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Abstract

Ali et al. [3] introduced a new type of vertex-degree-based topo-
logical indices of a graph which is called as atom-bond sum-connecti-
vity (ABS) index. For a graph G = (V (G), E(G)), the ABS index
of G is defined as

ABS(G) =
∑

uv∈E(G)

√
1− 2

dG(u)+dG(v)
,

where dG(u) denotes the degree of the vertex u in G. Recall that G
is a molecular graph if dG(u) ≤ 4 for all u ∈ V (G). In this paper,
we characterize molecular trees with a perfect matching attaining
the maximum ABS index.
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1 Introduction

Recently, Ali et al. [3] defined a new topological index which is called as

atom-bond sum-connectivity (ABS) index. For a graph G, its ABS index

is defined as follows:

ABS(G) =
∑

uv∈E(G)

√
1− 2

dG(u) + dG(v)
.

Ali et al. [2] showed that the ABS index performs somewhat better than

the other topological indices for some physico-chemical properties. More-

over, they [3] characterized the graphs which attains the extreme values

of the ABS index over the classes of (molecular) trees and general graphs

of a fixed order. Alraqad et al. [5] determined the extremal graphs with

respect to the ABS index with chromatic number, independence number,

number of pendant vertices. People may refer to [1,4,6,11–14,16] for more

relevant works.

There are many researches on the extremal value of topological indices

of molecular graphs. Cruza et al. [8] determined the graphs extremal with

respect to the Sombor index over (connected) chemical graphs, chemical

trees, and hexagonal systems. Deng et al. [9] gave the sharp upper bound

for the reduced Sombor index among all molecular trees of given order n.

Wang et al. [15] gave the maximum value of the reduced Sombor index

among all molecular trees of order n with perfect matching and show that

the maximum molecular trees of exponential reduced Sombor index. Ali

et al. [3] determined the graphs which attain the extreme values of the

ABS index over the classes of (molecular) trees and general graphs of a

fixed order. Du and Su [10] showed extremal results on bond incident de-

gree indices of molecular trees with a fixed order and a fixed number of

leaves. Motivated by known results, in this paper, we aim to character-

ize molecular trees with a perfect matching attaining the maximum ABS

index.

The paper is organized as follows. In Section 2, some fundamental

definitions used in this paper are given. Section 3 shows the process of

characterizing molecular trees with a perfect matching attaining the max-
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imum ABS index.

2 Terminologies and Notations

All graphs considered in this paper are simple, undirected and finite, and

we refer to [7] for undefined terminology and notation. For a graph G,

denote V (G) and E(G) as the vertex set and the edge set, respectively.

Denote the number of vertices and edges of G as n and m. For a vertex

v ∈ V (G), the degree of v, denoted by dG(v), is the number of edges

incident with v in G. If dG(v) = 1, then v is called a pendant vertex.

Denote NG(v) as the neighborhood of a vertex v in G.

For S ⊆ E(G), denote G−S as the graph obtained from G by removing

the edges in S. Similarly, if S is a subset of the edge set of the complement

of G, then G+ S denotes the graph obtained from G by adding the edges

in S. In particular, if S = {uv}, then G−S and G+S are simply denoted

as G− uv and G+ uv, respectively.

A matching in a graph is a set of pairwise nonadjacent edges. A perfect

matching is one which covers every vertex of the graph. As usual, the path

and the complete graph of order n are denoted by Pn and Kn, respectively.

An acyclic graph is one that it contains no cycles. A connected acyclic

graph is called a tree. Recall that G is a molecular graph if dG(u) ≤ 4 for

all u ∈ V (G). Let G be a molecular graph. Denote ni as the number of

vertices of degree i in G for each i ∈ {1, 2, 3, 4} and mi,j be the number

of edges of G connecting a vertex of degree i with a vertex of degree j.

Denote Q = {(i, j) ∈ N ×N : 1 ≤ i ≤ j ≤ 4}, Thus, the ABS index of G

can be rewritten as

ABS(G) =
∑

(i,j)∈Q

√
1− 2

i+ j
mi,j .
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3 Maximum ABS index of molecular trees

with a perfect matching

In this section, we give the characterization for molecular trees which have

maximum ABS index in the class of molecular trees of order n (n ≥ 14)

with a perfect matching. For molecular trees of n < 14 which have a

perfect matching, due to the size is small, it is easy to find the ones which

has maximum ABS index by simple calculation, see Figure 1.

r r r rr r r r r r
rr

n = 2 n = 4 n = 6

r r r r r r r r r r r r
rr
rr

rr
rr

rr rr
rr

rr
rr

n = 8 n = 10 n = 12

Figure 1. Trees with a perfect matching of order n(n ≤ 12)

Thus, we prepare to give useful lemmas to describe properties of molec-

ular trees which have maximum ABS index in the class of molecular trees

of order n (n ≥ 14) with a perfect matching.

Lemma 1. (i) The function f by

f(x, y) =

√
1− 2

x+ y
−
√
1− 2

x+ y + 1

with min{x, y} ≥ 1 and x+ y ≥ 3, is strictly increasing in x.

(ii) The function f by

f(x, y) =

√
1− 2

x+ y + 1
+

√
1− 2

x+ y − 1
− 2

√
1− 2

x+ y

with min{x, y} ≥ 1 and x+ y ≥ 3, is strictly increasing in x.
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Lemma 2. Let T be a molecular tree that has maximum ABS index in

the class of molecular trees of order n (n ≥ 14) with a perfect matching

M . For any u ∈ V (T ) with dT (u) ≥ 2, there exists v ∈ NT (u) such that v

is a pendent vertex.

Proof. We prove by contradiction. Suppose there exists u ∈ V (T ) with

dT (u) ≥ 2 such that for any v ∈ NT (u), dT (v) ≥ 2. We consider the

following cases.

Case 1. dT (u) = 2.

Let v1, v2 ∈ NT (u) and uv2 ∈ M . Let P be a maximal path which

starts from v1 and contains uv2. Without loss of generality, suppose x is

another end-point of P . Obviously, x is a pendant vertex. Let y be the

neighbor of x. Since T has a perfect matching, then dT (y) = 2. Let z be

the another neighbor of y. Next, we distinguish the following two subcases.

Case 1.1. z = v2.

Let T ′ = T − uv1 + yv1. Clearly, T ′ is also in the class of molecular

trees of order n (n ≥ 14) with a perfect matching. In the following, we

aim to obtain a contradiction by showing ABS(T ′) > ABS(T ). Therefore

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(y)+dT ′(v1)
−

√
1− 2

dT (u) + dT (v1)
+

√
1− 2

dT ′(y)+dT ′(x)

−

√
1− 2

dT (y) + dT (x)
+

√
1− 2

dT ′(y)+dT ′(v2)
−

√
1− 2

dT (y)+dT (v2)

+

√
1− 2

dT ′(u) + dT ′(v2)
−

√
1− 2

dT (u) + dT (v2)

=

√
1− 2

3+dT (v1)
−

√
1− 2

2+dT (v1)
+

√
1

2
−
√

1

3
+

√
1− 2

3+dT (v2)

−

√
1− 2

2 + dT (v2)
+

√
1− 2

1 + dT (v2)
−

√
1− 2

2 + dT (v2)
. (1)

According to (i) of Lemma 1, the right side of (1) is decreasing with

dT (v1). And according to (ii) of Lemma 1, the right side of (1) is increasing
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with dT (v2). Replace dT (v2) = 2 and dT (v1) = 4 in the right side of (1),

thus ABS(T ′)−ABS(T ) ≥
√

5
7 +

√
3
5 −

√
2
3 −

√
1
2 > 0, a contradiction to

the fact that ABS index of T is maximum in the class of molecular trees

of order n (n ≥ 14) with a perfect matching.

Case 1.2. z ̸= v2.

Let T ′ = T − uv1 + yv1. Thus

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(y)+dT ′(v1)
−

√
1− 2

dT (u)+dT (v1)
+

√
1− 2

dT ′(y) + dT ′(x)

−

√
1− 2

dT (y) + dT (x)
+

√
1− 2

dT ′(y)+dT ′(z)
−

√
1− 2

dT (y)+dT (z)

+

√
1− 2

dT ′(u)+dT ′(v2)
−

√
1− 2

dT (u)+dT (v2)

=

√
1− 2

3 + dT (v1)
−

√
1− 2

2 + dT (v1)
+

√
1

2
−
√

1

3

+

√
1− 2

3+dT (z)
−

√
1− 2

2+dT (z)
+

√
1− 2

1+dT (v2)
−

√
1− 2

2+dT (v2)
(2)

According to (i) of Lemma 1, the right side of (2) is decreasing with both

dT (v1) and dT (z), and increasing with dT (v2). Replace dT (v2) = 2 and

dT (v1) = dT (z) = 4 in the right side of (2), thus ABS(T ′) − ABS(T ) ≥
2
√

5
7 − 2

√
2
3 > 0, a contradiction to the definition of T .

Case 2. dT (u) = 3.

Let v1, v2, v3 ∈ NT (u) and uv2 ∈ M . Let us say that dT (v2) ≥ 3,

otherwise, by Case 1, v2 is adjacent to a pendant vertex, a contradiction

to uv2 ∈ M . Let P be a maximal path which starts from v1 and contains

uv2. Without loss of generality, suppose x is another end-point of P .

Obviously, x is a pendant vertex. Let y be the neighbor of x. Since T has

a perfect matching, then dT (y) = 2. Let z be another neighbor of y. Next,

we distinguish the following two subcases.

Case 2.1. z = v2.
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Let T ′ = T − uv1 + yv1. Therefore,

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(y)+dT ′(v1)
−

√
1− 2

dT (u) + dT (v1)
+

√
1− 2

dT ′(y)+dT ′(x)

−

√
1− 2

dT (y)+dT (x)
+

√
1− 2

dT ′(y)+dT ′(v2)
−

√
1− 2

dT (y)+dT (v2)

+

√
1− 2

dT ′(u) + dT ′(v2)
−

√
1− 2

dT (u) + dT (v2)

+

√
1− 2

dT ′(u) + dT ′(v3)
−

√
1− 2

dT (u) + dT (v3)

=

√
1− 2

3 + dT (v1)
−

√
1− 2

3 + dT (v1)
+

√
1

2
−

√
1

3

+

√
1− 2

3+dT (v2)
−

√
1− 2

2+dT (v2)
+

√
1− 2

2+dT (v2)
−

√
1− 2

3+dT (v2)

+

√
1− 2

2 + dT (v3)
−

√
1− 2

3 + dT (v3)

=

√
1

2
−
√

1

3
+

√
1− 2

2 + dT (v3)
−

√
1− 2

3 + dT (v3)
(3)

According to (i) of Lemma 1, the right side of (3) is increasing with dT (v3).

Replace dT (v3) = 2 in the right side of (3), thus ABS(T ′) − ABS(T ) ≥
2
√

1
2 −

√
1
3 −

√
3
5 > 0, a contradiction to the definition of T .

Case 2.2. z ̸= v2.

Let T ′ = T − uv1 + yv1. Since dT (v2) ≥ 3, then

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(y)+dT ′(v1)
−

√
1− 2

dT (u) + dT (v1)
+

√
1− 2

dT ′(y)+dT ′(x)
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−

√
1− 2

dT (y)+dT (x)
+

√
1− 2

dT ′(y)+dT ′(z)
−

√
1− 2

dT (y)+dT (z)

+

√
1− 2

dT ′(u) + dT ′(v2)
−

√
1− 2

dT (u) + dT (v2)

+

√
1− 2

dT ′(u) + dT ′(v3)
−

√
1− 2

dT (u) + dT (v3)

=

√
1

2
−
√

1

3
+

√
1− 2

3+dT (z)
−

√
1− 2

2 + dT (z)
+

√
1− 2

2+dT (v2)

−

√
1− 2

3+dT (v2)
+

√
1− 2

2 + dT (v3)
−

√
1− 2

3 + dT (v3)
(4)

According to (i) of Lemma 1, the right side of (4) is increasing with dT (vi)

where i ∈ {2, 3} and decreasing with dT (z). Replace dT (v3) = 2, dT (v2) =

3 and dT (z) = 4 in the right side of (4), thus ABS(T ′) − ABS(T ) ≥
2
√

1
2 − 2

√
2
3 +

√
5
7 −

√
1
3 > 0, a contradiction to the definition of T .

Case 3. dT (u) = 4.

Let v1, v2, v3, v4 ∈ NT (u) and uv2 ∈ M . Let us say that dT (v2) = 4,

otherwise, by Case 2, v2 is adjacent to a pendant vertex, a contradiction to

uv2 ∈ M . Let P be a maximal path which starts from v1 and contains uv2.

Without loss of generality, suppose x is another end-point of P . Obviously,

x is a pendant vertex. Let y be the neighbor of x. Since T has a perfect

matching, then dT (y) = 2. Let z be another neighbor of y. Next, we

distinguish the following two subcases.

Case 3.1. z = v2.

Let T ′ = T − uv1 + yv1. Note dT (v2) = 4, then

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(y)+dT ′(v1)
−

√
1− 2

dT (u)+dT (v1)
+

√
1− 2

dT ′(y)+dT ′(x)

−

√
1− 2

dT (y)+dT (x)
+

√
1− 2

dT ′(y)+dT ′(v2)
−

√
1− 2

dT (y)+dT (v2)
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+

√
1− 2

dT ′(u) + dT ′(v2)
−

√
1− 2

dT (u) + dT (v2)

+

4∑
i=3

[√
1− 2

dT ′(u) + dT ′(vi)
−

√
1− 2

dT (u) + dT (vi)

]

=

√
1− 2

3+dT (v1)
−

√
1− 2

4+dT (v1)
+

√
1

2
−
√

1

3
+

√
5

7

−
√

2

3
+

√
5

7
−
√

3

4
+

4∑
i=3

[√
1− 2

3+dT (vi)
−

√
1− 2

4+dT (vi)

]
(5)

According to (i) of Lemma 1, the right side of (5) is increasing with dT (vi)

where i ∈ {1, 3, 4}. Replace dT (v1) = dT (v3) = dT (v4) = 2 in the right side

of (5), thus ABS(T ′)−ABS(T ) ≥
√

1
2+3

√
3
5+2

√
5
7−

√
1
3−4

√
2
3−

√
3
4 >

0, a contradiction to the definition of T .

Case 3.2. z ̸= v2.

Let T ′ = T − uv1 + yv1. Since dT (v2) = 4, we have

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(y)+dT ′(v1)
−

√
1− 2

dT (u) + dT (v1)
+

√
1− 2

dT ′(y)+dT ′(x)

−

√
1− 2

dT (y)+dT (x)
+

√
1− 2

dT ′(y) + dT ′(z)
−

√
1− 2

dT (y)+dT (z)

+

4∑
i=2

[√
1− 2

dT ′(u) + dT ′(vi)
−

√
1− 2

dT (u) + dT (vi)

]

=

√
1

2
−
√

1

3
+

√
5

7
−
√

3

4
+

√
1− 2

3+dT (z)
−

√
1− 2

2 + dT (z)

+
∑

i∈{1,3,4}

[√
1− 2

3 + dT (vi)
−

√
1− 2

4 + dT (vi)

]
(6)

According to (i) of Lemma 1, the right side of (6) is increasing with dT (vi)

where i ∈ {1, 3, 4}, and decreasing with dT (z). Replace dT (v1) = dT (v3) =

dT (v4) = 2 and dT (z) = 4 in the right side of (5), thus ABS(T ′) −
ABS(T ) ≥

√
1
2 +3

√
3
5 +2

√
5
7 −

√
1
3 − 4

√
2
3 −

√
3
4 > 0, a contradiction to
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the definition of T .

The proof is completed.

Lemma 3. Let T be a molecular tree which has maximum ABS index in

the class of molecular trees of order n (n ≥ 14) with a perfect matching

M . If T has vertices of degree 4, then

(i) for each vertex u of degree 4 in T , there exists vertex of degree 2

adjacent to u.

(ii) for each vertex u of degree 2 in T , there exists a neighbor v of u of

degree 4.

Proof. (i) We prove by contradiction. Suppose that u is a vertex of degree

4. By Lemma 2, let NT (u) = {v1, v2, v3, v} where dT (vi) ≥ 3 for i ∈
{1, 2, 3} and dT (v) = 1. Hence, uv is a matched edge. Let P be a maximal

path which starts from v and contains uv2. Without loss of generality,

suppose x is another end-point of P . Obviously, x is a pendant vertex.

Let y be the neighbor of x. Since T has a perfect matching, then dT (y) = 2.

Let z be another neighbor of y. Consider T ′ = T − uv1 + yv1. Clearly, T
′

is also in the class of molecular trees of order n (n ≥ 14) with a perfect

matching. In the following, we aim to obtain a contradiction by showing

ABS(T ′) > ABS(T ). We proceed with the proof by cases.

Case 1. z = v2.

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(y)+dT ′(v1)
−

√
1− 2

dT (u)+dT (v1)
+

√
1− 2

dT ′(x)+dT ′(y)

−

√
1− 2

dT (x)+dT (y)
+

√
1− 2

dT ′(y)+dT ′(v2)
−

√
1− 2

dT (y)+dT (v2)

+

√
1− 2

dT ′(u)+dT ′(v2)
−

√
1− 2

dT (u)+dT (v2)
+

√
1− 2

dT ′(u)+dT ′(v)

−

√
1− 2

dT (u)+dT (v)
+

√
1− 2

dT ′(u)+dT ′(v3)
−

√
1− 2

dT (u)+dT (v3)

=

√
1− 2

3 + dT (v1)
−

√
1− 2

4 + dT (v1)
+

√
1

2
−

√
1

3
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+

√
1− 2

3+dT (v2)
−

√
1− 2

2+dT (v2)
+

√
1− 2

3+dT (v2)
−

√
1− 2

4+dT (v2)

+

√
1

2
−
√

3

5
+

√
1− 2

3 + dT (v3)
−

√
1− 2

4 + dT (v3)
(7)

According to (i) of Lemma 1, the right side of (7) is increasing with dT (vi)

where i ∈ {1, 3}. And according to (ii) of Lemma 1, the right side of (7)

is decreasing with dT (v2). Replace dT (v1) = dT (v3) = 3 and dT (v2) = 4

in the right side of (7), thus ABS(T ′) − ABS(T ) ≥ 2
√

1
2 +

√
2
3 −

√
1
3 −√

3
5 −

√
3
4 > 0, a contradiction to the definition of T .

Case 2. z ̸= v2.

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(y)+dT ′(v1)
−

√
1− 2

dT (u)+dT (v1)
+

√
1− 2

dT ′(x)+dT ′(y)

−

√
1− 2

dT (x)+dT (y)
+

√
1− 2

dT ′(y)+dT ′(z)
−

√
1− 2

dT (y)+dT (z)

+

√
1− 2

dT ′(u) + dT ′(v)
−

√
1− 2

dT (u) + dT (v)

+

3∑
i=2

[√
1− 2

dT ′(u) + dT ′(vi)
−

√
1− 2

dT (u) + dT (vi)

]

=

√
1

2
−
√

1

3
+

√
1− 2

3+dT (z)
−

√
1− 2

2+dT (z)
+

√
1

2
−
√

3

5

+
∑

i∈{1,2,3}

[√
1− 2

3+dT (vi)
−

√
1− 2

4+dT (vi)

]
(8)

According to (i) of Lemma 1, the right side of (8) is increasing with dT (vi)

where i ∈ {1, 2, 3}, and decreasing with dT (z). Replace dT (vi) = 3 for

i ∈ {1, 2, 3} and dT (z) = 4 in the right side of (8), thus ABS(T ′) −
ABS(T ) ≥ 2

√
1
2 + 2

√
2
3 −

√
1
3 −

√
3
5 − 2

√
5
7 > 0, a contradiction to the

definition of T .

The proof is competed.
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(ii) We prove by contradiction. Suppose there exists u ∈ V (T ) such

that NT (u) = {x, v} where NT (v) = {v1, u, y} and dT (x) = 1. According

to Lemma 2, we may say that vv1 is the pendent edge incident with v.

Thus dT (v1) = 1. Since n ≥ 14, so dT (y) ≥ 3. We proceed with the proof

by cases.

Case 1. dT (y) = 3.

Without loss of generality, denote NT (y) = {v, y1, y2} with dT (y1) = 1

and dT (y2) ≥ 3. Let T ′ = T − y2y + y2v. Thus

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(v)+dT ′(y2)
−

√
1− 2

dT (y)+dT (y2)
+

√
1− 2

dT ′(v)+dT ′(v1)

−

√
1− 2

dT (v)+dT (v1)
+

√
1− 2

dT ′(v)+dT ′(u)
−

√
1− 2

dT (v)+dT (u)

+

√
1− 2

dT ′(y)+dT ′(y1)
−

√
1− 2

dT (y) + dT (y1)

=

√
1− 2

4 + dT (y2)
−

√
1− 2

3 + dT (y2)
+

√
3

5
−
√

1

2
+

√
2

3
−
√

3

5

+

√
1

3
−
√

1

2
(9)

According to (i) of Lemma 1, the right side of (9) is decreasing with dT (y2).

Replace dT (y2) = 4 in the right side of (9), thus ABS(T ′) − ABS(T ) ≥√
2
3 +

√
1
3 +

√
3
4 − 2

√
1
2 −

√
5
7 > 0, a contradiction to the definition of T .

Case 2. dT (y) = 4.

Without loss of generality, denote NT (y) = {v, y1, y2, y3}. By Lemma

3 and (i), without loss of generality, let dT (y1) = 1 and dT (y2) = 2.

Therefore dT (y3) ≥ 3 for n ≥ 14. Let T ′ = T − yy2 + uy2, thus

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(u) + dT ′(y2)
−

√
1− 2

dT (y) + dT (y2)
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+

√
1− 2

dT ′(u) + dT ′(x)
−

√
1− 2

dT (u) + dT (x)

+

√
1− 2

dT ′(u) + dT ′(v)
−

√
1− 2

dT (u) + dT (v)

+

√
1− 2

dT ′(y) + dT ′(v)
−

√
1− 2

dT (y) + dT (v)

+

√
1− 2

dT ′(y) + dT ′(y1)
−

√
1− 2

dT (y) + dT (y1)

+

√
1− 2

dT ′(y) + dT ′(y3)
−

√
1− 2

dT (y) + dT (y3)

=

√
3

5
−
√

2

3
+

√
1

2
−
√

1

3
+

√
2

3
−
√

3

5
+

√
2

3
−

√
5

7
+

√
1

2
−

√
3

5

+

√
1− 2

3 + dT (y3)
−

√
1− 2

4 + dT (y3)

=2

√
1

2
+

√
2

3
−
√

1

3
−
√

3

5
−
√

5

7
+

√
1− 2

3+dT (y3)
−

√
1− 2

4+dT (y3)
(10)

According to (i) of Lemma 1, the right side of (10) is increasing with

dT (y3). Replace dT (y3) = 3 in the right side of (10), thus ABS(T ′) −
ABS(T ) ≥ 2

√
1
2 + 2

√
2
3 −

√
1
3 −

√
3
5 − 2

√
5
7 > 0, a contradiction to the

definition of T .

The proof is competed.

Lemma 4. Let T be a molecular tree which has maximum ABS index in

the class of molecular trees of order n (n ≥ 14) with a perfect matching

M . If T has vertices of degree 4, then

(i) for each vertex u of degree 4 in T , there exists a pair of vertices of

degree 2 adjacent to u.

(ii) there are exactly two vertices of degree 4 and four vertices of degree

2 in T .

Proof. (i) Combine Lemma 2 and (i) of Lemma 3, it is enough to prove

that there exists no vertex of degree 4 neighboring exactly one vertex of

degree 2. We prove by contradiction. Suppose there exists u ∈ V (T ) such
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that NT (u) = {v1, v2, v3, v4} where dT (v1) = 1, dT (v2) = 2 and dT (vi) ≥ 3

where i ∈ {3, 4}. Let another neighbor of v2 be x. Since lemma 2, we have

dT (x) = 1. Let T ′ = T − uv4 + v2v4. Thus, by lemma 1, we abtain

ABS(T ′)−ABS(T )

=

√
1− 2

dT ′(v2)+dT ′(v4)
−

√
1− 2

dT (u)+dT (v4)
+

√
1− 2

dT ′(v2)+dT ′(x)

−

√
1− 2

dT (v2)+dT (x)
+

√
1− 2

dT ′(u)+dT ′(v1)
−

√
1− 2

dT (u)+dT (v1)

+

√
1− 2

dT ′(u)+dT ′(v3)
−

√
1− 2

dT (u) + dT (v3)

=

√
1− 2

3 + dT (v4)
−

√
1− 2

4 + dT (v4)
+

√
1

2
−
√

1

3

+

√
1

2
−
√

3

5
+

√
1− 2

3 + dT (v3)
−

√
1− 2

4 + dT (v3)
(11)

According to (i) of Lemma 1, the right side of (11) is increasing with

dT (vi) where i ∈ {3, 4}. Replace dT (v3) = dT (v4) = 3 in the right side of

(11), thus ABS(T ′)−ABS(T ) ≥ 2
√

1
2 + 2

√
2
3 −

√
1
3 −

√
3
5 − 2

√
5
7 > 0, a

contradiction to the definition of T .

The proof is competed.

(ii) Let u ∈ V (T ) with NT (u) = {v1, v2, v3, v4}. Without loss of gener-

ality, according to Lemma 2 and (i) of Lemma 4, let us say that dT (v1) = 1

and dT (v2) = dT (v3) = 2. Let P be a maximal path which starts from u

and contains uv4. Without loss of generality, suppose x is another end-

point of P . Obviously, x is a pendant vertex. Let y be the neighbor of

x. Since T has a perfect matching, then dT (y) = 2. According to (ii)

of Lemma 3, let v be another neighbor of y with dT (v) = 4. Denote the

unique path between u, v in T as P1. According to Lemma 2, (i) of Lemma

4 and the fact that n ≥ 14, it can be obtained that all internal vertices

of P1 are of degree 3. Combine that with Lemma 2 and (i) of Lemma 4,

it is easy to know that there are exactly two vertices of degree 4 and four

vertices of degree 2 in T .
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Figure 3. T2

Theorem 1. Let T be a molecular tree that has maximum ABS index in

the class of molecular trees of order n(n ≥ 14) with a perfect matching.

Then

ABS(T ) ≤ n− 6

2

√
2

3
+ 4

√
1

3
+ 2

√
3

5
+ 2

√
5

7
+

n− 12

2

√
1

2
.

The equality holds if and only if T is isomorphic to T2 shown in Figure 3.

Proof. Let ni be the number of vertices of degree i in T for each i ∈
1, 2, 3, 4. According to the number of the vertex of degree 4, we distinguish

the following two cases.

Case 1. n4 = 0

According to Lemma 2, then T is isomorphic to T1 shown in Figure 2.

And there are m1,2 = m3,2 = 2, m3,1 = n−4
2 and m3,3 = n−6

2 in T1. So

ABS(T1) = 2

√
1

3
+ 2

√
3

5
+

n− 4

2

√
1

2
+

n− 6

2

√
2

3
. (12)

Case 2. n4 ≥ 1

According to Lemmas 2, 3 and 4, then T is isomorphic to T2 shown in

Figure 3. And there are m4,2 = m1,2 = 4, m4,1 = m4,3 = 2, m1,3 = n−12
2

and m3,3 = n−14
2 in T2. Thus by a simple calculation,
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ABS(T2) =
n− 6

2

√
2

3
+ 4

√
1

3
+ 2

√
3

5
+ 2

√
5

7
+

n− 12

2

√
1

2
. (13)

Combine (12) and (13), thus

ABS(T2)−ABS(T1) =

(
n− 6

2

√
2

3
+ 4

√
1

3
+ 2

√
3

5
+ 2

√
5

7
+

n− 12

2

√
1

2

)

−

(
2

√
1

3
+ 2

√
3

5
+

n− 4

2

√
1

2
+

n− 6

2

√
2

3

)

= 2

√
1

3
+ 2

√
5

7
− 4

√
1

2
> 0.

Therefore, we have that T2 has maximum ABS index in the class of

molecular trees of order n(n ≥ 14) with a perfect matching. Thus

ABS(T ) ≤ n− 6

2

√
2

3
+ 4

√
1

3
+ 2

√
3

5
+ 2

√
5

7
+

n− 12

2

√
1

2
,

the equality holds if and only if T is isomorphic to T2 shown in Figure 3.

The proof is competed.
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