Proof of a Conjecture on Symmetric Division Deg Index of Graphs

Kinkar Chandra Das
Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea
kinkardas2003@gmail.com

(Received February 1, 2024)

Abstract

Molecular descriptors play a significant role in the quantitative studies on structure-property and structure-activity relationships. One of the popular degree-based topological index, symmetric division $\operatorname{deg}(S D D)$ index is a chemically useful descriptor. The $S D D$ index of a graph G is defined as $$
S D D(G)=\sum_{v_{i} v_{j} \in E(G)}\left(\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}\right)
$$ where d_{i} is the degree of the vertex $v_{i} \in V(G)$. Very recently, Ali et al. [Symmetric division deg index: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 90 (2023) 263-299] mentioned several open problems on symmetric division deg index of graphs. One of them is as follows:

Characterize graphs attaining the minimum $S D D$ index over the class of all those n-order connected graphs of minimum degree δ that are not δ-regular. In this paper we completely solved the above problem.

1 Introduction

We only consider simple connected graph throughout this paper. Let G be a connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge
set $E(G)$, where $|V(G)|=n$ and $|E(G)|=m$. For any vertex $v_{i} \in V(G)$, let $N_{G}\left(v_{i}\right)$ be the set of neighbors of v_{i} in G and $N_{G}\left[v_{i}\right]=N_{G}\left(v_{i}\right) \bigcup\left\{v_{i}\right\}$, the degree of $v_{i} \in V(G)$, denoted by d_{i}, is the cardinality of $N_{G}(v)$. In particular, the maximum and minimum degree of a graph G will be denoted by $\Delta(G)$ and $\delta(G)$, respectively. We write $v_{i} v_{j} \in E(G)$ when the vertices v_{i} and v_{j} are adjacent. And a vertex v of degree 1 is called a pendant vertex (also known as leaf), the edge incident with a pendant vertex is called a pendant edge. Other undefined notations and terminology on the graph theory can be found in [4].

Molecular descriptors play a significant role in the quantitative studies on structure-property and structure-activity relationships [9,10]. Vukičević and Gašperov [18] proposed and studied a novel class of molecular descriptors in an effort to improve the quantitative studies that already existed on the specific types of molecular descriptors. They found that only a small number of descriptors from this class are helpful for QSPR (quantitative structure-property relationship) applications. The so-called symmetric division $\operatorname{deg}(S D D)$ index is among such chemically useful descriptors. The $S D D$ index of a graph G is defined as

$$
S D D(G)=\sum_{v_{i} v_{j} \in E(G)}\left(\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}\right)
$$

where d_{i} is the degree of the vertex $v_{i} \in V(G)$.
Furtula et al. [7] conducted a thorough comparative analysis of the SDD index with regard to several other molecular descriptors of this kind and discovered that the $S D D$ index is a feasible and practicable molecular descriptor that outperforms a number of other descriptors of a similar kind, and hence they concluded that it deserves to be treated as a useful and applicable molecular descriptor, preferable to some of the more widely used ones. The mathematical properties, particularly the extremal problems and bounds, of the SDD index have been studied, see $[1-3,5,6,8,11-17]$ and the review article [3]. Several open problems related to this molecular descriptor are also given in [3]. In the same paper, the following open
problem is mentioned:
Problem 1. Characterize graphs attaining the minimum $S D D$ index over the class of all those n-order connected graphs of minimum degree δ that are not δ-regular.

The path, star and complete graphs of order n are denoted by P_{n}, S_{n} and K_{n}, respectively. We use S_{n}^{\prime} to denote the graph obtained by adding an edge to a star S_{n}. Denote by K_{n}^{\prime} the graph obtained by deleting an edge from K_{n}.

2 Main result

In this section we confirm Problem 1.
Let $\Gamma_{n, \delta}^{1}$ be a class of connected graphs $H=(V, E)$ of order n with $m\left(=\frac{1}{2}(n \delta+1)\right)$ edges and $d_{1}=\Delta=\delta+1, d_{2}=d_{3}=\cdots=d_{n}=\delta$, where Δ is the maximum degree and δ is the minimum degree. Two graphs $H_{1} \in \Gamma_{5,3}^{1}$ and $H_{2} \in \Gamma_{9,3}^{1}$ (see, Fig. 1). For $G \in \Gamma_{n, \delta}^{1}$, we obtain
$S D D(G)=\left(\frac{\delta+1}{\delta}+\frac{\delta}{\delta+1}\right)(\delta+1)+2(m-\delta-1)=2 m+\frac{1}{\delta}=n \delta+1+\frac{1}{\delta}$.

H_{1}

H_{2}

Figure 1. Two graphs H_{1} and H_{2}.
Let $\Gamma_{n, \delta}^{2}$ be a class of connected graphs $H=(V, E)$ of order n with $m\left(=\frac{1}{2}(n \delta+2)\right)$ edges and $v_{1} v_{2} \in E(G)$ such that $d_{1}=\Delta=\delta+1=d_{2}$, $d_{3}=d_{4}=\cdots=d_{n}=\delta$, where Δ is the maximum degree and δ is the minimum degree. Two graphs $H_{3} \in \Gamma_{6,2}^{2}$ and $H_{4} \in \Gamma_{10,2}^{2}$ (see, Fig. 2). For
$G \in \Gamma_{n, \delta}^{2}$, we obtain
$S D D(G)=\left(\frac{\delta+1}{\delta}+\frac{\delta}{\delta+1}\right) 2 \delta+2(m-2 \delta)=2 m+\frac{2}{\delta+1}=n \delta+2+\frac{2}{\delta+1}$.

Figure 2. Two graphs H_{3} and H_{4}.

We solve the Problem 1 in the following. Without loss of generality, we can assume that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$.

Theorem 1. Let G be a connected non-regular graph of order $n>3$ with minimum degree δ. If both n and δ are odd, then

$$
\begin{equation*}
S D D(G) \geq n \delta+1+\frac{1}{\delta} \tag{1}
\end{equation*}
$$

with equality if and only if $G \in \Gamma_{n, \delta}^{1}$. Otherwise,

$$
\begin{equation*}
S D D(G) \geq n \delta+2+\frac{2}{\delta+1} \tag{2}
\end{equation*}
$$

with equality if and only if $G \in \Gamma_{n, \delta}^{2}$.
Proof. Let $v_{i} v_{j}$ be any edge in G such that $d_{i} \geq d_{j}$. Also let Δ be the maximum degree in G. Since G is not regular and δ is the minimum degree in G, we have $\Delta \geq \delta+1$. Now,

$$
\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}=\left(\sqrt{\frac{d_{i}}{d_{j}}}-\sqrt{\frac{d_{j}}{d_{i}}}\right)^{2}+2
$$

Let m_{1} be the number of edges $v_{i} v_{j} \in E(G)$ such that $d_{i}=d_{j}$. Thus we
have

$$
\begin{align*}
S D D(G) & =\sum_{v_{i} v_{j} \in E(G)}\left(\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}\right) \\
& =\sum_{\substack{v_{i} v_{j} \in E(G), d_{i}=d_{j}}}\left(\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}\right)+\sum_{\substack{v_{i} v_{j} \in E(G), d_{i}>d_{j}}}\left(\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}\right) \\
& =2 m_{1}+\sum_{\substack{v_{i} v_{j} \in E(G), d_{i}>d_{j}}}\left(\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}\right) . \tag{3}
\end{align*}
$$

Let $v_{k} v_{\ell}$ be an edge in G such that $d_{k}>d_{\ell}$. Then one can easily check that

$$
\frac{d_{k}}{d_{\ell}} \geq \frac{d_{k}}{d_{k}-1} \quad \text { and } \quad \frac{d_{\ell}}{d_{k}} \leq \frac{d_{k}-1}{d_{k}}
$$

From the above, we obtain

$$
\sqrt{\frac{d_{k}}{d_{\ell}}}-\sqrt{\frac{d_{\ell}}{d_{k}}} \geq \sqrt{\frac{d_{k}}{d_{k}-1}}-\sqrt{\frac{d_{k}-1}{d_{k}}}=\frac{1}{\sqrt{\left(d_{k}-1\right) d_{k}}}
$$

that is,

$$
\left(\sqrt{\frac{d_{k}}{d_{\ell}}}-\sqrt{\frac{d_{\ell}}{d_{k}}}\right)^{2} \geq \frac{1}{\left(d_{k}-1\right) d_{k}}
$$

that is,

$$
\frac{d_{k}}{d_{\ell}}+\frac{d_{\ell}}{d_{k}} \geq 2+\frac{1}{\left(d_{k}-1\right) d_{k}}
$$

Since G is non-regular, using the above result in (3), we obtain

$$
\begin{align*}
S D D(G)=\sum_{v_{i} v_{j} \in E(G)}\left(\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}\right) & \geq 2 m_{1}+\sum_{\substack{v_{i} v_{j} \in \in(G), d_{i}>d_{j}}}\left(2+\frac{1}{\left(d_{i}-1\right) d_{i}}\right) \\
& \geq 2 m+\frac{1}{(\Delta-1) \Delta} \tag{4}
\end{align*}
$$

as $d_{i}\left(d_{i}-1\right) \leq \Delta(\Delta-1)$ and $\sum_{\substack{v_{i} v_{j} \in E(G), d_{i}>d_{j}}} 1=m-m_{1}$, where m is the
number of edges in G.
Again since G is non-regular, $2 m \geq n \delta+1$. Let k be the number of vertices of degree Δ in G. We consider the following cases:

Case 1. Both n and δ are odd. Since $\Delta \geq \delta+1$, we consider the following two subcases.

Case 1.1. $\Delta=\delta+1$. If $k=1$, then $d_{1}=\Delta=\delta+1, d_{2}=d_{3}=\cdots=d_{n}=\delta$, that is, $G \in \Gamma_{n, \delta}^{1}$ with

$$
S D D(G)=n \delta+1+\frac{1}{\delta}
$$

and hence the equality holds in (1). Otherwise, $k \geq 2$. We have

$$
2 m=k(\delta+1)+(n-k) \delta=n \delta+k \geq n \delta+3
$$

as both n and δ are odd. Using this result in (4), we obtain

$$
S D D(G) \geq n \delta+3+\frac{1}{(\Delta-1) \Delta}>n \delta+1+\frac{1}{\delta} .
$$

The result (1) strictly holds.
Case 1.2. $\Delta \geq \delta+2$. In this case $2 m \geq n \delta+3$ as both n and δ are odd. From (4), we obtain

$$
S D D(G) \geq n \delta+3+\frac{1}{(\Delta-1) \Delta}>n \delta+1+\frac{1}{\delta} .
$$

Again the result (1) strictly holds.
Case 2. n and/or δ are even. In this case $2 m \geq n \delta+2$ as G is non-regular. First we assume that $\delta=1$. Then n must be even and $2 m \geq n+2$. We have $n \geq 4$. If $n=4$, then $G \cong P_{4}$ or $G \cong S_{4}$ or $G \cong S_{4}^{\prime}$ or $G \cong K_{4}^{\prime}$. One
can easily check that

$$
\begin{aligned}
& S D D\left(P_{4}\right)=7=n \delta+2+\frac{2}{\delta+1}, S D D\left(S_{4}\right)=10>7=n \delta+2+\frac{2}{\delta+1} \\
& S D D\left(S_{4}^{\prime}\right)=\frac{29}{3}>7=n \delta+2+\frac{2}{\delta+1}, S D D\left(K_{4}^{\prime}\right)=\frac{32}{3}=n \delta+2+\frac{2}{\delta+1} .
\end{aligned}
$$

Thus the result (2) holds as $P_{4} \in \Gamma_{4,1}^{2}$ and $K_{4}^{\prime} \in \Gamma_{4,2}^{2}$. Otherwise, $n \geq 5$. Since G is non-regular, then there exists an edge $v_{i} v_{j} \in E(G)$ such that $\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}>2$ and hence $S D D(G)>2(n-1) \geq n+3=n \delta+2+\frac{2}{\delta+1}$ as G is connected and $\delta=1$. Thus, the result (2) strictly holds.

Next we assume that $\delta \geq 2$. We consider two cases:
Case 2.1. $\Delta=\delta+1$. For $k=1$, we have $d_{1}=\Delta=\delta+1, d_{2}=d_{3}=\cdots=$ $d_{n}=\delta$, that is, $2 m=n \delta+1$, a contradiction as $n \delta+1$ is odd. So we now assume that $k \geq 2$. We have

$$
2 m=k(\delta+1)+(n-k) \delta=n \delta+k \geq n \delta+2
$$

If $2 m \geq n \delta+4$, then from (4), we obtain

$$
S D D(G) \geq n \delta+4+\frac{1}{(\Delta-1) \Delta}>n \delta+2+\frac{2}{\delta+1} .
$$

Again the result (2) strictly holds. Otherwise, $2 m=n \delta+2$ as $n \delta+3$ is odd. Then we must have $d_{1}=\Delta=\delta+1=d_{2}$ and $d_{3}=d_{4}=\cdots=d_{n}=\delta$. For $v_{1} v_{2} \in E(G)$, we have $G \in \Gamma_{n, \delta}^{2}$ with

$$
S D D(G)=n \delta+2+\frac{2}{\delta+1}
$$

and hence the equality holds in (2).
For $v_{1} v_{2} \notin E(G)$, we obtain

$$
\begin{aligned}
S D D(G) & =\sum_{\substack{v_{i} v_{j} \in E(G), d_{i}=d_{j}}}\left(\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}\right)+\sum_{\substack{v_{i} v_{j} \in E(G), d_{i}>d_{j}}}\left(\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}\right) \\
& =2(m-2 \delta-2)+\left(\frac{\delta+1}{\delta}+\frac{\delta}{\delta+1}\right)(2 \delta+2) \\
& =2 m+\frac{2}{\delta}=n \delta+2+\frac{2}{\delta}>n \delta+2+\frac{2}{\delta+1}
\end{aligned}
$$

Again the result (2) strictly holds.
Case 2.2. $\Delta \geq \delta+2$. If $2 m \geq n \delta+4$, then from (4), we obtain

$$
S D D(G) \geq n \delta+4+\frac{1}{(\Delta-1) \Delta}>n \delta+2+\frac{2}{\delta+1} .
$$

Again the inequality (2) strictly holds. Otherwise, $2 m=n \delta+2$ as $n \delta+3$ is odd and $\Delta \geq \delta+2$. Then $k=1, d_{1}=\Delta=\delta+2$ and $d_{2}=d_{3}=\cdots=$ $d_{n}=\delta$. Thus we obtain
$S D D(G)=2(m-\delta-2)+\left(\frac{\delta+2}{\delta}+\frac{\delta}{\delta+2}\right)(\delta+2)=n \delta+2+\frac{4}{\delta}>n \delta+2+\frac{2}{\delta+1}$.
Again the inequality (2) strictly holds. This completes the proof of the theorem.

Acknowledgment: K. C. Das is supported by National Research Foundation funded by the Korean government (Grant No. 2021R1F1A1050646).

References

[1] A. M. Albalahi, A. Ali, On the maximum symmetric division deg index of k-cyclic graphs, J. Math. 2022 (2022) \#7783128.
[2] A. Ali, S. Elumalai, T. Mansour, On the symmetric division deg index of molecular graphs, MATCH Commun. Math. Comput. Chem. 83 (2020) 205-220.
[3] A. Ali, I. Gutman, I. Redžepović, A. M. Albalahi, Z. Raza, A. E. Hamza, Symmetric division deg index: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 90 (2023) 263-299.
[4] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, MacMillan, London, 1976.
[5] K. C. Das, M. Matejić, E. Milovanović, I. Milovanović, Bounds for symmetric division deg index of graphs, Filomat 33 (2019) 683-698.
[6] J. Du, X. Sun, On symmetric division deg index of trees with given parameters, AIMS Math. 6 (2021) 6528-6541.
[7] B. Furtula, K. C. Das, I. Gutman, Comparative analysis of symmetric division deg index as potentially useful molecular descriptor, Int. J. Quantum Chem. 118 (2018) \#e25659.
[8] M. Ghorbani, S. Zangi, N. Amraei, New results on symmetric division deg index, J. Appl. Math. Comput. 65 (2021) 161-176.
[9] F. Grisoni, D. Ballabio, R. Todeschini, V. Consonni, Molecular descriptors for structure-activity applications: a hands-on approach, in: O. Nicolotti (Ed.), Computational Toxicology, Humana Press, New York, 2018, pp. 3-53.
[10] M. Karelson, Molecular Descriptors in $Q S A R / Q S P R$, Wiley, New York, 2000.
[11] H. Liu, Y. Huang, Sharp bounds on the symmetric division deg index of graphs and line graphs, Comput. Appl. Math. 42 (2023) \#285.
[12] C. Liu, Y. Pan, J. Li, Tricyclic graphs with the minimum symmetric division deg index, Discr. Math. Lett. 3 (2020) 14-18.
[13] J. L. Palacios, New upper bounds for the symmetric division deg index of graphs, Discr. Math. Lett. 2 (2019) 52-56.
[14] Y. Pan, J. Li, Graphs that minimizing symmetric division deg index, MATCH Commun. Math. Comput. Chem. 82 (2019) 43-55.
[15] A. Rajpoot, L. Selvaganesh, Bounds of the symmetric division deg index for trees and unicyclic graphs with a perfect matching, Iran J. Math. Chem. 11 (2020) 141-159.
[16] X. Sun, Y. Gao, J. Du, On symmetric division deg index of unicyclic graphs and bicyclic graphs with given matching number, AIMS Math. 6 (2021) 9020-9035.
[17] A. Vasilyev, Upper and lower bounds of symmetric division deg index, Iran. J. Math. Chem. 5 (2) (2014) 91-98.
[18] D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 83 (2010) 243-260.

