3)(n−∆+ 1) +∆2(n− 1−∆) + (n− 2)(∆− 2).

Theorem 7. Let U be a unicyclic graph of n ≥ 11 with maximum degree

∆,

Lz(U) ≥ 4(n− 3)(n−∆+ 1) +∆2(n− 1−∆) + (n− 2)(∆− 2),

with equality holding if and only if U ∈ US
n,∆.

Proof. Let U be a unicyclic graph of n ≥ 11 with maximum degree ∆. If

∆ = 2, then U is a cycle Ck of order n.

Lz(U) = 4n2−12n = 4(n−3)(n−∆+1)+∆2(n−1−∆)+(n−2)(∆−2).

Now let ∆ ≥ 3. According to Remark 5, any unicyclic graph U can

be changed into a unicyclic graph U ′ with maximum degree on cycle Ck.

Repeating applying transformation B, any unicyclic graph U can become

a unicyclic graph belonging to US
n,∆. Hence

Lz(U) ≥ 4(n− 3)(n−∆+ 1) +∆2(n− 1−∆) + (n− 2)(∆− 2).

This completes the proof of Theorem 7. ■
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