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Abstract

For a connected graph G with n vertices, the Lanzhou index of
G is defined as

Lz(G) = Z d()?[n—1—d(v)],

veV(G)

where d(v) is the degree of vertex v in G. The extremal graphs
with minimum (respectively, maximum) Lanzhou index has been
determined for trees, unicyclic graphs, bicyclic graphs and tricyclic
graphs with n vertices, respectively. In this paper, by applying
the majorization method, we determine the unique extremal graph
with minimum Lanzhou index for c-cyclic graph for n > 3c + 4
vertices and ¢ > 1. Besides, we determine the unique extremal
graph with maximum Lanzhou index in the class of c-cyclic graph
with n vertices for 3 < ¢ < {3, and we also illustrate an example
to show that the bound {3 is the best possible. This extends the
corresponding results of [4,9-11,13].

*The first two authors are co-first authors with equal contributions to this paper,
the third and fourth authors are both corresponding authors of this paper.
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1 Introduction

Throughout this paper we consider undirected simple connected graphs.
Let G be a graph with vertex set V(G) and edge set E(G). A connected
graph with m = n + ¢ — 1 edges and n vertices is called a c-cyclic graph.
Especially, when ¢ = 0,1,2 or 3, then G is called a tree, unicyclic graph,
bicyclic graph or tricyclic graph, respectively. As usual, let d(u) and N (u)
denote, respectively, the degree and neighbor set of the vertex u € V(G).
A vertex of degree one will be always referred as a pendent vertex.
For V(G) = {v1,v2,...,v,}, if the degree of v; equals d; for 1 < i <
n, then m = (dq,da,...,d,) is called the degree sequence of graph G.
Sometimes, we write d;(G) in place of d; to indicate the dependent of G.
Clearly, if G is a c-cyclic graph with degree sequence m = (dy,ds, ... ,d,),
then

n

> di=2n+c-1). (1)
i=1
Throughout this paper, we enumerate the degrees in non-increasing order,
that is, dy > dy > -+ > d,,.
The first Zagreb index M;(G) and the forgotten index F(G) of
graph G is defined as

M(G)= Y d@)?and F(G)= Y d@)°

veV(G) veV(G)

respectively. The first Zagreb index was defined by Gutman and Trinajsti¢
in [7], while the forgotten index was reintroduced by Furtula and Gutman
in [5]. The mathematical and chemical properties of the first Zagreb index
haven been studied in [6,15,16].

In 2018, Vukicevi¢, Li, Sedlar and Dosli¢, proposed a new topological
index, that is, the Lanzhou index Lz(G), for a molecular graph G with

n vertices [13], where

Lz(G) = (n—1)My(G) = F(G) = Y d(v)*[n—1-d(v)].
veV(G)
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In [13], the authors showed that the Lanzhou index behaves better than

the existing ones in predicting a chemically relevant property. From the

definition, one can easily see that the Lanzhou index is a linear combination
of Zagreb and forgotten indices [1].

A chemical graph is a connected graph with maximum degree at
most four. Determining extreme values or extremal graphs for different
topological indices on certain graph classes is very interesting in the reser-
ach of Chemical Graph Theory. In this line, the minimum and maximum
Lanzhou indices, respectively, among all connected graphs with n vertices
has been determined by Vukicevié et. al. [13]. In the same paper, Vukicevié
et. al. also determined the minimum and maximum Lanzhou indices, re-
spectively, among all trees with n vertices [13]. Later, Liu et. al. [11]
determined the minimum and maximum Lanzhou indices in the class of
unicyclic graphs and chemical graphs with n vertices, respectively; Liu [10]
determined the minimum and maximum Lanzhou indices, respectively, in
the class of bicyclic graphs with n vertices; Cui and Zhao [4] identified the
minimum Lanzhou indices in the class of tricyclic graphs with n vertices.

By establishing an upper bound to the Lanzhou index for trees with n
vertices and fixed maximum degree, Li et. al. [9] also deduced the min-
imum and maximum Lanzhou indices of unicyclic graphs with n vertices
respectively, and they also determined the maximum Lanzhou index for
chemical trees with n vertices. Recently, Albalahi et. al. [2] also deter-
mined the maximum Lanzhou index of chemical graphs with n vertices
and m edges. In this paper, we are concerned with extremal results of
Lanzhou index in the class of c-cyclic graphs with n vertices. By employ-
ing the majorization method, we determine the unique extremal graph
with minimum Lanzhou index in the class of c-cyclic graphs for n > 3c¢+4
and ¢ > 1; and we also identify the unique extremal graph with maximum
Lanzhou index among all c-cyclic graphs with n and 3 < ¢ < {5.

Let Fy be the friendship graph (Dutch windmill graph), which is
a graph obtained from k triangles that share exactly one vertex. Let Hy
be the c-cyclic graph obtained from F, by attaching n — 2¢ — 1 pendant
vertices to the unique vertex of degree 2c of F.. The following is one of

our main results:
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Theorem 1. Let G be a c-cyclic graph with n vertices. If n > 3c+4 and
c>1, then

L.(G) > L.(Hy) = (n—1)(n—2) 4+ 2¢(3n — 10),

where equality holds if and only if G = Hy.

Vg

We

U1

Wo

Figure 1. The graph Wj.

For ¢ > 0, let Gy be the c-cyclic graph with n vertices, which is obtained
from Wy (see Figure 1) by attaching [0.5(n — ¢ —2)] and [0.5(n — ¢ — 2)]
pendent vertices to v; and wvs, respectively. The following is the second

main result of this paper.

Theorem 2. If3 < c < {5 and G is a c-cyclic graph with n vertices, then
Lz(G) < Lz(Gy), where the equality holds if and only if G = Gy.

Let G be the tricyclic graph with 38 vertices, which is obtained from the
complete graph K, with four vertices by attaching 11, 11 and 12 pendent
vertices to each of three vertices of Ky, respectively. By an elementary
computation, we have Lz(G) = 15496 > 15464 = Lz(Gy) for n = 38 and
¢ = 3. Thus, the bound % of Theorem 2 is best possible.

For a graph category G, if Lz(G) is maximum (respectively, minimum)
in G, then we call G as a maximum (respectively, minimum) extremal
graph of G. Vukicevi¢ et. al. [13] showed that Gy is the unique maximum
extremal graph of trees with n > 15 vertices, Liu et. al. [11] proved that
G is the unique maximum extremal graph of unicyclic graphs with n > 28

vertices, and Liu [10] identified that Gy is the unique maximum extremal
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graph of bicyclic graphs with n > 33 vertices. Combining these results
with Theorem 2, we can conclude that: When n is large enough, Gy is the

unique maximum extremal graph of c-cyclic graphs with n vertices.

2 Proof of Theorem 1

The majorization theorem is an important and effective tool to deal with

extremal problem of graph spectrum and topological index theory.

Definition 1. [12] Let 7 = (a1, a2,...,a,) and @’ = (a},d},...,al) be
two different non-increasing sequences of nonnegative real numbers, we
. /- . J Y / J ) J /
write 7 <" if and only if >/ _;a; = > ;al, and > a; <> af for

all j =1,2,--- ,n. The ordering 7 <’ is sometimes called majorization.

A real valued function f(z) defined on a convex set D is said to be

strictly convex if

fAz 4+ (1 =XNy) <Af(z) + (1 =) f(y)

holds for all 0 < A < 1 and all z,y € D. The following majorization

theorem for a strictly convex function had been discovered long time ago.

Lemma 1. [12] Let m = (a1, az,...,a,) and " = (ay,aj, ..., a;,) be two
different non-increasing sequence of non-negative real numbers. If m<ax’
and f(x) is a strictly convex function, then Y b f(a;) < >F_; f(a}).

In what follows, we always define f(z) = 2%(n — 1 — z). Since f"(z) =

. . . 1
2(n —1—3x), f(x) is a strictly convex function for z < #z=.

Corollary 1. Let m and 7’ be two different non-increasing degree sequences
with m<aw’. If G € T(w) and G' € T'(7'), then L.(G) < L.(G’) holds for
A(G") < ”T_l

Proof: Denote by m = (dy,da,...,d,) and ' = (d},d5, ..., d},) the degree

'

sequences of G and G, respectively. Since A(G') < % and T a7, we
have di < dj < 251 by Definition 1, we have L.(G) < L.(G') by Lemma
1, as f(x) is a strictly convex function for z < ”T_l |

Let ¢(?) denote p copies of the real number g.
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Lemma 2. Let G be a c-cyclic graph with n vertices and degree sequence
m, where ¢ > 1. If A(G) < % and ™ # 71, then m < mw, where T =
(3(20—2)’ 2(n—2c+2))'

Proof: By contradiction, assume that the result does not hold. Denote by
m=(dy,d,,...,d,) the degree sequence of G and m; = (d1,da, ...,d,). By
Definition 1, there exists j with 1 < j < n such that Zl Ldi > dl

If1 <j<2(c—1), thenzZl di <3j. Thus, 2 > d; > dj > ... > d,.
Combining this with m; = (3(2¢=2),2(n=2¢42)) e have

/

Srdi<2n—j)+3j=2n+j<2(n+c—1),

contrary with 7" | d} =2(n+c—1).

If2(c—1)—|—1<j < n, then ZZ 1di<3-2(c—1)+2[j-2(c—1)] =
2(j+c—1). Thus, djy +d o+ +d;>2(n+c—1)—2(j+c—1):
2(n — j), which anhes that d} > dy > ... > dj > dj,; > 3. Thus,
2 +c—1) > ZZ 1 d; > 3j,and so j < 2((: — 1), a contradiction. |

Corollary 2. Let G be a c-cyclic graph with n vertices. If2 < A(G) < ”T_l
and ¢ > 1, then L,(G) > 4n? + 10nc — 22n — 48¢ + 48, with equality if and
only if the degree sequence of G is equal to m = (3(2¢=2) 2(n=2c+2))

Proof: Since 2 < A(G) < 271, by Lemma 2, m = (3(2¢72) 2(n=2¢+2)) g
the minimum degree sequence in the relationship < among all these degree
sequences of c-cyclic graphs with n vertices. The corollary follows from
Corollary 1. |

Remark. A result similar to Corollary 2 has been presented in [3].

Lemma 3. I[f1 <c¢< % and L,(G) is minimum in the class of c-cyclic
graphs with n vertices, then G contains at most one vertex of degree greater
than ”?*1

Proof: Suppose that, G contains at least two vertices of degree greater
than ”Tfl Let m = (dy,ds,...,d,) be the degree sequence of G, where
d1 > d2 > anl

Suppose that d(v;) = d; and d(vs) = ds. Let P,,,, be a shortest

path connecting with v; and ve. Since G is a c-cyclic graph, we have
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IN(v1) N N(vg)| < 41 < 251 < dy, G contains a vertex w # vy such that
w € N(v2) \ N(v1) and w &€ V (P4, ), then let G’ = G — vow 4+ vyw. Since
dy > dg, there also exists vertex w’ # vy such that w’ € N(v1)\ N(v2) and
w' € V(Py,0,). Let G = G—viw’ +vow’. By the choice of G and dy +ds >
202D we have 0 < L, (G') 4+ L.(G") 2L, (G) = 2(2n—3d; —3ds —2) < 0,
contrary with the choice of G. |

In the rest of this section, we may always suppose that L,(G) is mini-
mum in the class of c-cyclic graphs with n vertices, where ¢ < %‘4. Bear-

ing Lemma 3 into consideration, G' contains at most one vertex of degree

-1
greater than “7=.

Lemma 4. Let G be a c-cyclic graph with n vertices. If n > 3¢+ 4 and
12l < A(G) = A < 2¢, then L.(G) > A*(n—1—A)+9(2c— A)(n—4) +
d(n —2c+ A —1)(n—3).

Proof: Suppose that the degree sequence of G is 7' = (A,dh,...,d))
and denote by m = (A, dy,...,d,) = (A,3(3¢=2) 2(n=2c+A-1) Tet a’ =
(db,...,d,) and a = (da,...,d,). Next, we show that a<a’ for 7 # 7’. By

r N

contradiction, assume that this is not true. By Definition 1, there exists j
with 2 < j < n such that Y27_, d} < S37_, d;.

If2<j<2—A, then Y ,d; <3(j—1). Thus2>d} > ... >d,,
then Y ,d; <3(j—1)+2(n—j)=2n+j—-3<2n+ (2c—A) -3 =
2(n+c—1) — A —1, a contradiction.

If2c—A+1<j<mn, then Y7 ,d} <3(2c—A)+2(j —2c+A—1) =
2 +ec—1)—A. Thus 330 . d >2(n+c—1) —A-[2(j+c—1)—
A] = 2(n — j), which implies that d3 > ... > d},; > 3. Now, we have
St od>3(j—1)4+2(n—j) = 2n+j—3 > 2(n+c—1)—A, a contradiction.

By Lemma 3, we have d), <d)_; <...<d, < "T’l Thus, the result

n—1

follows from Lemma 1. [ |

Lemma 5. Let G be a minimum extremal graph in the class of c-cyclic
graph with n vertices. If n > 3c+ 4 and "?71 < A < 2¢, then L,(G) >
Lz (HO)

Proof: Since n > 3¢+ 4 and %‘1 < A < 2¢, we have ¢ > 2 and n > 10.
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By Lemma 4, we have
L.(G)—L.(Go) > —A3+(n—1)A%+(24—5n) A+3n2 +4nc—13n—28¢+10.

Let f(z) = =23+ (n—1)2%+(24—5n)z +3n? +4nc—13n — 28¢+10. Since
f(z) = =322 +2(n— 1)z +24 —5n and f”(z) = —6z + 2(n — 1), we have
f"(z) <0and f'(z) > f'(2c—1) when 25! < 2 < 2c—1. By an elementary
computation, it follows that f’(2c—1) = —12c?+ (4n+8)c—Tn+23 = g(c).

Since 2 < ¢ < "T_‘l and

min{g(2),g(n34)}—n—9>0,

then f/(z) > f'(2¢ — 1) > 0 for 251 < 2 < 2¢ — 1, this implies that

) - % (54(n e+ (n—1)(n? + 16n — 26))

2
> 2—7(n — 1)(n* 4 16n — 26) > 0

for 221 < o <2c—1. Thus L.(G) > L.(Hy), as desired. |

Lemma 6. Let G be a minimum extremal graph in the class of c-cyclic
graphs with n vertices and degree sequence w. If A > 2c>2,n>3c+4
and T # o, then Ty <, where Ty = (A, 20 H2e=A=1) 1(A=20))

Proof: Let m = (A,d},...,d)) and ma = (A,dy,...,d,), where d;, <

N

1 <. <dy < "?71 by Lemma 3. Assume that the result does not
hold. Then, there exists j with 2 < j < n such that 2522 d; < ZLQ d;.
If2<j<n+2c—A, thendy+---+dj <2(j— 1), which implies that

d;:d;+1:"':d{n:1 ThuS,

J
A+2(j—1)>A+Y di=2n+c—1)—(n—j),
1=2

and thus 7 > n + 2¢ — A, a contradiction.
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Ifn+2c—A+1<j<n, then

J
A+ di<A+2n+2—1-A)+[j—(n+2c—A)=n+2+j-2,

=2

and so
n

Z d;>2(n+c—1)—(n+2c+j—2)=n—j.
i=j+1

This follows that dj > d5 > ... > d;-_H > 2, which implies that

A+ d>A+2G—-)+(n—j)=n+j+A-2

=2

>n+(n+2c—A+1)+A—-2=2n+2c—-1,
a contradiction. [ |

Lemma 7. Let G be a minimum extremal graph in the class of c-cyclic
graphs with n vertices. If A > 2¢ > 2 and n > 3c+ 4, then L.(G) >
L.(Hy), with equality if and only if G = Hy.

Proof: Let m = (A, d,,...,d]) be the degree sequence of G. By Lemma

3, we have d}, < "T_l Combining this with Lemmas 1 and 6, we have 7 =

Ty = (A, 202621 1(A=20)) If G £ Hy, then 7 # (n—1,2(2¢) 1(n=2e=1))
and so A <n — 2.

By an elementary computation, we have

L.(G) — L.(Hp) = A*(n — A — 1) + (4n + 8¢ — 4/ — 4)(n — 3)
+(A=2c)(n—2)—8c¢(n—3)—(n—2c—1)(n—2)
=(n—1-A)3n+A%-10) >0,

a contradiction. [ |

Proof of Theorem 1: Let G be a minimum extremal graph in the class
of c-cyclic graphs with n vertices for n > 3c+4 and ¢ > 1. By Lemmas 5
and 7, it suffices to consider the case of A < % By Corollary 2, we have
L.(G) > 4n? + 10nc — 22n — 48¢ +48. Combining this with n > 3¢+ 4 and
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c > 1, we have

L.(G) — L,(Hy) > 3n? + 4nc — 19n — 28¢ + 46
=3n—3)2%+(n—T)(4c—1)+12 >0,

contrary with the choice of G. |

3 Proof of Theorem 2

This section will be dedicated to the proof of Theorem 2. Note that

(D) =D = (5) (- 1254))

Z%(n+c+1)2(n—3—6)+é(N+c—1)2(n—1_6)'

Thus,

L(Go) Zé[(n+c—|—1)2(n—c—3) t(nte—12(n—c—1)]

+4e(n—3)+(n—2—c)(n—2)
:i [—® = (n+2)c® + (n® +8n —43)c + (n— 1)(n® + 3n — 14)].
Throughout this section, we always suppose that G is a maximum ex-
tremal graph of c-cyclic graphs with n vertices, and let 7 = (dy,da, ..., d,)
be the degree sequence of G, where V(G) = {v1,vs,...,v,} and d(v;) =
d; = d;(G) holds for 1 < i < n. Since Gy is also a c-cyclic graph with n
vertices, we have Lz(G) > Lz(Gp). In what follows, we always show that
Lz(G) < Lz(Gy) for G # Gy to get a contradiction.
For any two different vertices u,v € V(G), let P,, be an arbitrary path
connecting u and v. If there exists v/ € N(u) and v € N(v) such that
uw' v & V(Pyy), then let G; = G —vv’' + wv’ and Gy = G — uv/ + vu/. In

this case,

2Lz(G) — Lz(Gy) — Lz(G2) = —2(2n — 3d(u) — 3d(v) —2) > 0, and
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Lz(G) — Lz(G1) = (d(v) — d(u) — 1) (2n — 3d(u) — 3d(v) —2) > 0.

This follows that

d(u) + d(v) > w (2)

We claim that d; < n — 2. Otherwise, assume that d; = n — 1. Then,
(da,ds, ...,dn) < (2c+ 1,172, Since 2c + 1 < 2uH13 < 22l ang f(z) =
2% (n — 1 — ) is strictly convex for x < 7%, we have Lz(G) < (2c +
1)?2(n—2—2¢)+(n—2)? by Lemma 1. Thus, we have 4Lz(Go) —4Lz(G) >
31c3 — (1Tn — 62)c? + (n? —8n —3)c+ (n — 1)(n— 3)(n+2) = g1(c). Since
g7 (c) =2(93c — 1Tn + 62) < -£(403 — 64n) < 0, we have

91(0) = min {:3). 91 (35) } > 0.

as g1(3) = n® 4+ n? — 182n + 1392 > 0 and 2197g; (7%5) = 2(1088n° —
2470n? — 5746n +6591) > 0, a contradiction. This confirms our claim that
di <n-—2.

Since d; < n — 2, there exits u € V(G) \ {v1} such that u & N(vy),
which also implies that there exists vertex w such that v ¢ P,,,, and
uw € E(G). Since dy > d(w), there exists v € N(v1) and v & P,,,, such
that vw ¢ E(G). Thus, d(v1) +d(w) > @ by (2), which confirms that
dy > 5L

If there exists vertex v € V(G) \ {v1,v2,v3} such that v ¢ N(v;) U
N(v2) U N(vs), then there exists vertex v’ ¢ {v1,va,vs} such that vv' €
E(GQ) and v € Pyy,. By (2), we have dy +do > d3 + dy > ds + d(v') >
2(";1), as d3 > d(v') and vvs ¢ E(G). This implies that 2(n + ¢ —

1) > ZL("T_” +n —4 by (1), contrary with ¢ < {5. If vsv; ¢ E(G) and

vous & E(G), then there exists v & {v1,vq,v3} such that vsv’ € E(G) and

v3 & Pyryy. By (2), we have di +d3 > dy +dy > do + d(v) > 2270

and thus 2(n +c¢—1) > @ +n — 4, contrary with ¢ < {5. Thus,

v3 € N(v1)UN(v2). With the similar reason, we have v € N(v1)U N (v3)
and vy € N(vg) U N(v3). Now, we can conclude that

v € N(v1) U N(v2) UN(vs) holds for any v € V(G). (3)
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Case 1. dy < ds+ 1. Among these n — 3 vertices of V(G) \ {v1,v2,v3},
we suppose that there are s; vertices each of which is adjacent to exactly
i vertices of {v1,v9,v3}, where 1 < i < 3. Since dy +ds +ds < 81+ 282 +
3534+6<n—3—89—83+281+3s3+6=n-+3+ss+2s3 and G contains

at most n — s — s3 — 3 pendent vertices, we have

2ln+c—1)>n—s3—s3—3+2s2+3s3+dy +do2+ ds
22(d1+d2+d3)—6. (4)

We will show that ds; > 2. Otherwise, assume that ds = 1. Since
¢ > 3 and G contains at least n — 4 pendent vertices, we have 3 = c.
By (3), it follows that n + 2+ 2¢c —d; —dy —ds = dy = 3 and so m =
(dy,da,ds3,3,1"=%). Note that d; < ds3 + 1 and G contains exactly n — 4
pendent vertices. If d3 < 251, then 2(n+c—1) =2n+4 < w +ozl 4
3+ n —4 = 2n, a contradiction. Thus, d3 > ”gl. Combining this with
(g5, ndd nigs 3, 1(n=4) I, we have Lz(G) < 2n+5)%*n—4)+ (n—
4)(n —2) +9(n — 4) by Lemma 1, as f(z) = 2% (x + 1 — n) is a strictly

convex function for z > 21, Since ¢ = 3, we have 36Lz(Go) —36Lz(G) >

n3 — 39n2 — 6n + 368 > 0, a contradiction. Now, we can conclude that
ds > 2.

Since dy > 5+, we have n+1+2c—dy —dy —d3 < n+2c+1—3dz <
n+2c+1-3d+3<5+2c<5+ 32 <224 <d; —1<d3andds >2.
This implies that 7 < (dy, da, d3,n 4+ 1+ 2¢ — dy — do — d3,2,1"75)),

By Lemma 1, we have Lz(G) < d?(n—1—d;)+di(n—1—dg)+d3(n—
1—d3)+(n+1+2c—dy —do—d3)?(dy +dy +d3z —2—2¢) +n? —3n—2.
Denote by ds = x. By (4), we have

n;4§d1_1§x§c+n+2.

(5)

If d; = dy = d3, then Lz(G) < 3z%(n—1—2)+ (n+1+2c—3z)?(3z —
2-2c)+n?—=3n—-2= fi(x). fdy =d3+ 1> dy = ds, then Lz(G) <
(x+1)2?n—-2—2)+22%(n—1—2)+ (n+2c—32)*(B3x — 1 — 2¢) + n? —
3n—2= fo(x). If dy =dy = d3 + 1, then Lz(G) <2(x +1)*(n—2—2x) +
2?(n—1—2)+ (n+2c—1-32)?3x — 2¢) + n? — 3n — 2 = f3(x). Since
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1t < < SHE2 e have fo(2)— fi(z) = (2c+n—4z)(6c+n—6z+5) > 0
and f3(z) — fa(x) = (6c+n — 62+ 2)(2¢ +n —4x — 1) > 0. Thus,

fi(@) < faw) < f3(2). (6)

Subcase 1.1. z < §(4c+ 3n).

By (6), we have 4Lz(Go) — 4Lz(G) > 4Lz2(Go) — 4f3(x) = 12(18¢c +
5n — 3)x? — 9623 — 4 (36¢% + 24cn — 24c+3n? — 2n — )z + c2(31c+ 31n —
34) + (9n? — 8n — 35)c + n3 — 2n? — 13n + 38 = f4(x). Since f{(z) =
24(18¢c+5n—24x —3) < f1/(%52) = 24(18c—3n+29) < 23(377—21n) <0
by (5), we have fi(z) < f1("5%) = —4(36¢*—12cn+120c+n?—20n+97) =
4g2(c). Since gh(c) = 12(n — 6¢ — 10) > 2(7n — 130) > 0, we have
169g2(c) < 16995 (4%) = —49n? 4 1820n — 16393 < 0 and thus fi(z) < 0.

Since f;(z) < 0, we have 243 f4(z) > 243 f4 (253" ) = 301¢® — 27(25n —
14)c? — 27(7n? — 152n + 203)c + 27(n — 3)(n? — 27n — 114) = g3(c). Since
g5 (c) = 6(301c — 225n + 126) < 12(819 — 1312n) < 0, we have gj(c) <
95(3) = —27(Tn* — 2n — 182) < 0. Thus, 2197g3(c) > 2197g3({%) =
2(9452n> — 54054012 — 1441908n + 10143549). By the choice of G, we have
39 <n<59and so3<c<A4.

We claim that do = d3. Otherwise, assume that dy = d3+1. By (4), we
have 2 < 24<, and thus 9f4(z) > 9f4(2F¢) = 31¢* — 9(5n + 6)c* — 3(n? —
56n-+77)c+(n—3)(n?—27n—114) = g4(c). Since g4(3) = n(n?—39n+66) >
0and 3 < ¢ < 4, we have ¢ = 4 and 9f4(z) > g4(4) = n®—42n? —81n+538,
contrary with n > 52. Thus, dy = ds.

Combining dy = ds with (6), we have 4Lz(Go) —4Lz(G) > 4Lz(Gy) —
4fa(x) = 12(18¢ + 5n + 5)x? — 9623 — 4(36¢? + 24cn + 12¢ + 3n? + 8n —
5)x + 313 +31c?n+ 14c? + 9en? + 24cn — 43¢ +n2 +2n% —9n+ 30 = f5(x).
Since fI'(z) = 24(18¢ + 5n — 24z + 5) < fI/(2%5%) = 24(18¢c — 3n 4 37) <
22(481 — 21n) < 0, we have fi(z) < fi("5%) = —4(36¢? — 12cn + 156¢ +
n? — 26n + 163) = gs(c). Since g5(3) = —4(n? — 62n + 955) < 0 for
n > 39 and g5(4) = —4(n? — 74n + 1363) < 0 for n > 52, we have
243 f5 () > 243 f5 (252 ) = 301¢® —9(75n—122)c? —27(7n? —104n+307)c+
27(n3—18n2 —21n+270) = gg¢(c). Since g6(3) = 27(n—2)(n?—37n—8) > 0
for n > 39 and gg(4) = 27n3 — 1242n2 — 135n + 10966 > 0 for n > 52, we
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get a contradiction to the choice of G.
Subcase 1.2. 2<53n < 5 < B2 Gipce deE3n o cEnd2 | we have
3<c¢<5 Ifdy =ds+ 1, then % <z < %3"'1 by (4), contrary
with ¢ > 3. Thus, d; = do = ds. By (6), we have Lz(Gy) — Lz(G) >
4Lz(Go) — 4f1(x) = 12(18¢ + 5n + 13)2? — 9623 — 12(6¢ +n +5)(2c +n +
Da +31c2(c+n+2) + ¢(9n? +56n — 3) + (n + 5)(n® +n +6) = fo(x).
Since f§(x) = 24(18c+5n — 24z +13) < f(%52) = 72(6c —n+15) <
72(195 — 7n) < 0 by (5), we have f{(z) < f6("34) =31¢® — 9(5n + 6)c?
3(n?—56n+85)c+n3—30n?—33n+278 = g;(c). Since g¥(c) = 6(31c—15n—
18) < 12(—82n—117) < 0, we have g5(c) < g4(3) = —3(n?+34n—86) < 0.
Thus, 2197g7(c) > 2197g7(7%) = 2(568n® — 19110n? — 57798n 4 305383) >
0, a contradiction.
Case 2. d3 +1 < d;.
We will show that

v € N(v1) U N(vz) holds for any v € V(G) \ {v1,v2}. (7)

Otherwise, there exists vertex v € V(G) \ {v1, vz, v3} such that v € N(Ug)
and v & N(v1)UN (v3) by (3). By (2), we have dy +ds > dy+ds > 2 (n— 1)
Since d3 + 1 < d; and the construction of G, we have dy +d3s = di + d3 =
2(" Ly . Combining this with ¢ < {5, it follows that di +day > d1 +d3 = da+
dy = 221 > 4y +dy and dy = da, which implies that dy +da+ds > n—1. If
v is adjacent to another vertex v’ # vz, then di+dy > da+dy > do+d(v') >
@ by (2) (as v’ € N(v1)UN (v2)UN (v3) by (3)), a contradiction. Thus,
v is a pendent vertex. Since G3 = G—vvs+vy1v is also a c-cyclic graph with
Lz(G) = L2(G3) and d3(G3)+da(G3) = do+dz—1 < 2% (as dy > dy), v

is the unique (pendent) vertex adjacent to vs, which is not adjacent to vy or
vy. Thus, 2d1 = di+dy > n—3 and so d3 < @—"7_3 = "T'*'E’ < "7_7 <
dy — 2 =dy — 2. If G contains at least two pendent vertices, then we may
suppose that u is a pendent vertex adjacent to w € {vy,v2} of G by (3). In
this case, G4 = G—wu-+wvsu is also a c-cyclic graph with Lz(G) = Lz(Gy),
contrary with the fact that di(G4) = dy > do — 1 = do(G4) and di(Gy) =
dy > d3s +2 =d3(G4) + 1. Thus, v is also the unique pendent vertex of G.
By (1), we have 2(n+c¢—1)=dy+de+---+dp, >n—-14+2(n—4)+1,
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contrary with ¢ < 1%. Now, we can conclude that (7) holds.

Next, we claim that vyve € E(G). Otherwise, assume that vivy &
E(G). Then, there exists vertex v such that vve € E(G) and v & P,,»
(Here, we let P,,, be a shortest path connecting v and vy). If vu; € E(G),
then there exists v’ € P,,,, such that v1v" € E(G) and v1 & P,,. By (2), we
have dy+dy > d3+dy > d(v)+d(v') > @, contrary with ¢ < {&. Thus,
vur € E(G). By (2) and dy > d3+1, we have di +d(v) = 2% < dy+d(v),
as v1vg € E(G). Combining this with (7), we have d; + ds > n — 1 and
dy = dy. Combining this with either dy > 3 or dy > ds > 2 (as ¢ > 3), we
have 2n—1) n-1 13

gt tn-lz -1,
contrary with ¢ < {5. Thus, viv € E(G). Combining this with (7), we
can conclude that every vertex of G is adjacent to vy or va. Suppose that
IN(vi) " N(vz)| = s. Then, di +ds =n+s > @ Combining this
with d; <n —2 and (2), we have d; = [22] and dp = | 2£2].

For any vertex v € N(vg) \ N(v1) or v € N(v1) \ N(ve), if vv’ € E(G)
holds for some vertex v’ & {vi,ve}, then dy + d(v') > @ by (2).
Combining this with either dy > 3 or dy > d5 > 2 (as ¢ > 3), we have

2n+c—1) >

2(n+ec—1) >

2(n—1) {n+8

13
1> 2(nh—1
3 2 J+” 25 =1,

contrary with ¢ < 75. This implies that v is a pendent vertex holds for
any v € (N(v1) N N(v2)) U {v1,v2}, that is, G contains exactly n — s — 2
pendent vertices. Since G is a c-cyclic graph with ¢ > 3 and v1v2 € E(G),
we have 2 < s < ¢ and d3 < s+ 1. Note that dy = [232] and dy = | 252 ].

Thus,

(n+s)%*(n—2—s). (8)

| =

di(n—1—d)+d3(n—1—dy) <

Next, we will show that s = ¢ and so G = Gy.

Subcase 2.1. 2 < s < % Since d3 < s+1 < c¢+1-05s <c¢ <

15 < %‘4 <dy—1<dyand dy +dy = n+ s, we have 7 < (dy,da,c +
1—0.5s,¢c+1—0.55,1""49). Combining this with (8), we have Lz(G) <

in+s)?2Mm—-2-5)+(c+1-055)22n—4+s5—2c)+ (n—4)(n—2).
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Thus, 4Lz(Go) —4Lz(G) > (6¢c —n +10)s% — (n — 2¢ — 2)(n — 6¢ — 10)s +
7c¢3 — 9c¢?n + 30¢2 + cn? — 8cn — 3¢ —n — 2 = hy(s). Note that h{(s) =
2(6¢ —n +10) < Z(130 — 7n) < 0. Thus,

— 13
b (s) > min{h1(2),h1 (2;)} (9)

Since 9hy (%) = 15¢*—(3Tn—118)c?+3(n—7)(n+7)c—9In—18 = gg(c).
Since g§(c) = 2(45¢c — 37n + 118) < +£(767 — 218n) < 0, gs(3) = 9(n* —
380+ 112) > 0 and 2197gs (1) = 41n® + 1534n? — 44616n — 39546 > 0, we
have gs(c) > min{gs(3),9s (f5)} > 0. Combining this with (9), we have
hi(2) = 7¢3 —3(3n —2)c? + (n? 4+ 8n — 43)c — 2n? + 19n — 2 = go(c) < 0.

Since gg(c) = 6(7c — 3n +2) < 12(13 — 16n) < 0, we have gg(c) >
min{gy(3), go({%)}. Note that go(3) = n*—38n+112 > 0 and 2197gy(+%) =
59n3 — 2964n2 + 34476n — 4394 > 0. Thus, go(c) > 0, a contradiction.
Subcase 2.2. % < s<c—1. Then, ¢ > 4 and n > 52. Since 2
2(c+1-s) <2(c—1) < Z(n—13) < 25* < dy—1 < dp and dy +dz = n+s,
we have 7 < (dy, da, 2(c+1—5),2067D 1("=5=2)) " Combining this with (8),
we have Lz(G) < t(n+s)?(n —2—s) +4(c+1—s)*(n + 25 — 2c —
3N +4(s—1)(n—3)+ (n—s—2)(n—2). Thus, 4Lz(Gy) — 4L2(G) >
3(32c — 5n + 38)s? — 3183 — (96¢% — 32cn + 224c + n? — 24n + 88)s +
31¢3 — 17¢%n + 110¢2 + en? — 24cen + 85¢ — n — 2 = ha(s). Since hf(s) =
6(32c — 5n — 31s + 38) < 2(34c — 15n + 114) < 3(1482 — 161n) < 0, we
have hy(s) > min{ha(32), hao(c — 1)}.

Since ha(c — 1) = =3¢ —2(n + 2)c+ (n — 7)(n — 33) = g1o(c) and
gio(c) = —2(Bc+n+2) < 0, we have 169g1(c) > 169g10(5) = 140n? —
6812n + 39039 > 0. This implies that 27hs(2) = 13c® — 9(7n — 34)c? +
9(n? — 24n + 79)c — 27(n + 2) = g11(c) < 0. Note that g7;(c) = 6(13¢c —
2In + 102) < 6(102 — 20n) < 0. Thus, gi11(c) > min{g11(4),911(73)}

IN

Since n > 52, we have g11(4) = 36n% —1899n + 8518 > 0 and 169911(%) =
55n3 — 2502n2 4 4680n — 9126 > 0, a contradiction.
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