Maximum Atom Bond Sum Connectivity Index of Molecular Trees with a Perfect Matching

Fangxia Wang a, Yaoyao Zhang ${ }^{b *}$, Xiangyu Ren c, Bo Zhang ${ }^{d}$
${ }^{a}$ School of Mathematical Science, Xinjiang Normal University Urumqi 830054, P.R.China
${ }^{b}$ College of Mathematics and System Science, Xinjiang University Urumqi, Xinjiang, 830046, P.R.China
${ }^{c}$ School of Mathematical Sciences, Shanxi University Taiyuan, Shanxi, 030006, P.R.China
${ }^{d}$ School of Mathematics and Computer Sciences, Shanxi Normal University, Taiyuan, Shanxi 030031, P.R.China fangxwangxj@163.com, yoyoyame@126.com, renxy@sxu.edu.cn, 20230015@sxnu.edu.cn

(Received December 5, 2023)

Abstract

Ali et al. [3] introduced a new type of vertex-degree-based topological indices of a graph which is called as atom-bond sum-connectivity (ABS) index. For a graph $G=(V(G), E(G))$, the ABS index of G is defined as $$
A B S(G)=\sum_{u v \in E(G)} \sqrt{1-\frac{2}{d_{G}(u)+d_{G}(v)}},
$$ where $d_{G}(u)$ denotes the degree of the vertex u in G. Recall that G is a molecular graph if $d_{G}(u) \leq 4$ for all $u \in V(G)$. In this paper, we characterize molecular trees with a perfect matching attaining the maximum ABS index.

[^0]
1 Introduction

Recently, Ali et al. [3] defined a new topological index which is called as atom-bond sum-connectivity (ABS) index. For a graph G, its ABS index is defined as follows:

$$
A B S(G)=\sum_{u v \in E(G)} \sqrt{1-\frac{2}{d_{G}(u)+d_{G}(v)}} .
$$

Ali et al. [2] showed that the ABS index performs somewhat better than the other topological indices for some physico-chemical properties. Moreover, they [3] characterized the graphs which attains the extreme values of the ABS index over the classes of (molecular) trees and general graphs of a fixed order. Alraqad et al. [5] determined the extremal graphs with respect to the ABS index with chromatic number, independence number, number of pendant vertices. People may refer to $[1,4,6,11-14,16]$ for more relevant works.

There are many researches on the extremal value of topological indices of molecular graphs. Cruza et al. [8] determined the graphs extremal with respect to the Sombor index over (connected) chemical graphs, chemical trees, and hexagonal systems. Deng et al. [9] gave the sharp upper bound for the reduced Sombor index among all molecular trees of given order n. Wang et al. [15] gave the maximum value of the reduced Sombor index among all molecular trees of order n with perfect matching and show that the maximum molecular trees of exponential reduced Sombor index. Ali et al. [3] determined the graphs which attain the extreme values of the ABS index over the classes of (molecular) trees and general graphs of a fixed order. Du and $\mathrm{Su}[10]$ showed extremal results on bond incident degree indices of molecular trees with a fixed order and a fixed number of leaves. Motivated by known results, in this paper, we aim to characterize molecular trees with a perfect matching attaining the maximum ABS index.

The paper is organized as follows. In Section 2, some fundamental definitions used in this paper are given. Section 3 shows the process of characterizing molecular trees with a perfect matching attaining the max-
imum ABS index.

2 Terminologies and Notations

All graphs considered in this paper are simple, undirected and finite, and we refer to [7] for undefined terminology and notation. For a graph G, denote $V(G)$ and $E(G)$ as the vertex set and the edge set, respectively. Denote the number of vertices and edges of G as n and m. For a vertex $v \in V(G)$, the degree of v, denoted by $d_{G}(v)$, is the number of edges incident with v in G. If $d_{G}(v)=1$, then v is called a pendant vertex. Denote $N_{G}(v)$ as the neighborhood of a vertex v in G.

For $S \subseteq E(G)$, denote $G-S$ as the graph obtained from G by removing the edges in S. Similarly, if S is a subset of the edge set of the complement of G, then $G+S$ denotes the graph obtained from G by adding the edges in S. In particular, if $S=\{u v\}$, then $G-S$ and $G+S$ are simply denoted as $G-u v$ and $G+u v$, respectively.

A matching in a graph is a set of pairwise nonadjacent edges. A perfect matching is one which covers every vertex of the graph. As usual, the path and the complete graph of order n are denoted by P_{n} and K_{n}, respectively. An acyclic graph is one that it contains no cycles. A connected acyclic graph is called a tree. Recall that G is a molecular graph if $d_{G}(u) \leq 4$ for all $u \in V(G)$. Let G be a molecular graph. Denote n_{i} as the number of vertices of degree i in G for each $i \in\{1,2,3,4\}$ and $m_{i, j}$ be the number of edges of G connecting a vertex of degree i with a vertex of degree j. Denote $Q=\{(i, j) \in N \times N: 1 \leq i \leq j \leq 4\}$, Thus, the ABS index of G can be rewritten as

$$
A B S(G)=\sum_{(i, j) \in Q} \sqrt{1-\frac{2}{i+j}} m_{i, j}
$$

3 Maximum $A B S$ index of molecular trees with a perfect matching

In this section, we give the characterization for molecular trees which have maximum ABS index in the class of molecular trees of order $n(n \geq 14)$ with a perfect matching. For molecular trees of $n<14$ which have a perfect matching, due to the size is small, it is easy to find the ones which has maximum ABS index by simple calculation, see Figure 1.

$n=2$

$n=4$

$n=10$

$n=8$
$n=6$

$n=12$

Figure 1. Trees with a perfect matching of order $n(n \leq 12)$
Thus, we prepare to give useful lemmas to describe properties of molecular trees which have maximum ABS index in the class of molecular trees of order $n(n \geq 14)$ with a perfect matching.

Lemma 1. (i) The function f by

$$
f(x, y)=\sqrt{1-\frac{2}{x+y}}-\sqrt{1-\frac{2}{x+y+1}}
$$

with $\min \{x, y\} \geq 1$ and $x+y \geq 3$, is strictly increasing in x.
(ii) The function f by

$$
f(x, y)=\sqrt{1-\frac{2}{x+y+1}}+\sqrt{1-\frac{2}{x+y-1}}-2 \sqrt{1-\frac{2}{x+y}}
$$

with $\min \{x, y\} \geq 1$ and $x+y \geq 3$, is strictly increasing in x.

Lemma 2. Let T be a molecular tree that has maximum $A B S$ index in the class of molecular trees of order $n(n \geq 14)$ with a perfect matching M. For any $u \in V(T)$ with $d_{T}(u) \geq 2$, there exists $v \in N_{T}(u)$ such that v is a pendent vertex.

Proof. We prove by contradiction. Suppose there exists $u \in V(T)$ with $d_{T}(u) \geq 2$ such that for any $v \in N_{T}(u), d_{T}(v) \geq 2$. We consider the following cases.

Case 1. $d_{T}(u)=2$.
Let $v_{1}, v_{2} \in N_{T}(u)$ and $u v_{2} \in M$. Let P be a maximal path which starts from v_{1} and contains $u v_{2}$. Without loss of generality, suppose x is another end-point of P. Obviously, x is a pendant vertex. Let y be the neighbor of x. Since T has a perfect matching, then $d_{T}(y)=2$. Let z be the another neighbor of y. Next, we distinguish the following two subcases.

Case 1.1. $z=v_{2}$.
Let $T^{\prime}=T-u v_{1}+y v_{1}$. Clearly, T^{\prime} is also in the class of molecular trees of order $n(n \geq 14)$ with a perfect matching. In the following, we aim to obtain a contradiction by showing $A B S\left(T^{\prime}\right)>A B S(T)$. Therefore

$$
\begin{align*}
& A B S\left(T^{\prime}\right)-A B S(T) \\
= & \sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{1}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(x)}} \\
& -\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(x)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}\left(v_{2}\right)}} \\
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{2}\right)}} \\
= & \sqrt{1-\frac{2}{3+d_{T}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{2+d_{T}\left(v_{1}\right)}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}}+\sqrt{1-\frac{2}{3+d_{T}\left(v_{2}\right)}} \tag{1}\\
& -\sqrt{1-\frac{2}{2+d_{T}\left(v_{2}\right)}}+\sqrt{1-\frac{2}{1+d_{T}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{2+d_{T}\left(v_{2}\right)}} .
\end{align*}
$$

According to (i) of Lemma 1, the right side of (1) is decreasing with $d_{T}\left(v_{1}\right)$. And according to (ii) of Lemma 1, the right side of (1) is increasing
with $d_{T}\left(v_{2}\right)$. Replace $d_{T}\left(v_{2}\right)=2$ and $d_{T}\left(v_{1}\right)=4$ in the right side of (1), thus $A B S\left(T^{\prime}\right)-A B S(T) \geq \sqrt{\frac{5}{7}}+\sqrt{\frac{3}{5}}-\sqrt{\frac{2}{3}}-\sqrt{\frac{1}{2}}>0$, a contradiction to the fact that ABS index of T is maximum in the class of molecular trees of order $n(n \geq 14)$ with a perfect matching.

Case 1.2. $z \neq v_{2}$.
Let $T^{\prime}=T-u v_{1}+y v_{1}$. Thus

$$
\begin{align*}
& A B S\left(T^{\prime}\right)-A B S(T) \\
&= \sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{1}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(x)}} \\
&-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(x)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(z)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(z)}} \\
&+\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{2}\right)}} \\
&= \sqrt{1-\frac{2}{3+d_{T}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{2+d_{T}\left(v_{1}\right)}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}} \\
&+\sqrt{1-\frac{2}{3+d_{T}(z)}}-\sqrt{1-\frac{2}{2+d_{T}(z)}}+\sqrt{1-\frac{2}{1+d_{T}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{2+d_{T}\left(v_{2}\right)}} \tag{2}
\end{align*}
$$

According to (i) of Lemma 1, the right side of (2) is decreasing with both $d_{T}\left(v_{1}\right)$ and $d_{T}(z)$, and increasing with $d_{T}\left(v_{2}\right)$. Replace $d_{T}\left(v_{2}\right)=2$ and $d_{T}\left(v_{1}\right)=d_{T}(z)=4$ in the right side of (2), thus $A B S\left(T^{\prime}\right)-A B S(T) \geq$ $2 \sqrt{\frac{5}{7}}-2 \sqrt{\frac{2}{3}}>0$, a contradiction to the definition of T.

Case 2. $d_{T}(u)=3$.
Let $v_{1}, v_{2}, v_{3} \in N_{T}(u)$ and $u v_{2} \in M$. Let us say that $d_{T}\left(v_{2}\right) \geq 3$, otherwise, by Case $1, v_{2}$ is adjacent to a pendant vertex, a contradiction to $u v_{2} \in M$. Let P be a maximal path which starts from v_{1} and contains $u v_{2}$. Without loss of generality, suppose x is another end-point of P. Obviously, x is a pendant vertex. Let y be the neighbor of x. Since T has a perfect matching, then $d_{T}(y)=2$. Let z be another neighbor of y. Next, we distinguish the following two subcases.

Case 2.1. $z=v_{2}$.

Let $T^{\prime}=T-u v_{1}+y v_{1}$. Therefore,
$A B S\left(T^{\prime}\right)-A B S(T)$

$$
\begin{aligned}
= & \sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{1}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(x)}} \\
& -\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(x)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}\left(v_{2}\right)}} \\
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{2}\right)}} \\
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{3}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{3}\right)}} \\
= & \sqrt{1-\frac{2}{3+d_{T}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{3+d_{T}\left(v_{1}\right)}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}}
\end{aligned}
$$

$$
+\sqrt{1-\frac{2}{3+d_{T}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{2+d_{T}\left(v_{2}\right)}}+\sqrt{1-\frac{2}{2+d_{T}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{3+d_{T}\left(v_{2}\right)}}
$$

$$
+\sqrt{1-\frac{2}{2+d_{T}\left(v_{3}\right)}}-\sqrt{1-\frac{2}{3+d_{T}\left(v_{3}\right)}}
$$

$$
\begin{equation*}
=\sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}}+\sqrt{1-\frac{2}{2+d_{T}\left(v_{3}\right)}}-\sqrt{1-\frac{2}{3+d_{T}\left(v_{3}\right)}} \tag{3}
\end{equation*}
$$

According to (i) of Lemma 1 , the right side of (3) is increasing with $d_{T}\left(v_{3}\right)$. Replace $d_{T}\left(v_{3}\right)=2$ in the right side of (3), thus $A B S\left(T^{\prime}\right)-A B S(T) \geq$ $2 \sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}}-\sqrt{\frac{3}{5}}>0$, a contradiction to the definition of T.

Case 2.2. $z \neq v_{2}$.
Let $T^{\prime}=T-u v_{1}+y v_{1}$. Since $d_{T}\left(v_{2}\right) \geq 3$, then

$$
\begin{aligned}
& \operatorname{ABS}\left(T^{\prime}\right)-\operatorname{ABS}(T) \\
& =\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{1}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(x)}}
\end{aligned}
$$

$$
\begin{align*}
& -\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(x)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(z)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(z)}} \\
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{2}\right)}} \\
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{3}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{3}\right)}} \\
& =\sqrt{\frac{1}{2}-\sqrt{\frac{1}{3}}+\sqrt{1-\frac{2}{3+d_{T}(z)}}-\sqrt{1-\frac{2}{2+d_{T}(z)}}+\sqrt{1-\frac{2}{2+d_{T}\left(v_{2}\right)}}} \\
& -\sqrt{1-\frac{2}{3+d_{T}\left(v_{2}\right)}}+\sqrt{1-\frac{2}{2+d_{T}\left(v_{3}\right)}}-\sqrt{1-\frac{2}{3+d_{T}\left(v_{3}\right)}} \tag{4}
\end{align*}
$$

According to (i) of Lemma 1, the right side of (4) is increasing with $d_{T}\left(v_{i}\right)$ where $i \in\{2,3\}$ and decreasing with $d_{T}(z)$. Replace $d_{T}\left(v_{3}\right)=2, d_{T}\left(v_{2}\right)=$ 3 and $d_{T}(z)=4$ in the right side of (4), thus $A B S\left(T^{\prime}\right)-A B S(T) \geq$ $2 \sqrt{\frac{1}{2}}-2 \sqrt{\frac{2}{3}}+\sqrt{\frac{5}{7}}-\sqrt{\frac{1}{3}}>0$, a contradiction to the definition of T.

Case 3. $d_{T}(u)=4$.
Let $v_{1}, v_{2}, v_{3}, v_{4} \in N_{T}(u)$ and $u v_{2} \in M$. Let us say that $d_{T}\left(v_{2}\right)=4$, otherwise, by Case $2, v_{2}$ is adjacent to a pendant vertex, a contradiction to $u v_{2} \in M$. Let P be a maximal path which starts from v_{1} and contains $u v_{2}$. Without loss of generality, suppose x is another end-point of P. Obviously, x is a pendant vertex. Let y be the neighbor of x. Since T has a perfect matching, then $d_{T}(y)=2$. Let z be another neighbor of y. Next, we distinguish the following two subcases.

Case 3.1. $z=v_{2}$.
Let $T^{\prime}=T-u v_{1}+y v_{1}$. Note $d_{T}\left(v_{2}\right)=4$, then

$$
\begin{aligned}
& A B S\left(T^{\prime}\right)-A B S(T) \\
& =\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{1}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(x)}} \\
& \quad-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(x)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}\left(v_{2}\right)}}
\end{aligned}
$$

$$
\begin{align*}
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{2}\right)}} \\
& +\sum_{i=3}^{4}\left[\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{i}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{i}\right)}}\right] \\
& =\sqrt{1-\frac{2}{3+d_{T}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{4+d_{T}\left(v_{1}\right)}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}+\sqrt{\frac{5}{7}}} \\
& \left.-\sqrt{\frac{2}{3}}+\sqrt{\frac{5}{7}-\sqrt{\frac{3}{4}}+\sum_{i=3}^{4}\left[\sqrt{1-\frac{2}{3+d_{T}\left(v_{i}\right)}}-\sqrt{1-\frac{2}{4+d_{T}\left(v_{i}\right)}}\right.}\right] \tag{5}
\end{align*}
$$

According to (i) of Lemma 1, the right side of (5) is increasing with $d_{T}\left(v_{i}\right)$ where $i \in\{1,3,4\}$. Replace $d_{T}\left(v_{1}\right)=d_{T}\left(v_{3}\right)=d_{T}\left(v_{4}\right)=2$ in the right side of (5), thus $A B S\left(T^{\prime}\right)-A B S(T) \geq \sqrt{\frac{1}{2}}+3 \sqrt{\frac{3}{5}}+2 \sqrt{\frac{5}{7}}-\sqrt{\frac{1}{3}}-4 \sqrt{\frac{2}{3}}-\sqrt{\frac{3}{4}}>$ 0 , a contradiction to the definition of T.

Case 3.2. $z \neq v_{2}$.
Let $T^{\prime}=T-u v_{1}+y v_{1}$. Since $d_{T}\left(v_{2}\right)=4$, we have

$$
\begin{align*}
& A B S\left(T^{\prime}\right)-A B S(T) \\
&= \sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{1}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(x)}} \\
&-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(x)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(z)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(z)}} \\
&+\sum_{i=2}^{4}\left[\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{i}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{i}\right)}}\right] \\
&= \sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}}+\sqrt{\frac{5}{7}-\sqrt{\frac{3}{4}}+\sqrt{1-\frac{2}{3+d_{T}(z)}}-\sqrt{1-\frac{2}{2+d_{T}(z)}}} \\
&+\sum_{i \in\{1,3,4\}}\left[\sqrt{1-\frac{2}{3+d_{T}\left(v_{i}\right)}}-\sqrt{1-\frac{2}{4+d_{T}\left(v_{i}\right)}}\right] \tag{6}
\end{align*}
$$

According to (i) of Lemma 1, the right side of (6) is increasing with $d_{T}\left(v_{i}\right)$ where $i \in\{1,3,4\}$, and decreasing with $d_{T}(z)$. Replace $d_{T}\left(v_{1}\right)=d_{T}\left(v_{3}\right)=$ $d_{T}\left(v_{4}\right)=2$ and $d_{T}(z)=4$ in the right side of (5), thus $A B S\left(T^{\prime}\right)-$ $A B S(T) \geq \sqrt{\frac{1}{2}}+3 \sqrt{\frac{3}{5}}+2 \sqrt{\frac{5}{7}}-\sqrt{\frac{1}{3}}-4 \sqrt{\frac{2}{3}}-\sqrt{\frac{3}{4}}>0$, a contradiction to
the definition of T.
The proof is completed.
Lemma 3. Let T be a molecular tree which has maximum $A B S$ index in the class of molecular trees of order $n(n \geq 14)$ with a perfect matching M. If T has vertices of degree 4, then
(i) for each vertex u of degree 4 in T, there exists vertex of degree 2 adjacent to u.
(ii) for each vertex u of degree 2 in T, there exists a neighbor v of u of degree 4.

Proof. (i) We prove by contradiction. Suppose that u is a vertex of degree 4. By Lemma 2, let $N_{T}(u)=\left\{v_{1}, v_{2}, v_{3}, v\right\}$ where $d_{T}\left(v_{i}\right) \geq 3$ for $i \in$ $\{1,2,3\}$ and $d_{T}(v)=1$. Hence, $u v$ is a matched edge. Let P be a maximal path which starts from v and contains $u v_{2}$. Without loss of generality, suppose x is another end-point of P. Obviously, x is a pendant vertex. Let y be the neighbor of x. Since T has a perfect matching, then $d_{T}(y)=2$. Let z be another neighbor of y. Consider $T^{\prime}=T-u v_{1}+y v_{1}$. Clearly, T^{\prime} is also in the class of molecular trees of order $n(n \geq 14)$ with a perfect matching. In the following, we aim to obtain a contradiction by showing $A B S\left(T^{\prime}\right)>A B S(T)$. We proceed with the proof by cases.

Case 1. $z=v_{2}$.

$$
\begin{aligned}
& A B S\left(T^{\prime}\right)-A B S(T) \\
& =\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{1}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(x)+d_{T^{\prime}}(y)}} \\
& \quad-\sqrt{1-\frac{2}{d_{T}(x)+d_{T}(y)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}\left(v_{2}\right)}} \\
& \quad+\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{2}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}(v)}} \\
& \quad-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}(v)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{3}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{3}\right)}} \\
& =\sqrt{1-\frac{2}{3+d_{T}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{4+d_{T}\left(v_{1}\right)}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}}
\end{aligned}
$$

$$
\begin{align*}
& +\sqrt{1-\frac{2}{3+d_{T}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{2+d_{T}\left(v_{2}\right)}}+\sqrt{1-\frac{2}{3+d_{T}\left(v_{2}\right)}}-\sqrt{1-\frac{2}{4+d_{T}\left(v_{2}\right)}} \\
& +\sqrt{\frac{1}{2}-\sqrt{\frac{3}{5}}+\sqrt{1-\frac{2}{3+d_{T}\left(v_{3}\right)}}}-\sqrt{1-\frac{2}{4+d_{T}\left(v_{3}\right)}} \tag{7}
\end{align*}
$$

According to (i) of Lemma 1, the right side of (7) is increasing with $d_{T}\left(v_{i}\right)$ where $i \in\{1,3\}$. And according to (ii) of Lemma 1, the right side of (7) is decreasing with $d_{T}\left(v_{2}\right)$. Replace $d_{T}\left(v_{1}\right)=d_{T}\left(v_{3}\right)=3$ and $d_{T}\left(v_{2}\right)=4$ in the right side of (7), thus $A B S\left(T^{\prime}\right)-A B S(T) \geq 2 \sqrt{\frac{1}{2}}+\sqrt{\frac{2}{3}}-\sqrt{\frac{1}{3}}-$ $\sqrt{\frac{3}{5}}-\sqrt{\frac{3}{4}}>0$, a contradiction to the definition of T.

Case 2. $z \neq v_{2}$.

$$
\begin{align*}
& A B S\left(T^{\prime}\right)-A B S(T) \\
&= \sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{1}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(x)+d_{T^{\prime}}(y)}} \\
&-\sqrt{1-\frac{2}{d_{T}(x)+d_{T}(y)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(z)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(z)}} \\
&+\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}(v)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}(v)}} \\
&+\sum_{i=2}^{3}\left[\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{i}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)}+d_{T}\left(v_{i}\right)}\right. \\
&= \sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}}+\sqrt{1-\frac{2}{3+d_{T}(z)}}-\sqrt{1-\frac{2}{2+d_{T}(z)}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{3}{5}} \\
&+ \sum_{i \in\{1,2,3\}}\left[\sqrt{1-\frac{2}{3+d_{T}\left(v_{i}\right)}}-\sqrt{1-\frac{2}{4+d_{T}\left(v_{i}\right)}}\right] \tag{8}
\end{align*}
$$

According to (i) of Lemma 1, the right side of (8) is increasing with $d_{T}\left(v_{i}\right)$ where $i \in\{1,2,3\}$, and decreasing with $d_{T}(z)$. Replace $d_{T}\left(v_{i}\right)=3$ for $i \in\{1,2,3\}$ and $d_{T}(z)=4$ in the right side of (8), thus $A B S\left(T^{\prime}\right)-$ $A B S(T) \geq 2 \sqrt{\frac{1}{2}}+2 \sqrt{\frac{2}{3}}-\sqrt{\frac{1}{3}}-\sqrt{\frac{3}{5}}-2 \sqrt{\frac{5}{7}}>0$, a contradiction to the definition of T.

The proof is competed.
(ii) We prove by contradiction. Suppose there exists $u \in V(T)$ such that $N_{T}(u)=\{x, v\}$ where $N_{T}(v)=\left\{v_{1}, u, y\right\}$ and $d_{T}(x)=1$. According to Lemma 2, we may say that $v v_{1}$ is the pendent edge incident with v. Thus $d_{T}\left(v_{1}\right)=1$. Since $n \geq 14$, so $d_{T}(y) \geq 3$. We proceed with the proof by cases.

Case 1. $d_{T}(y)=3$.
Without loss of generality, denote $N_{T}(y)=\left\{v, y_{1}, y_{2}\right\}$ with $d_{T}\left(y_{1}\right)=1$ and $d_{T}\left(y_{2}\right) \geq 3$. Let $T^{\prime}=T-y_{2} y+y_{2} v$. Thus

$$
\begin{align*}
& A B S\left(T^{\prime}\right)-A B S(T) \\
& =\sqrt{1-\frac{2}{d_{T^{\prime}}(v)+d_{T^{\prime}}\left(y_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}\left(y_{2}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(v)+d_{T^{\prime}}\left(v_{1}\right)}} \\
& \quad-\sqrt{1-\frac{2}{d_{T}(v)+d_{T}\left(v_{1}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(v)+d_{T^{\prime}}(u)}}-\sqrt{1-\frac{2}{d_{T}(v)+d_{T}(u)}} \\
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(y_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}\left(y_{1}\right)}} \\
& =\sqrt{1-\frac{2}{4+d_{T}\left(y_{2}\right)}}-\sqrt{1-\frac{2}{3+d_{T}\left(y_{2}\right)}}+\sqrt{\frac{3}{5}}-\sqrt{\frac{1}{2}}+\sqrt{\frac{2}{3}}-\sqrt{\frac{3}{5}} \\
& +\sqrt{\frac{1}{3}}-\sqrt{\frac{1}{2}} \tag{9}
\end{align*}
$$

According to (i) of Lemma 1, the right side of (9) is decreasing with $d_{T}\left(y_{2}\right)$. Replace $d_{T}\left(y_{2}\right)=4$ in the right side of (9), thus $A B S\left(T^{\prime}\right)-A B S(T) \geq$ $\sqrt{\frac{2}{3}}+\sqrt{\frac{1}{3}}+\sqrt{\frac{3}{4}}-2 \sqrt{\frac{1}{2}}-\sqrt{\frac{5}{7}}>0$, a contradiction to the definition of T.

Case 2. $d_{T}(y)=4$.
Without loss of generality, denote $N_{T}(y)=\left\{v, y_{1}, y_{2}, y_{3}\right\}$. By Lemma 3 and (i), without loss of generality, let $d_{T}\left(y_{1}\right)=1$ and $d_{T}\left(y_{2}\right)=2$. Therefore $d_{T}\left(y_{3}\right) \geq 3$ for $n \geq 14$. Let $T^{\prime}=T-y y_{2}+u y_{2}$, thus
$A B S\left(T^{\prime}\right)-A B S(T)$
$=\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(y_{2}\right)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}\left(y_{2}\right)}}$

$$
\begin{align*}
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}(x)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}(x)}} \\
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}(v)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}(v)}} \\
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}(v)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}(v)}} \\
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(y_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}\left(y_{1}\right)}} \\
& +\sqrt{1-\frac{2}{d_{T^{\prime}}(y)+d_{T^{\prime}}\left(y_{3}\right)}}-\sqrt{1-\frac{2}{d_{T}(y)+d_{T}\left(y_{3}\right)}} \\
& =\sqrt{\frac{3}{5}-\sqrt{\frac{2}{3}+\sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}}}+\sqrt{\frac{2}{3}-\sqrt{\frac{3}{5}}+\sqrt{\frac{2}{3}}}} \\
& +\sqrt{\frac{2}{7}}+\sqrt{\frac{1}{2}-\sqrt{\frac{3}{5}}} \\
& +\sqrt{1-\frac{2}{3+d_{T}\left(y_{3}\right)}}-\sqrt{1-\frac{2}{4+d_{T}\left(y_{3}\right)}} \tag{10}\\
& =2 \sqrt{\frac{1}{2}+\sqrt{\frac{2}{3}}-\sqrt{\frac{1}{3}}-\sqrt{\frac{3}{5}}} \\
& \\
& +\sqrt{\frac{5}{7}+\sqrt{1-\frac{2}{3+d_{T}\left(y_{3}\right)}}}-\sqrt{1-\frac{2}{4+d_{T}\left(y_{3}\right)}}
\end{align*}
$$

According to (i) of Lemma 1, the right side of (10) is increasing with $d_{T}\left(y_{3}\right)$. Replace $d_{T}\left(y_{3}\right)=3$ in the right side of (10), thus $A B S\left(T^{\prime}\right)-$ $A B S(T) \geq 2 \sqrt{\frac{1}{2}}+2 \sqrt{\frac{2}{3}}-\sqrt{\frac{1}{3}}-\sqrt{\frac{3}{5}}-2 \sqrt{\frac{5}{7}}>0$, a contradiction to the definition of T.

The proof is competed.
Lemma 4. Let T be a molecular tree which has maximum $A B S$ index in the class of molecular trees of order $n(n \geq 14)$ with a perfect matching M. If T has vertices of degree 4, then
(i) for each vertex u of degree 4 in T, there exists a pair of vertices of degree 2 adjacent to u.
(ii) there are exactly two vertices of degree 4 and four vertices of degree 2 in T.

Proof. (i) Combine Lemma 2 and (i) of Lemma 3, it is enough to prove that there exists no vertex of degree 4 neighboring exactly one vertex of degree 2 . We prove by contradiction. Suppose there exists $u \in V(T)$ such
that $N_{T}(u)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ where $d_{T}\left(v_{1}\right)=1, d_{T}\left(v_{2}\right)=2$ and $d_{T}\left(v_{i}\right) \geq 3$ where $i \in\{3,4\}$. Let another neighbor of v_{2} be x. Since lemma 2, we have $d_{T}(x)=1$. Let $T^{\prime}=T-u v_{4}+v_{2} v_{4}$. Thus, by lemma 1 , we abtain

$$
\begin{align*}
& A B S\left(T^{\prime}\right)-A B S(T) \\
& =\sqrt{1-\frac{2}{d_{T^{\prime}}\left(v_{2}\right)+d_{T^{\prime}}\left(v_{4}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{4}\right)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}\left(v_{2}\right)+d_{T^{\prime}}(x)}} \\
& \quad-\sqrt{1-\frac{2}{d_{T}\left(v_{2}\right)+d_{T}(x)}}+\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{1}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{1}\right)}} \\
& \quad+\sqrt{1-\frac{2}{d_{T^{\prime}}(u)+d_{T^{\prime}}\left(v_{3}\right)}}-\sqrt{1-\frac{2}{d_{T}(u)+d_{T}\left(v_{3}\right)}} \\
& =\sqrt{1-\frac{2}{3+d_{T}\left(v_{4}\right)}}-\sqrt{1-\frac{2}{4+d_{T}\left(v_{4}\right)}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{1}{3}} \\
& \tag{11}\\
& \quad+\sqrt{\frac{1}{2}-\sqrt{\frac{3}{5}}+\sqrt{1-\frac{2}{3+d_{T}\left(v_{3}\right)}}-\sqrt{1-\frac{2}{4+d_{T}\left(v_{3}\right)}}}
\end{align*}
$$

According to (i) of Lemma 1, the right side of (11) is increasing with $d_{T}\left(v_{i}\right)$ where $i \in\{3,4\}$. Replace $d_{T}\left(v_{3}\right)=d_{T}\left(v_{4}\right)=3$ in the right side of (11), thus $A B S\left(T^{\prime}\right)-A B S(T) \geq 2 \sqrt{\frac{1}{2}}+2 \sqrt{\frac{2}{3}}-\sqrt{\frac{1}{3}}-\sqrt{\frac{3}{5}}-2 \sqrt{\frac{5}{7}}>0$, a contradiction to the definition of T.

The proof is competed.
(ii) Let $u \in V(T)$ with $N_{T}(u)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Without loss of generality, according to Lemma 2 and (i) of Lemma 4, let us say that $d_{T}\left(v_{1}\right)=1$ and $d_{T}\left(v_{2}\right)=d_{T}\left(v_{3}\right)=2$. Let P be a maximal path which starts from u and contains $u v_{4}$. Without loss of generality, suppose x is another endpoint of P. Obviously, x is a pendant vertex. Let y be the neighbor of x. Since T has a perfect matching, then $d_{T}(y)=2$. According to (ii) of Lemma 3 , let v be another neighbor of y with $d_{T}(v)=4$. Denote the unique path between u, v in T as P_{1}. According to Lemma 2, (i) of Lemma 4 and the fact that $n \geq 14$, it can be obtained that all internal vertices of P_{1} are of degree 3. Combine that with Lemma 2 and (i) of Lemma 4, it is easy to know that there are exactly two vertices of degree 4 and four vertices of degree 2 in T.

Figure 2. T_{1}

Figure 3. T_{2}

Theorem 1. Let T be a molecular tree that has maximum $A B S$ index in the class of molecular trees of order $n(n \geq 14)$ with a perfect matching. Then

$$
A B S(T) \leq \frac{n-6}{2} \sqrt{\frac{2}{3}}+4 \sqrt{\frac{1}{3}}+2 \sqrt{\frac{3}{5}}+2 \sqrt{\frac{5}{7}}+\frac{n-12}{2} \sqrt{\frac{1}{2}} .
$$

The equality holds if and only if T is isomorphic to T_{2} shown in Figure 3.
Proof. Let n_{i} be the number of vertices of degree i in T for each $i \in$ $1,2,3,4$. According to the number of the vertex of degree 4, we distinguish the following two cases.

Case 1. $n_{4}=0$
According to Lemma 2, then T is isomorphic to T_{1} shown in Figure 2. And there are $m_{1,2}=m_{3,2}=2, m_{3,1}=\frac{n-4}{2}$ and $m_{3,3}=\frac{n-6}{2}$ in T_{1}. So

$$
\begin{equation*}
A B S\left(T_{1}\right)=2 \sqrt{\frac{1}{3}}+2 \sqrt{\frac{3}{5}}+\frac{n-4}{2} \sqrt{\frac{1}{2}}+\frac{n-6}{2} \sqrt{\frac{2}{3}} . \tag{12}
\end{equation*}
$$

Case 2. $n_{4} \geq 1$
According to Lemmas 2, 3 and 4, then T is isomorphic to T_{2} shown in Figure 3. And there are $m_{4,2}=m_{1,2}=4, m_{4,1}=m_{4,3}=2, m_{1,3}=\frac{n-12}{2}$ and $m_{3,3}=\frac{n-14}{2}$ in T_{2}. Thus by a simple calculation,

$$
\begin{equation*}
A B S\left(T_{2}\right)=\frac{n-6}{2} \sqrt{\frac{2}{3}}+4 \sqrt{\frac{1}{3}}+2 \sqrt{\frac{3}{5}}+2 \sqrt{\frac{5}{7}}+\frac{n-12}{2} \sqrt{\frac{1}{2}} . \tag{13}
\end{equation*}
$$

Combine (12) and (13), thus

$$
\begin{aligned}
A B S\left(T_{2}\right)-A B S\left(T_{1}\right)= & \left(\frac{n-6}{2} \sqrt{\frac{2}{3}}+4 \sqrt{\frac{1}{3}}+2 \sqrt{\frac{3}{5}}+2 \sqrt{\frac{5}{7}}+\frac{n-12}{2} \sqrt{\frac{1}{2}}\right) \\
& -\left(2 \sqrt{\frac{1}{3}}+2 \sqrt{\frac{3}{5}}+\frac{n-4}{2} \sqrt{\frac{1}{2}}+\frac{n-6}{2} \sqrt{\frac{2}{3}}\right) \\
= & 2 \sqrt{\frac{1}{3}}+2 \sqrt{\frac{5}{7}}-4 \sqrt{\frac{1}{2}}>0
\end{aligned}
$$

Therefore, we have that T_{2} has maximum ABS index in the class of molecular trees of order $n(n \geq 14)$ with a perfect matching. Thus

$$
A B S(T) \leq \frac{n-6}{2} \sqrt{\frac{2}{3}}+4 \sqrt{\frac{1}{3}}+2 \sqrt{\frac{3}{5}}+2 \sqrt{\frac{5}{7}}+\frac{n-12}{2} \sqrt{\frac{1}{2}},
$$

the equality holds if and only if T is isomorphic to T_{2} shown in Figure 3. The proof is competed.

Acknowledgment: The research is supported by Natural Science Foundation of Shanxi Province [Grant number, 202203021212484].

References

[1] A. M. Albalahi, Z. B. Du, A. Ali, On the general atom-bond sumconnectivity index, AIMS Math. 8 (2023) 23771-23785.
[2] A. Ali, I. Gutman, I. Redžepović, Atom-bond sum-connectivity index of unicyclic graphs and some applications, El. J. Math. 5 (2023) 1-7.
[3] A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sumconnectivity index, J. Math. Chem. 60 (2022) 2081-2093.
[4] T. A. Alraqad, I. Ž. Milovanović, H. Saber, A. Ali, J. P. Mazorodze, Minimum atom-bond sum-connectivity index of trees with a fixed or-
der and/or number of pendent vertices, arXiv:2211.05218 [math.CO], DOI: https://doi.org/10.48550/arXiv.2211.05218.
[5] T. Alraqad, H. Saber, A. Ali, On the maximum atom-bond sumconnectivity index of graphs, arXiv:2302.01905 [math.CO], DOI: https://doi.org/10.48550/arXiv.2302.01905.
[6] A. Jahanbani, I. Redžepović, On the generalized ABS index of graphs, Filomat 37 (2023) 10161-10169.
[7] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, Heidelberg, 2008.
[8] R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021) \#126018.
[9] H. Y. Deng, Z. K. Tang, R. F. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem. 121 (2021) \#e26622.
[10] J. W. Du, X. L. Su, On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves, Appl. Math. Comput. 464 (2024) \#128390.
[11] K. J. Gowtham, I. Gutman, On the difference between atom-bond sum-connectivity and sum-connectivity indices, Bull. Cl. Sci. Math. Nat. Sci. Math. 47 (2022) 55-65.
[12] V. Maitreyi, S. Elumalai, S. Balachandran, The minimum ABS index of trees with given number of pendent vertices, arXiv:2211.05177 [math.CO], DOI: https://doi.org/10.48550/arXiv.2211.05177.
[13] N. Palaniyappan, E. Suresh, B. Selvaraj, M. Sourav, Smallest ABS index of unicyclic graphs with given girth, J. Appl. Math. Comput. 69 (2023) 3675-3692.
[14] S. Noureen, A. Ali, Maximum atom-bond sum-connectivity index of n-order trees with fixed number of leaves, Discr. Math. Lett. 12 (2023) 26-28.
[15] F. X. Wang, B. Wu, The reduced Sombor index and the exponential reduced Sombor index of a molecular tree, J. Math. Anal. Appl. 515 (2022) \#126442.
[16] X. W. Zuo, A. Jahanbani, H. Shooshtari, On the atom-bond sumconnectivity index of chemical graphs J. Mol. Struct. 1296 (2024) \#136849.

[^0]: * Corresponding author.

