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Abstract

For a connected graph G with n vertices, the Lanzhou index of
G is defined as

Lz(G) =
∑

v∈V (G)

d(v)2 [n− 1− d(v)],

where d(v) is the degree of vertex v in G. The extremal graphs
with minimum (respectively, maximum) Lanzhou index has been
determined for trees, unicyclic graphs, bicyclic graphs and tricyclic
graphs with n vertices, respectively. In this paper, by applying
the majorization method, we determine the unique extremal graph
with minimum Lanzhou index for c-cyclic graph for n ≥ 3c + 4
vertices and c ≥ 1. Besides, we determine the unique extremal
graph with maximum Lanzhou index in the class of c-cyclic graph
with n vertices for 3 ≤ c ≤ n

13
, and we also illustrate an example

to show that the bound n
13

is the best possible. This extends the
corresponding results of [4, 9–11,13].

∗The first two authors are co-first authors with equal contributions to this paper,
the third and fourth authors are both corresponding authors of this paper.
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1 Introduction

Throughout this paper we consider undirected simple connected graphs.

Let G be a graph with vertex set V(G) and edge set E(G). A connected

graph with m = n+ c− 1 edges and n vertices is called a c-cyclic graph.

Especially, when c = 0, 1, 2 or 3, then G is called a tree, unicyclic graph,

bicyclic graph or tricyclic graph, respectively. As usual, let d(u) and N(u)

denote, respectively, the degree and neighbor set of the vertex u ∈ V (G).

A vertex of degree one will be always referred as a pendent vertex.

For V(G) = {v1, v2, . . . , vn}, if the degree of vi equals di for 1 ≤ i ≤
n, then π = (d1, d2, . . . , dn) is called the degree sequence of graph G.

Sometimes, we write di(G) in place of di to indicate the dependent of G.

Clearly, if G is a c-cyclic graph with degree sequence π = (d1, d2, . . . , dn),

then

n∑
i=1

di = 2(n+ c− 1). (1)

Throughout this paper, we enumerate the degrees in non-increasing order,

that is, d1 ≥ d2 ≥ · · · ≥ dn.

The first Zagreb index M1(G) and the forgotten index F (G) of

graph G is defined as

M1(G) =
∑

v∈V (G)

d(v)2 and F (G) =
∑

v∈V (G)

d(v)3,

respectively. The first Zagreb index was defined by Gutman and Trinajstić

in [7], while the forgotten index was reintroduced by Furtula and Gutman

in [5]. The mathematical and chemical properties of the first Zagreb index

haven been studied in [6, 15,16].

In 2018, Vukičević, Li, Sedlar and Doslić, proposed a new topological

index, that is, the Lanzhou index Lz(G), for a molecular graph G with

n vertices [13], where

Lz(G) = (n− 1)M1(G)− F (G) =
∑

v∈V (G)

d(v)2 [n− 1− d(v)].
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In [13], the authors showed that the Lanzhou index behaves better than

the existing ones in predicting a chemically relevant property. From the

definition, one can easily see that the Lanzhou index is a linear combination

of Zagreb and forgotten indices [1].

A chemical graph is a connected graph with maximum degree at

most four. Determining extreme values or extremal graphs for different

topological indices on certain graph classes is very interesting in the reser-

ach of Chemical Graph Theory. In this line, the minimum and maximum

Lanzhou indices, respectively, among all connected graphs with n vertices

has been determined by Vukičević et. al. [13]. In the same paper, Vukičević

et. al. also determined the minimum and maximum Lanzhou indices, re-

spectively, among all trees with n vertices [13]. Later, Liu et. al. [11]

determined the minimum and maximum Lanzhou indices in the class of

unicyclic graphs and chemical graphs with n vertices, respectively; Liu [10]

determined the minimum and maximum Lanzhou indices, respectively, in

the class of bicyclic graphs with n vertices; Cui and Zhao [4] identified the

minimum Lanzhou indices in the class of tricyclic graphs with n vertices.

By establishing an upper bound to the Lanzhou index for trees with n

vertices and fixed maximum degree, Li et. al. [9] also deduced the min-

imum and maximum Lanzhou indices of unicyclic graphs with n vertices

respectively, and they also determined the maximum Lanzhou index for

chemical trees with n vertices. Recently, Albalahi et. al. [2] also deter-

mined the maximum Lanzhou index of chemical graphs with n vertices

and m edges. In this paper, we are concerned with extremal results of

Lanzhou index in the class of c-cyclic graphs with n vertices. By employ-

ing the majorization method, we determine the unique extremal graph

with minimum Lanzhou index in the class of c-cyclic graphs for n ≥ 3c+4

and c ≥ 1; and we also identify the unique extremal graph with maximum

Lanzhou index among all c-cyclic graphs with n and 3 ≤ c ≤ n
13 .

Let Fk be the friendship graph (Dutch windmill graph), which is

a graph obtained from k triangles that share exactly one vertex. Let H0

be the c-cyclic graph obtained from Fc by attaching n − 2c − 1 pendant

vertices to the unique vertex of degree 2c of Fc. The following is one of

our main results:
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Theorem 1. Let G be a c-cyclic graph with n vertices. If n ≥ 3c+ 4 and

c ≥ 1, then

Lz(G) ≥ Lz(H0) = (n− 1)(n− 2) + 2c(3n− 10),

where equality holds if and only if G = H0.

wc

W0
v1

v2

w1 w2

Figure 1. The graph W0.

For c ≥ 0, let G0 be the c-cyclic graph with n vertices, which is obtained

from W0 (see Figure 1) by attaching ⌈0.5(n− c− 2)⌉ and ⌊0.5(n− c− 2)⌋
pendent vertices to v1 and v2, respectively. The following is the second

main result of this paper.

Theorem 2. If 3 ≤ c ≤ n
13 and G is a c-cyclic graph with n vertices, then

Lz(G) ≤ Lz(G0), where the equality holds if and only if G = G0.

Let G be the tricyclic graph with 38 vertices, which is obtained from the

complete graph K4 with four vertices by attaching 11, 11 and 12 pendent

vertices to each of three vertices of K4, respectively. By an elementary

computation, we have Lz(G) = 15496 > 15464 = Lz(G0) for n = 38 and

c = 3. Thus, the bound n
13 of Theorem 2 is best possible.

For a graph category G, if Lz(G) is maximum (respectively, minimum)

in G, then we call G as a maximum (respectively, minimum) extremal

graph of G. Vukičević et. al. [13] showed that G0 is the unique maximum

extremal graph of trees with n ≥ 15 vertices, Liu et. al. [11] proved that

G0 is the unique maximum extremal graph of unicyclic graphs with n ≥ 28

vertices, and Liu [10] identified that G0 is the unique maximum extremal
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graph of bicyclic graphs with n ≥ 33 vertices. Combining these results

with Theorem 2, we can conclude that: When n is large enough, G0 is the

unique maximum extremal graph of c-cyclic graphs with n vertices.

2 Proof of Theorem 1

The majorization theorem is an important and effective tool to deal with

extremal problem of graph spectrum and topological index theory.

Definition 1. [12] Let π = (a1, a2, . . . , an) and π′ = (a′1, a
′
2, . . . , a

′
n) be

two different non-increasing sequences of nonnegative real numbers, we

write π ◁ π′ if and only if
∑j

i=1 ai =
∑j

i=1 a
′
i, and

∑j
i=1 ai ≤

∑j
i=1 a

′
i for

all j = 1, 2, · · · , n. The ordering π ◁ π′ is sometimes called majorization.

A real valued function f(x) defined on a convex set D is said to be

strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

holds for all 0 < λ < 1 and all x, y ∈ D. The following majorization

theorem for a strictly convex function had been discovered long time ago.

Lemma 1. [12] Let π = (a1, a2, . . . , ap) and π′ = (a′1, a
′
2, . . . , a

′
p) be two

different non-increasing sequence of non-negative real numbers. If π ◁ π′

and f(x) is a strictly convex function, then
∑p

i=1 f(ai) <
∑p

i=1 f(a
′
i).

In what follows, we always define f(x) = x2(n− 1− x). Since f ′′(x) =

2(n− 1− 3x), f(x) is a strictly convex function for x ≤ n−1
3 .

Corollary 1. Let π and π′ be two different non-increasing degree sequences

with π ◁ π′. If G ∈ Γ(π) and G′ ∈ Γ(π′), then Lz(G) < Lz(G
′) holds for

∆(G′) ≤ n−1
3 .

Proof: Denote by π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) the degree

sequences of G and G′, respectively. Since ∆(G′) ≤ n−1
3 and π ◁ π′, we

have d1 ≤ d′1 ≤ n−1
3 by Definition 1, we have Lz(G) < Lz(G

′) by Lemma

1, as f(x) is a strictly convex function for x ≤ n−1
3 .

Let q(p) denote p copies of the real number q.
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Lemma 2. Let G be a c-cyclic graph with n vertices and degree sequence

π, where c ≥ 1. If ∆(G) ≤ n−1
3 and π ̸= π1, then π1 ◁ π, where π1 =

(3(2c−2), 2(n−2c+2)).

Proof: By contradiction, assume that the result does not hold. Denote by

π = (d′1, d
′
2, . . . , d

′
n) the degree sequence of G and π1 = (d1, d2, . . . , dn). By

Definition 1, there exists j with 1 ≤ j ≤ n such that
∑j

i=1 di >
∑j

i=1 d
′
i.

If 1 ≤ j ≤ 2(c−1), then
∑j

i=1 d
′
i < 3j. Thus, 2 ≥ d′j ≥ d′j+1 ≥ . . . ≥ d′n.

Combining this with π1 = (3(2c−2), 2(n−2c+2)), we have∑n
i=1 d

′
i < 2(n− j) + 3j = 2n+ j ≤ 2(n+ c− 1),

contrary with
∑n

i=1 d
′
i = 2(n+ c− 1).

If 2(c− 1) + 1 ≤ j ≤ n, then
∑j

i=1 d
′
i < 3 · 2(c− 1) + 2[j − 2(c− 1)] =

2(j + c− 1). Thus, d′j+1 + d′j+2 + · · ·+ d′n > 2(n+ c− 1)− 2(j + c− 1) =

2(n − j), which implies that d′1 ≥ d′2 ≥ . . . ≥ d′j ≥ d′j+1 ≥ 3. Thus,

2(j + c− 1) >
∑j

i=1 d
′
i ≥ 3j, and so j < 2(c− 1), a contradiction.

Corollary 2. Let G be a c-cyclic graph with n vertices. If 2 ≤ ∆(G) ≤ n−1
3

and c ≥ 1, then Lz(G) ≥ 4n2 +10nc− 22n− 48c+48, with equality if and

only if the degree sequence of G is equal to π1 = (3(2c−2), 2(n−2c+2)).

Proof: Since 2 ≤ ∆(G) ≤ n−1
3 , by Lemma 2, π1 = (3(2c−2), 2(n−2c+2)) is

the minimum degree sequence in the relationship ◁ among all these degree

sequences of c-cyclic graphs with n vertices. The corollary follows from

Corollary 1.

Remark. A result similar to Corollary 2 has been presented in [3].

Lemma 3. If 1 ≤ c ≤ n−4
3 and Lz(G) is minimum in the class of c-cyclic

graphs with n vertices, then G contains at most one vertex of degree greater

than n−1
3 .

Proof: Suppose that, G contains at least two vertices of degree greater

than n−1
3 . Let π = (d1, d2, . . . , dn) be the degree sequence of G, where

d1 ≥ d2 > n−1
3 .

Suppose that d(v1) = d1 and d(v2) = d2. Let Pv1v2
be a shortest

path connecting with v1 and v2. Since G is a c-cyclic graph, we have
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|N(v1) ∩N(v2)| ≤ c+1 ≤ n−1
3 < d2, G contains a vertex w ̸= v1 such that

w ∈ N(v2) \N(v1) and w ̸∈ V (Pv1v2), then let G′ = G− v2w+ v1w. Since

d1 ≥ d2, there also exists vertex w′ ̸= v2 such that w′ ∈ N(v1)\N(v2) and

w′ ̸∈ V (Pv1v2). Let G
′′ = G−v1w

′+v2w
′. By the choice of G and d1+d2 >

2(n−1)
3 , we have 0 ≤ Lz(G

′)+Lz(G
′′)−2Lz(G) = 2(2n−3d1−3d2−2) < 0,

contrary with the choice of G.

In the rest of this section, we may always suppose that Lz(G) is mini-

mum in the class of c-cyclic graphs with n vertices, where c ≤ n−4
3 . Bear-

ing Lemma 3 into consideration, G contains at most one vertex of degree

greater than n−1
3 .

Lemma 4. Let G be a c-cyclic graph with n vertices. If n ≥ 3c + 4 and
n−1
3 < ∆(G) = ∆ < 2c, then Lz(G) ≥ ∆2(n− 1−∆)+9(2c−∆)(n− 4)+

4(n− 2c+∆− 1)(n− 3).

Proof: Suppose that the degree sequence of G is π′ = (∆, d′2, . . . , d
′
n)

and denote by π = (∆, d2, . . . , dn) = (∆, 3(2c−∆), 2(n−2c+∆−1)). Let a′ =

(d′2, . . . , d
′
n) and a = (d2, . . . , dn). Next, we show that a◁a′ for π ̸= π′. By

contradiction, assume that this is not true. By Definition 1, there exists j

with 2 ≤ j ≤ n such that
∑j

i=2 d
′
i <

∑j
i=2 di.

If 2 ≤ j ≤ 2c −∆, then
∑j

i=2 d
′
i < 3(j − 1). Thus 2 ≥ d′j ≥ . . . ≥ d′n,

then
∑n

i=2 d
′
i < 3(j − 1) + 2(n − j) = 2n + j − 3 ≤ 2n + (2c −∆) − 3 =

2(n+ c− 1)−∆− 1, a contradiction.

If 2c−∆+1 ≤ j ≤ n, then
∑j

i=2 d
′
i < 3(2c−∆)+ 2(j − 2c+∆− 1) =

2(j + c − 1) − ∆. Thus
∑n

i=j+1 d
′
i > 2(n + c − 1) − ∆ − [2(j + c − 1) −

∆] = 2(n − j), which implies that d′2 ≥ . . . ≥ d′j+1 ≥ 3. Now, we have∑n
i=2 d

′
i > 3(j−1)+2(n−j) = 2n+j−3 ≥ 2(n+c−1)−∆, a contradiction.

By Lemma 3, we have d′n ≤ d′n−1 ≤ . . . ≤ d′2 ≤ n−1
3 . Thus, the result

follows from Lemma 1.

Lemma 5. Let G be a minimum extremal graph in the class of c-cyclic

graph with n vertices. If n ≥ 3c + 4 and n−1
3 < ∆ < 2c, then Lz(G) >

Lz(H0).

Proof: Since n ≥ 3c + 4 and n−1
3 < ∆ < 2c, we have c ≥ 2 and n ≥ 10.
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By Lemma 4, we have

Lz(G)−Lz(G0) ≥ −∆3+(n−1)∆2+(24−5n)∆+3n2+4nc−13n−28c+10.

Let f(x) = −x3+(n−1)x2+(24−5n)x+3n2+4nc−13n−28c+10. Since

f ′(x) = −3x2 +2(n− 1)x+24− 5n and f ′′(x) = −6x+2(n− 1), we have

f ′′(x) < 0 and f ′(x) ≥ f ′(2c−1) when n−1
3 < x ≤ 2c−1. By an elementary

computation, it follows that f ′(2c−1) = −12c2+(4n+8)c−7n+23 = g(c).

Since 2 ≤ c ≤ n−4
3 and

min

{
g(2), g

(
n− 4

3

)}
= n− 9 > 0,

then f ′(x) ≥ f ′(2c− 1) > 0 for n−1
3 < x ≤ 2c− 1, this implies that

f(x) > f

(
n− 1

3

)
=

2

27

(
54(n− 7)c+ (n− 1)(n2 + 16n− 26)

)
>

2

27
(n− 1)(n2 + 16n− 26) > 0

for n−1
3 < x ≤ 2c− 1. Thus Lz(G) > Lz(H0), as desired.

Lemma 6. Let G be a minimum extremal graph in the class of c-cyclic

graphs with n vertices and degree sequence π. If ∆ ≥ 2c ≥ 2, n ≥ 3c + 4

and π ̸= π2, then π2 ◁ π, where π2 = (∆, 2(n+2c−∆−1), 1(△−2c)).

Proof: Let π = (∆, d′2, . . . , d
′
n) and π2 = (∆, d2, . . . , dn), where d′n ≤

d′n−1 ≤ . . . ≤ d′2 ≤ n−1
3 by Lemma 3. Assume that the result does not

hold. Then, there exists j with 2 ≤ j ≤ n such that
∑j

i=2 d
′
i <

∑j
i=2 di.

If 2 ≤ j ≤ n+2c−∆, then d′2 + · · ·+ d′j < 2(j− 1), which implies that

d′j = d′j+1 = · · · = d′n = 1. Thus,

∆ + 2(j − 1) > ∆+

j∑
i=2

d′i = 2(n+ c− 1)− (n− j),

and thus j > n+ 2c−∆, a contradiction.
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If n+ 2c−∆+ 1 ≤ j ≤ n, then

∆ +

j∑
i=2

d′i < ∆+ 2(n+ 2c− 1−∆) + [j − (n+ 2c−∆)] = n+ 2c+ j − 2,

and so
n∑

i=j+1

d′i > 2(n+ c− 1)− (n+ 2c+ j − 2) = n− j.

This follows that d′2 ≥ d′3 ≥ . . . ≥ d′j+1 ≥ 2, which implies that

∆ +

n∑
i=2

d′i > ∆+ 2(j − 1) + (n− j) = n+ j +∆− 2

≥ n+ (n+ 2c−∆+ 1) +∆− 2 = 2n+ 2c− 1,

a contradiction.

Lemma 7. Let G be a minimum extremal graph in the class of c-cyclic

graphs with n vertices. If ∆ ≥ 2c ≥ 2 and n ≥ 3c + 4, then Lz(G) ≥
Lz(H0), with equality if and only if G = H0.

Proof: Let π = (∆, d′2, . . . , d
′
n) be the degree sequence of G. By Lemma

3, we have d′2 ≤ n−1
3 . Combining this with Lemmas 1 and 6, we have π =

π2 = (∆, 2(n+2c−∆−1), 1(△−2c)). IfG ̸= H0, then π ̸= (n−1, 2(2c), 1(n−2c−1))

and so ∆ ≤ n− 2.

By an elementary computation, we have

Lz(G)− Lz(H0) = △2(n−∆− 1) + (4n+ 8c− 4△− 4)(n− 3)

+ (△− 2c)(n− 2)− 8c(n− 3)− (n− 2c− 1)(n− 2)

= (n− 1−∆)(3n+∆2 − 10) > 0,

a contradiction.

Proof of Theorem 1: Let G be a minimum extremal graph in the class

of c-cyclic graphs with n vertices for n ≥ 3c+ 4 and c ≥ 1. By Lemmas 5

and 7, it suffices to consider the case of ∆ ≤ n−1
3 . By Corollary 2, we have

Lz(G) ≥ 4n2+10nc− 22n− 48c+48. Combining this with n ≥ 3c+4 and
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c ≥ 1, we have

Lz(G)− Lz(H0) ≥ 3n2 + 4nc− 19n− 28c+ 46

= 3(n− 3)2 + (n− 7)(4c− 1) + 12 > 0,

contrary with the choice of G.

3 Proof of Theorem 2

This section will be dedicated to the proof of Theorem 2. Note that(⌈
n+ c

2

⌉)2 (
n− 1−

⌈
n+ c

2

⌉)
+

(⌊
n+ c

2

⌋)2 (
n− 1−

⌊
n+ c

2

⌋)
≥1

8
(n+ c+ 1)

2
(n− 3− c) +

1

8
(n+ c− 1)

2
(n− 1− c) .

Thus,

Lz(G0) ≥
1

8

[
(n+ c+ 1)2(n− c− 3) + (n+ c− 1)2(n− c− 1)

]
+ 4c(n− 3) + (n− 2− c)(n− 2)

=
1

4

[
− c3 − (n+ 2)c2 + (n2 + 8n− 43)c+ (n− 1)(n2 + 3n− 14)

]
.

Throughout this section, we always suppose that G is a maximum ex-

tremal graph of c-cyclic graphs with n vertices, and let π = (d1, d2, . . . , dn)

be the degree sequence of G, where V(G) = {v1, v2, . . . , vn} and d(vi) =

di = di(G) holds for 1 ≤ i ≤ n. Since G0 is also a c-cyclic graph with n

vertices, we have Lz(G) ≥ Lz(G0). In what follows, we always show that

Lz(G) < Lz(G0) for G ̸= G0 to get a contradiction.

For any two different vertices u, v ∈ V (G), let Puv be an arbitrary path

connecting u and v. If there exists u′ ∈ N(u) and v′ ∈ N(v) such that

u′, v′ ̸∈ V (Puv), then let G1 = G− vv′ + uv′ and G2 = G− uu′ + vu′. In

this case,

2Lz(G)− Lz(G1)− Lz(G2) = −2 (2n− 3d(u)− 3d(v)− 2) ≥ 0, and
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Lz(G)− Lz(G1) = (d(v)− d(u)− 1) (2n− 3d(u)− 3d(v)− 2) ≥ 0.

This follows that

d(u) + d(v) ≥ 2(n− 1)

3
. (2)

We claim that d1 ≤ n− 2. Otherwise, assume that d1 = n− 1. Then,

(d2, d3, ..., dn)⊴ (2c+ 1, 1(n−2)). Since 2c+ 1 ≤ 2n+13
13 < n−1

3 and f(x) =

x2 (n − 1 − x) is strictly convex for x < n−1
3 , we have Lz(G) ≤ (2c +

1)2(n−2−2c)+(n−2)2 by Lemma 1. Thus, we have 4Lz(G0)−4Lz(G) ≥
31c3 − (17n− 62)c2 +(n2 − 8n− 3)c+(n− 1)(n− 3)(n+2) = g1(c). Since

g′′1 (c) = 2(93c− 17n+ 62) ≤ 4
13 (403− 64n) < 0, we have

g1(c) ≥ min
{
g1(3), g1

( n

13

)}
> 0,

as g1(3) = n3 + n2 − 182n + 1392 > 0 and 2197g1
(

n
13

)
= 2(1088n3 −

2470n2−5746n+6591) > 0, a contradiction. This confirms our claim that

d1 ≤ n− 2.

Since d1 ≤ n − 2, there exits u ∈ V (G) \ {v1} such that u ̸∈ N(v1),

which also implies that there exists vertex w such that u ̸∈ Pv1w and

uw ∈ E(G). Since d1 ≥ d(w), there exists v ∈ N(v1) and v ̸∈ Pv1w such

that vw ̸∈ E(G). Thus, d(v1)+ d(w) ≥ 2(n−1)
3 by (2), which confirms that

d1 ≥ n−1
3 .

If there exists vertex v ∈ V(G) \ {v1, v2, v3} such that v ̸∈ N(v1) ∪
N(v2) ∪ N(v3), then there exists vertex v′ ̸∈ {v1, v2, v3} such that vv′ ∈
E(G) and v ̸∈ Pv′v3 . By (2), we have d1 + d2 ≥ d3 + d4 ≥ d3 + d(v′) ≥
2(n−1)

3 , as d3 ≥ d(v′) and vv3 ̸∈ E(G). This implies that 2(n + c −
1) ≥ 4(n−1)

3 + n − 4 by (1), contrary with c ≤ n
13 . If v3v1 ̸∈ E(G) and

v2v3 ̸∈ E(G), then there exists v′ ̸∈ {v1, v2, v3} such that v3v
′ ∈ E(G) and

v3 ̸∈ Pv′v2 . By (2), we have d1 + d3 ≥ d2 + d4 ≥ d2 + d(v′) ≥ 2(n−1)
3 ,

and thus 2(n + c − 1) ≥ 4(n−1)
3 + n − 4, contrary with c ≤ n

13 . Thus,

v3 ∈ N(v1)∪N(v2). With the similar reason, we have v2 ∈ N(v1)∪N(v3)

and v1 ∈ N(v2) ∪N(v3). Now, we can conclude that

v ∈ N(v1) ∪N(v2) ∪N(v3) holds for any v ∈ V(G). (3)
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Case 1. d1 ≤ d3 + 1. Among these n − 3 vertices of V(G) \ {v1, v2, v3},
we suppose that there are si vertices each of which is adjacent to exactly

i vertices of {v1, v2, v3}, where 1 ≤ i ≤ 3. Since d1 + d2 + d3 ≤ s1 + 2s2 +

3s3+6 ≤ n− 3− s2− s3+2s1+3s3+6 = n+3+ s2+2s3 and G contains

at most n− s2 − s3 − 3 pendent vertices, we have

2(n+ c− 1) ≥ n− s2 − s3 − 3 + 2s2 + 3s3 + d1 + d2 + d3

≥ 2(d1 + d2 + d3)− 6. (4)

We will show that d5 ≥ 2. Otherwise, assume that d5 = 1. Since

c ≥ 3 and G contains at least n − 4 pendent vertices, we have 3 = c.

By (3), it follows that n + 2 + 2c − d1 − d2 − d3 = d4 = 3 and so π =

(d1, d2, d3, 3, 1
(n−4)). Note that d1 ≤ d3 + 1 and G contains exactly n− 4

pendent vertices. If d3 ≤ n−1
3 , then 2(n+c−1) = 2n+4 ≤ 2(n+2)

3 + n−1
3 +

3 + n − 4 = 2n, a contradiction. Thus, d3 > n−1
3 . Combining this with(

n+5
3 , n+5

3 , n+5
3 , 3, 1(n−4)

)
⊴ π, we have Lz(G) ≤ 2

9 (n + 5)2(n − 4) + (n −
4)(n − 2) + 9(n − 4) by Lemma 1, as f(x) = x2 (x + 1 − n) is a strictly

convex function for x > n−1
3 . Since c = 3, we have 36Lz(G0)−36Lz(G) ≥

n3 − 39n2 − 6n + 368 > 0, a contradiction. Now, we can conclude that

d5 ≥ 2.

Since d1 ≥ n−1
3 , we have n+1+2c− d1 − d2 − d3 ≤ n+2c+1− 3d3 ≤

n+ 2c+ 1− 3d1 + 3 ≤ 5 + 2c ≤ 5 + 2n
13 < n−4

3 ≤ d1 − 1 ≤ d3 and d5 ≥ 2.

This implies that π ⊴ (d1, d2, d3, n+ 1 + 2c− d1 − d2 − d3, 2, 1
(n−5)).

By Lemma 1, we have Lz(G) ≤ d21(n−1−d1)+d22(n−1−d2)+d23(n−
1− d3) + (n+1+ 2c− d1 − d2 − d3)

2(d1 + d2 + d3 − 2− 2c) + n2 − 3n− 2.

Denote by d3 = x. By (4), we have

n− 4

3
≤ d1 − 1 ≤ x ≤ c+ n+ 2

3
. (5)

If d1 = d2 = d3, then Lz(G) ≤ 3x2(n− 1−x)+ (n+1+2c− 3x)2(3x−
2 − 2c) + n2 − 3n − 2 = f1(x). If d1 = d3 + 1 > d2 = d3, then Lz(G) ≤
(x+ 1)2(n− 2− x) + 2x2(n− 1− x) + (n+ 2c− 3x)2(3x− 1− 2c) + n2 −
3n− 2 = f2(x). If d1 = d2 = d3 + 1, then Lz(G) ≤ 2(x+ 1)2(n− 2− x) +

x2(n− 1− x) + (n+ 2c− 1− 3x)2(3x− 2c) + n2 − 3n− 2 = f3(x). Since
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n−4
3 < x ≤ c+n+2

3 , we have f2(x)−f1(x) = (2c+n−4x)(6c+n−6x+5) > 0

and f3(x)− f2(x) = (6c+ n− 6x+ 2)(2c+ n− 4x− 1) > 0. Thus,

f1(x) < f2(x) < f3(x). (6)

Subcase 1.1. x ≤ 1
9 (4c+ 3n).

By (6), we have 4Lz(G0) − 4Lz(G) ≥ 4Lz(G0) − 4f3(x) = 12(18c +

5n− 3)x2 − 96x3 − 4 (36c2 +24cn− 24c+3n2 − 2n− 7)x+ c2(31c+31n−
34) + (9n2 − 8n − 35)c + n3 − 2n2 − 13n + 38 = f4(x). Since f ′′

4 (x) =

24(18c+5n−24x−3) ≤ f ′′
4 (

n−4
3 ) = 24(18c−3n+29) ≤ 24

13 (377−21n) < 0

by (5), we have f ′
4(x) < f ′

4(
n−4
3 ) = −4(36c2−12cn+120c+n2−20n+97) =

4g2(c). Since g′2(c) = 12(n − 6c − 10) ≥ 12
13 (7n − 130) > 0, we have

169g2(c) ≤ 169g2
(

n
13

)
= −49n2 + 1820n− 16393 < 0 and thus f ′

4(x) < 0.

Since f ′
4(x) < 0, we have 243f4(x) ≥ 243f4(

4c+3n
9 ) = 301c3 − 27(25n−

14)c2 − 27(7n2 − 152n+ 203)c+ 27(n− 3)(n2 − 27n− 114) = g3(c). Since

g′′3 (c) = 6(301c − 225n + 126) ≤ 12
13 (819 − 1312n) < 0, we have g′3(c) ≤

g′3(3) = −27(7n2 − 2n − 182) < 0. Thus, 2197g3(c) ≥ 2197g3(
n
13 ) =

2(9452n3−540540n2−1441908n+10143549). By the choice of G, we have

39 ≤ n ≤ 59 and so 3 ≤ c ≤ 4.

We claim that d2 = d3. Otherwise, assume that d2 = d3+1. By (4), we

have x ≤ n+c
3 , and thus 9f4(x) ≥ 9f4(

n+c
3 ) = 31c3 − 9(5n+ 6)c2 − 3(n2 −

56n+77)c+(n−3)(n2−27n−114) = g4(c). Since g4(3) = n(n2−39n+66) >

0 and 3 ≤ c ≤ 4, we have c = 4 and 9f4(x) ≥ g4(4) = n3−42n2−81n+538,

contrary with n ≥ 52. Thus, d2 = d3.

Combining d2 = d3 with (6), we have 4Lz(G0)− 4Lz(G) ≥ 4Lz(G0)−
4f2(x) = 12(18c + 5n + 5)x2 − 96x3 − 4(36c2 + 24cn + 12c + 3n2 + 8n −
5)x+31c3+31c2n+14c2+9cn2+24cn−43c+n3+2n2−9n+30 = f5(x).

Since f ′′
5 (x) = 24(18c + 5n − 24x + 5) ≤ f ′′

5 (
n−4
3 ) = 24(18c − 3n + 37) ≤

24
13 (481 − 21n) < 0, we have f ′

5(x) ≤ f ′
5(

n−4
3 ) = −4(36c2 − 12cn + 156c +

n2 − 26n + 163) = g5(c). Since g5(3) = −4(n2 − 62n + 955) < 0 for

n ≥ 39 and g5(4) = −4(n2 − 74n + 1363) < 0 for n ≥ 52, we have

243f5(x) ≥ 243f5(
4c+3n

9 ) = 301c3−9(75n−122)c2−27(7n2−104n+307)c+

27(n3−18n2−21n+270) = g6(c). Since g6(3) = 27(n−2)(n2−37n−8) > 0

for n ≥ 39 and g6(4) = 27n3 − 1242n2 − 135n+ 10966 > 0 for n ≥ 52, we
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get a contradiction to the choice of G.

Subcase 1.2. 4c+3n
9 < x ≤ c+n+2

3 . Since 4c+3n
9 < c+n+2

3 , we have

3 ≤ c ≤ 5. If d1 = d3 + 1, then 4c+3n
9 < x ≤ c+n+1

3 by (4), contrary

with c ≥ 3. Thus, d1 = d2 = d3. By (6), we have Lz(G0) − Lz(G) ≥
4Lz(G0)− 4f1(x) = 12(18c+5n+13)x2 − 96x3 − 12(6c+ n+5)(2c+ n+

1)x+ 31c2(c+ n+ 2) + c(9n2 + 56n− 3) + (n+ 5)(n2 + n+ 6) = f6(x).

Since f ′′
6 (x) = 24(18c+5n− 24x+13) ≤ f ′′

6 (
n−4
3 ) = 72(6c− n+15) ≤

72
13 (195− 7n) < 0 by (5), we have f ′

6(x) ≤ f ′
6(

n−4
3 ) = 31c3 − 9(5n+ 6)c2 −

3(n2−56n+85)c+n3−30n2−33n+278 = g7(c). Since g
′′
7 (c) = 6(31c−15n−

18) ≤ 12
13 (−82n−117) < 0, we have g′7(c) ≤ g′7(3) = −3(n2+34n−86) < 0.

Thus, 2197g7(c) ≥ 2197g7(
n
13 ) = 2(568n3− 19110n2− 57798n+305383) >

0, a contradiction.

Case 2. d3 + 1 < d1.

We will show that

v ∈ N(v1) ∪N(v2) holds for any v ∈ V(G) \ {v1, v2}. (7)

Otherwise, there exists vertex v ∈ V(G) \ {v1, v2, v3} such that v ∈ N(v3)

and v ̸∈ N(v1)∪N(v2) by (3). By (2), we have d1+d3 ≥ d2+d3 ≥ 2(n−1)
3 .

Since d3+1 < d1 and the construction of G1, we have d2+ d3 = d1+ d3 =
2(n−1)

3 . Combining this with c ≤ n
13 , it follows that d1+d2 ≥ d1+d3 = d2+

d3 = 2(n−1)
3 > d1+d4 and d1 = d2, which implies that d1+d2+d3 ≥ n−1. If

v is adjacent to another vertex v′ ̸= v3, then d1+d4 ≥ d2+d4 ≥ d2+d(v′) ≥
2(n−1)

3 by (2) (as v′ ∈ N(v1)∪N(v2)∪N(v3) by (3)), a contradiction. Thus,

v is a pendent vertex. Since G3 = G−vv3+v1v is also a c-cyclic graph with

Lz(G) = Lz(G3) and d3(G3)+d2(G3) = d2+d3−1 < 2(n−1)
3 (as d3 > d4), v

is the unique (pendent) vertex adjacent to v3, which is not adjacent to v1 or

v2. Thus, 2d1 = d1+d2 ≥ n−3 and so d3 ≤ 2(n−1)
3 − n−3

2 = n+5
6 < n−7

2 ≤
d1 − 2 = d2 − 2. If G contains at least two pendent vertices, then we may

suppose that u is a pendent vertex adjacent to w ∈ {v1, v2} of G by (3). In

this case, G4 = G−wu+v3u is also a c-cyclic graph with Lz(G) = Lz(G4),

contrary with the fact that d1(G4) = d1 > d2 − 1 = d2(G4) and d1(G4) =

d1 > d3 +2 = d3(G4) + 1. Thus, v is also the unique pendent vertex of G.

By (1), we have 2(n+ c− 1) = d1 + d2 + · · ·+ dn ≥ n− 1 + 2(n− 4) + 1,
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contrary with c ≤ n
13 . Now, we can conclude that (7) holds.

Next, we claim that v1v2 ∈ E(G). Otherwise, assume that v1v2 ̸∈
E(G). Then, there exists vertex v such that vv2 ∈ E(G) and v2 ̸∈ Pv1v

(Here, we let Pv1v be a shortest path connecting v and v1). If vv1 ̸∈ E(G),

then there exists v′ ∈ Pvv1 such that v1v
′ ∈ E(G) and v1 ̸∈ Pvv′ . By (2), we

have d1+d2 ≥ d3+d4 ≥ d(v)+d(v′) ≥ 2(n−1)
3 , contrary with c ≤ n

13 . Thus,

vv1 ∈ E(G). By (2) and d1 > d3+1, we have d1+d(v) = 2(n−1)
3 ≤ d2+d(v),

as v1v2 ̸∈ E(G). Combining this with (7), we have d1 + d2 ≥ n − 1 and

d1 = d2. Combining this with either d4 ≥ 3 or d4 ≥ d5 ≥ 2 (as c ≥ 3), we

have

2(n+ c− 1) ≥ 2(n− 1)

3
+

n− 1

2
+ n− 1 ≥ 13

6
(n− 1),

contrary with c ≤ n
13 . Thus, v1v2 ∈ E(G). Combining this with (7), we

can conclude that every vertex of G is adjacent to v1 or v2. Suppose that

|N(v1) ∩ N(v2)| = s. Then, d1 + d2 = n + s > 2(n−1)
3 . Combining this

with d1 ≤ n− 2 and (2), we have d1 = ⌈n+s
2 ⌉ and d2 = ⌊n+s

2 ⌋.
For any vertex v ∈ N(v2) \N(v1) or v ∈ N(v1) \N(v2), if vv

′ ∈ E(G)

holds for some vertex v′ ̸∈ {v1, v2}, then d1 + d(v′) ≥ 2(n−1)
3 by (2).

Combining this with either d4 ≥ 3 or d4 ≥ d5 ≥ 2 (as c ≥ 3), we have

2(n+ c− 1) ≥ 2(n− 1)

3
+

⌊
n+ s

2

⌋
+ n− 1 ≥ 13

6
(n− 1),

contrary with c ≤ n
13 . This implies that v is a pendent vertex holds for

any v ̸∈ (N(v1) ∩N(v2)) ∪ {v1, v2}, that is, G contains exactly n − s − 2

pendent vertices. Since G is a c-cyclic graph with c ≥ 3 and v1v2 ∈ E(G),

we have 2 ≤ s ≤ c and d3 ≤ s+ 1. Note that d1 = ⌈n+s
2 ⌉ and d2 = ⌊n+s

2 ⌋.
Thus,

d21(n− 1− d1) + d22(n− 1− d2) ≤
1

4
(n+ s)2(n− 2− s). (8)

Next, we will show that s = c and so G = G0.

Subcase 2.1. 2 ≤ s ≤ 2c
3 . Since d3 ≤ s + 1 ≤ c + 1 − 0.5s ≤ c ≤

n
13 < n−4

3 ≤ d1 − 1 ≤ d2 and d1 + d2 = n + s, we have π ⊴ (d1, d2, c +

1− 0.5s, c+ 1− 0.5s, 1(n−4)). Combining this with (8), we have Lz(G) ≤
1
4 (n + s)2(n − 2 − s) + (c + 1 − 0.5s)2(2n − 4 + s − 2c) + (n − 4)(n − 2).
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Thus, 4Lz(G0)− 4Lz(G) ≥ (6c− n+10)s2 − (n− 2c− 2)(n− 6c− 10)s+

7c3 − 9c2n + 30c2 + cn2 − 8cn − 3c − n − 2 = h1(s). Note that h′′
1(s) =

2(6c− n+ 10) ≤ 2
13 (130− 7n) < 0. Thus,

h1(s) ≥ min

{
h1(2), h1

(
2c

3

)}
. (9)

Since 9h1

(
2c
3

)
= 15c3−(37n−118)c2+3(n−7)(n+7)c−9n−18 = g8(c).

Since g′′8 (c) = 2(45c − 37n + 118) ≤ 4
13 (767 − 218n) < 0, g8(3) = 9(n2 −

38n+112) > 0 and 2197g8(
n
13 ) = 41n3+1534n2−44616n−39546 > 0, we

have g8(c) ≥ min{g8(3), g8
(

n
13

)
} > 0. Combining this with (9), we have

h1(2) = 7c3 − 3(3n− 2)c2 + (n2 + 8n− 43)c− 2n2 + 19n− 2 = g9(c) ≤ 0.

Since g′′9 (c) = 6(7c − 3n + 2) ≤ 12
13 (13 − 16n) < 0, we have g9(c) ≥

min{g9(3), g9( n
13 )}. Note that g9(3) = n2−38n+112 > 0 and 2197g9(

n
13 ) =

59n3 − 2964n2 + 34476n− 4394 > 0. Thus, g9(c) > 0, a contradiction.

Subcase 2.2. 2c
3 < s ≤ c − 1. Then, c ≥ 4 and n ≥ 52. Since 2 ≤

2(c+1−s) ≤ 2(c−1) ≤ 2
13 (n−13) < n−4

3 ≤ d1−1 ≤ d2 and d1+d2 = n+s,

we have π⊴(d1, d2, 2(c+1−s), 2(s−1), 1(n−s−2)). Combining this with (8),

we have Lz(G) ≤ 1
4 (n + s)2(n − 2 − s) + 4(c + 1 − s)2(n + 2s − 2c −

3) + 4(s − 1)(n − 3) + (n − s − 2)(n − 2). Thus, 4Lz(G0) − 4Lz(G) ≥
3(32c − 5n + 38)s2 − 31s3 − (96c2 − 32cn + 224c + n2 − 24n + 88)s +

31c3 − 17c2n + 110c2 + cn2 − 24cn + 85c − n − 2 = h2(s). Since h′′
2(s) =

6(32c − 5n − 31s + 38) < 2(34c − 15n + 114) ≤ 2
13 (1482 − 161n) < 0, we

have h2(s) ≥ min{h2(
2c
3 ), h2(c− 1)}.

Since h2(c − 1) = −3c2 − 2(n + 2)c + (n − 7)(n − 33) = g10(c) and

g′10(c) = −2(3c + n + 2) < 0, we have 169g10(c) ≥ 169g10(
n
13 ) = 140n2 −

6812n + 39039 > 0. This implies that 27h2(
2c
3 ) = 13c3 − 9(7n − 34)c2 +

9(n2 − 24n + 79)c − 27(n + 2) = g11(c) ≤ 0. Note that g′′11(c) = 6(13c −
21n + 102) ≤ 6(102 − 20n) < 0. Thus, g11(c) ≥ min{g11(4), g11( n

13 )}.
Since n ≥ 52, we have g11(4) = 36n2−1899n+8518 > 0 and 169g11(

n
13 ) =

55n3 − 2502n2 + 4680n− 9126 > 0, a contradiction.
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