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Abstract

Molecular descriptors play a significant role in the quantitative
studies on structure-property and structure-activity relationships.
One of the popular degree-based topological index, symmetric divi-
sion deg (SDD) index is a chemically useful descriptor. The SDD
index of a graph G is defined as

SDD(G) =
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
,

where di is the degree of the vertex vi ∈ V (G). Very recently, Ali
et al. [Symmetric division deg index: Extremal results and bounds,
MATCH Commun. Math. Comput. Chem. 90 (2023) 263–299]
mentioned several open problems on symmetric division deg index
of graphs. One of them is as follows:

Characterize graphs attaining the minimum SDD index over the
class of all those n-order connected graphs of minimum degree δ that
are not δ-regular.

In this paper we completely solved the above problem.

1 Introduction

We only consider simple connected graph throughout this paper. Let G

be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} and edge
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set E(G), where |V (G)| = n and |E(G)| = m. For any vertex vi ∈ V (G),

let NG(vi) be the set of neighbors of vi in G and NG[vi] = NG(vi)
⋃
{vi},

the degree of vi ∈ V (G), denoted by di, is the cardinality of NG(v). In

particular, the maximum and minimum degree of a graphG will be denoted

by ∆(G) and δ(G), respectively. We write vivj ∈ E(G) when the vertices

vi and vj are adjacent. And a vertex v of degree 1 is called a pendant

vertex (also known as leaf ), the edge incident with a pendant vertex is

called a pendant edge. Other undefined notations and terminology on the

graph theory can be found in [4].

Molecular descriptors play a significant role in the quantitative studies

on structure-property and structure-activity relationships [9,10]. Vukičević

and Gašperov [18] proposed and studied a novel class of molecular descrip-

tors in an effort to improve the quantitative studies that already existed on

the specific types of molecular descriptors. They found that only a small

number of descriptors from this class are helpful for QSPR (quantitative

structure-property relationship) applications. The so-called symmetric di-

vision deg (SDD) index is among such chemically useful descriptors. The

SDD index of a graph G is defined as

SDD(G) =
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
,

where di is the degree of the vertex vi ∈ V (G).

Furtula et al. [7] conducted a thorough comparative analysis of the

SDD index with regard to several other molecular descriptors of this kind

and discovered that the SDD index is a feasible and practicable molecular

descriptor that outperforms a number of other descriptors of a similar kind,

and hence they concluded that it deserves to be treated as a useful and

applicable molecular descriptor, preferable to some of the more widely used

ones. The mathematical properties, particularly the extremal problems

and bounds, of the SDD index have been studied, see [1–3, 5, 6, 8, 11–17]

and the review article [3]. Several open problems related to this molecular

descriptor are also given in [3]. In the same paper, the following open
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problem is mentioned:

Problem 1. Characterize graphs attaining the minimum SDD index over

the class of all those n-order connected graphs of minimum degree δ that

are not δ-regular.

The path, star and complete graphs of order n are denoted by Pn, Sn

and Kn, respectively. We use S′
n to denote the graph obtained by adding

an edge to a star Sn. Denote by K ′
n the graph obtained by deleting an

edge from Kn.

2 Main result

In this section we confirm Problem 1.

Let Γ1
n,δ be a class of connected graphs H = (V, E) of order n with

m (= 1
2 (nδ + 1)) edges and d1 = ∆ = δ + 1, d2 = d3 = · · · = dn = δ,

where ∆ is the maximum degree and δ is the minimum degree. Two graphs

H1 ∈ Γ1
5,3 and H2 ∈ Γ1

9,3 (see, Fig. 1). For G ∈ Γ1
n,δ, we obtain

SDD(G) =

(
δ + 1

δ
+

δ

δ + 1

)
(δ+1)+2(m−δ−1) = 2m+

1

δ
= nδ+1+

1

δ
.

H1 H2

Figure 1. Two graphs H1 and H2.

Let Γ2
n,δ be a class of connected graphs H = (V, E) of order n with

m (= 1
2 (nδ + 2)) edges and v1v2 ∈ E(G) such that d1 = ∆ = δ + 1 = d2,

d3 = d4 = · · · = dn = δ, where ∆ is the maximum degree and δ is the

minimum degree. Two graphs H3 ∈ Γ2
6,2 and H4 ∈ Γ2

10,2 (see, Fig. 2). For



646

G ∈ Γ2
n,δ, we obtain

SDD(G) =

(
δ + 1

δ
+

δ

δ + 1

)
2δ+2(m−2δ) = 2m+

2

δ + 1
= nδ+2+

2

δ + 1
.

H3 H4

Figure 2. Two graphs H3 and H4.

We solve the Problem 1 in the following. Without loss of generality,

we can assume that d1 ≥ d2 ≥ · · · ≥ dn.

Theorem 1. Let G be a connected non-regular graph of order n > 3 with

minimum degree δ. If both n and δ are odd, then

SDD(G) ≥ nδ + 1 +
1

δ
(1)

with equality if and only if G ∈ Γ1
n,δ. Otherwise,

SDD(G) ≥ nδ + 2 +
2

δ + 1
(2)

with equality if and only if G ∈ Γ2
n,δ.

Proof. Let vivj be any edge in G such that di ≥ dj . Also let ∆ be the

maximum degree in G. Since G is not regular and δ is the minimum degree

in G, we have ∆ ≥ δ + 1. Now,

di
dj

+
dj
di

=

(√
di
dj

−
√

dj
di

)2

+ 2.

Let m1 be the number of edges vivj ∈ E(G) such that di = dj . Thus we
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have

SDD(G) =
∑

vivj∈E(G)

(
di
dj

+
dj
di

)

=
∑

vivj∈E(G),

di=dj

(
di
dj

+
dj
di

)
+

∑
vivj∈E(G),

di>dj

(
di
dj

+
dj
di

)

= 2m1 +
∑

vivj∈E(G),

di>dj

(
di
dj

+
dj
di

)
. (3)

Let vkvℓ be an edge in G such that dk > dℓ. Then one can easily check

that
dk
dℓ

≥ dk
dk − 1

and
dℓ
dk

≤ dk − 1

dk
.

From the above, we obtain√
dk
dℓ

−
√

dℓ
dk

≥
√

dk
dk − 1

−
√

dk − 1

dk
=

1√
(dk − 1) dk

,

that is, (√
dk
dℓ

−
√

dℓ
dk

)2

≥ 1

(dk − 1) dk
,

that is,
dk
dℓ

+
dℓ
dk

≥ 2 +
1

(dk − 1) dk
.

Since G is non-regular, using the above result in (3), we obtain

SDD(G) =
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
≥ 2m1 +

∑
vivj∈E(G),

di>dj

(
2 +

1

(di − 1) di

)

≥ 2m+
1

(∆− 1)∆
(4)

as di (di − 1) ≤ ∆(∆ − 1) and
∑

vivj∈E(G),

di>dj

1 = m − m1, where m is the
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number of edges in G.

Again since G is non-regular, 2m ≥ n δ + 1. Let k be the number of

vertices of degree ∆ in G. We consider the following cases:

Case1. Both n and δ are odd. Since ∆ ≥ δ+1, we consider the following

two subcases.

Case1.1.∆ = δ+1. If k = 1, then d1 = ∆ = δ+1, d2 = d3 = · · · = dn = δ,

that is, G ∈ Γ1
n,δ with

SDD(G) = nδ + 1 +
1

δ

and hence the equality holds in (1). Otherwise, k ≥ 2. We have

2m = k(δ + 1) + (n− k) δ = n δ + k ≥ n δ + 3

as both n and δ are odd. Using this result in (4), we obtain

SDD(G) ≥ nδ + 3 +
1

(∆− 1)∆
> nδ + 1 +

1

δ
.

The result (1) strictly holds.

Case1.2. ∆ ≥ δ + 2. In this case 2m ≥ n δ + 3 as both n and δ are odd.

From (4), we obtain

SDD(G) ≥ nδ + 3 +
1

(∆− 1)∆
> nδ + 1 +

1

δ
.

Again the result (1) strictly holds.

Case2. n and/or δ are even. In this case 2m ≥ n δ+2 as G is non-regular.

First we assume that δ = 1. Then n must be even and 2m ≥ n + 2. We

have n ≥ 4. If n = 4, then G ∼= P4 or G ∼= S4 or G ∼= S′
4 or G ∼= K ′

4. One
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can easily check that

SDD(P4) = 7 = nδ + 2 +
2

δ + 1
, SDD(S4) = 10 > 7 = nδ + 2 +

2

δ + 1

SDD(S′
4) =

29

3
> 7 = nδ + 2 +

2

δ + 1
, SDD(K′

4) =
32

3
= nδ + 2 +

2

δ + 1
.

Thus the result (2) holds as P4 ∈ Γ2
4,1 and K ′

4 ∈ Γ2
4,2. Otherwise, n ≥ 5.

Since G is non-regular, then there exists an edge vivj ∈ E(G) such that

di
dj

+
dj
di

> 2 and hence SDD(G) > 2 (n− 1) ≥ n+ 3 = nδ + 2 +
2

δ + 1

as G is connected and δ = 1. Thus, the result (2) strictly holds.

Next we assume that δ ≥ 2. We consider two cases:

Case2.1. ∆ = δ+ 1. For k = 1, we have d1 = ∆ = δ+ 1, d2 = d3 = · · · =
dn = δ, that is, 2m = nδ + 1, a contradiction as nδ + 1 is odd. So we now

assume that k ≥ 2. We have

2m = k(δ + 1) + (n− k) δ = n δ + k ≥ n δ + 2.

If 2m ≥ n δ + 4, then from (4), we obtain

SDD(G) ≥ nδ + 4 +
1

(∆− 1)∆
> nδ + 2 +

2

δ + 1
.

Again the result (2) strictly holds. Otherwise, 2m = n δ + 2 as n δ + 3 is

odd. Then we must have d1 = ∆ = δ+1 = d2 and d3 = d4 = · · · = dn = δ.

For v1v2 ∈ E(G), we have G ∈ Γ2
n,δ with

SDD(G) = nδ + 2 +
2

δ + 1
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and hence the equality holds in (2).

For v1v2 /∈ E(G), we obtain

SDD(G) =
∑

vivj∈E(G),

di=dj

(
di
dj

+
dj
di

)
+

∑
vivj∈E(G),

di>dj

(
di
dj

+
dj
di

)

= 2(m− 2δ − 2) +

(
δ + 1

δ
+

δ

δ + 1

)
(2δ + 2)

= 2m+
2

δ
= nδ + 2 +

2

δ
> nδ + 2 +

2

δ + 1
.

Again the result (2) strictly holds.

Case2.2. ∆ ≥ δ + 2. If 2m ≥ n δ + 4, then from (4), we obtain

SDD(G) ≥ nδ + 4 +
1

(∆− 1)∆
> nδ + 2 +

2

δ + 1
.

Again the inequality (2) strictly holds. Otherwise, 2m = n δ+2 as n δ+3

is odd and ∆ ≥ δ + 2. Then k = 1, d1 = ∆ = δ + 2 and d2 = d3 = · · · =
dn = δ. Thus we obtain

SDD(G) = 2(m−δ−2)+

(
δ + 2

δ
+

δ

δ + 2

)
(δ+2) = nδ+2+

4

δ
> nδ+2+

2

δ + 1
.

Again the inequality (2) strictly holds. This completes the proof of the

theorem.
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