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Abstract

For a real number β, the general sum-connectivity index χβ(G)
of a graph G is defined as χβ(G) =

∑
xy∈E(G)(dG(x) + dG(y))

β ,

where d(x) denote the degree of a vertex x in G. In Chen (2023),
the author present the lower bounds for χβ(L(G)) in terms of χβ(G)
for β ≥ 0 and β < 0, but the lower bounds are not the sharp. In the
paper, we give an improvement of the lower bounds for β ≥ 0, i.e.,

χβ(L(G)) ≥


χβ(G), if δ(G) ≤ 2,

2(1 +
2

∆ + 3
)βχβ(G), if δ(G) ≥ 3,

and characterize the extremal graphs. In addition, for β < 0, we
present a small improvement on two special cases.

1 Introduction

Topological indices (or chemical indices) as a tool for compact and effective

description of structural formulas used to study and predict the structure-
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property correlation of organic compounds [6], which is widely applied in

chemistry, physics, biology, and other fields. Therefore, various topological

indices have been studied for several decades. In order to define the concept

of branching in molecular species [3, 4], Randić [10] introduced in 1975 a

topological index–the connectivity index (now called the Randić index),

defined for a simple graph G as

R(G) =
∑

xy∈E(G)

(dG(x)dG(y))
− 1

2 ,

where dG(x) denotes the degree of a vertex x of G. In 1998, Bollobás and

Erdös [11] generalized this index to

Rβ(G) =
∑

xy∈E(G)

(dG(x)dG(y))
β ,

where β is a real number.

Based on the work on Randić index, Zhou and Trinajstić [12] proposed

the sum-connectivity index χ(G) of a graph G:

χ(G) =
∑

xy∈E(G)

(dG(x) + dG(y))
− 1

2 .

As a generalization of sum-connectivity index, the general sum-connectivity

index χβ(G) of a graph G was introduced by Zhou and Trinajstić [13], that

is

χβ(G) =
∑

xy∈E(G)

(dG(x) + dG(y))
β .

The line graph L(G) of a graph G is a graph whose vertices are the

edges of G, with two of vertices being adjacent if the corresponding edges

are adjacent in G. The line graph was first introduced in [7], we can refer

to [2, 8, 9] for some related result on line graphs.

It is known that the number of benzenoid hydrocarbons is actually

huge, thus modeling the physicochemical properties of the unknown ones

is important to predict its properties. One of the main applications of topo-

logical indices to chemistry is to obtain predictions of certain properties
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of molecules (see [5]). In this sense, the connectivity index χ2 has shown

good predicting ability in comparison with a benchmark set of other pre-

dictors, for example, its correlation coefficient with respect to the enthalpy

of vaporization (HVAP) is equal to 0.881, see [14].

Besides, when we study on topological indices, often deal with opti-

mization problems on graphs, i.e., find a graph that maximize or mini-

mize one or more of the topological indices. In general, to obtain quasi-

minimizing or quasi-maximizing graphs is a good strategy that is com-

monly used. Line graphs can be used in solving maximization and mini-

mization problems on hexagonal systems since it can be (approximately)

transformed into one on triangular systems. Therefore, the research on

the general sum-connectivity index of a graph and its line graph is of great

significance.

Very recently, Chen [1] present the lower bounds for χβ(L(G)) in terms

of χβ(G) for β ≥ 0 and β < 0. The detailed results are summarized as

follows:

Theorem 1. (Chen [1]) Let β ≥ 0 be a real number. If G a connected

graph not isomorphic to a path, then

χβ(L(G)) ≥

{
χβ(G), if δ(G) ≤ 2;

2χβ(G), if δ(G) ≥ 3.

Theorem 2. (Chen [1]) Let β < 0 be a real number. If G a connected

graph of order n not isomorphic to a Pn, then

(i) If δ ≥ 3, then

χβ(L(G)) ≥



2
(∆+ 5

6

)β

χβ(G), if ∆ /∈ {4, 5, 6};

2min
{5

2

(17
9

)β
, 2
(15
8

)β
,
3

2

(13
7

)β
,
(11
6

)β}
χβ(G), if ∆ = 6;

2min
{
2
(7
4

)β

,
3

2

(12
7

)β

,
(5
3

)β}
χβ(G), if ∆ = 5;

2min
{3

2

(11
7

)β

,
(3
2

)β}
χβ(G), if ∆ = 4.
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(ii) If δ ≤ 2, then

χβ(L(G)) ≥


(

∆+3
3

)β

χβ(G), if G contains a pendant path of

length 2 or ∆ = 4;(
∆+3
4

)β

χβ(G), otherwise.

However, we found that the lower bounds in Theorem 1 and 2 are not

sharp, and the lower bounds can be further improved. Inspired from this,

in the paper, we give an improvement of the lower bounds for χβ(L(G))

when β ≥ 0, and characterize the extremal graphs attaining the bounds.

In addition, for β < 0, we present a small improvement on two special

cases.

All graphs considered in this paper are simple and connected. Let

G = (V (G), E(G)) be a graph of order n and of size m. We use dG(x) and

NG(x) to denote the degree and the set of neighbors of x in G, respectively.

Let IG(x) = {xxi : xxi ∈ E(G)}. The minimum degree and maximum

degree of G are denoted by δ(G) and ∆(G), respectively. If there is no

confusion, we simply denote the above notation as d(x), N(x), I(x), δ, ∆.

Furthermore, Pn, Cn, K1,n−1 and Kn represent the path, cycle, star and

complete graph of order n, respectively.

2 Bounds for χβ(L(G)) in terms of χβ(G)

A path P = x0x1 · · ·xk of G with length k ≥ 2 is said to be a 2-extremal

path if d(x0) ̸= 2, d(xk) ̸= 2 and d(x1) = · · · = d(xk−1) = 2. In particular,

P is called pendant if d(x0) = 1 and d(xk) ≥ 3, or d(x0) ≥ 3 and d(xk) = 1.

Let End3(P ) be the set of ends of P with degree at least 3 in G. In

addition, we use P to denote the set of 2-extremal paths in G. We firstly

give the relationship between χβ(L(G)) and χβ(G) when β ≥ 0, and begin

with the following lemma.

Lemma 1. Let β ≥ 0, δ ≥ 3 and x is a vertex of a graph G of order n
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with d(x) ≥ 3, then

∑
e,f∈I(x)

(dL(e) + dL(f))
β ≥

(
1 +

2

∆ + 3

)β ∑
y∈N(x)

(d(x) + d(y))β ,

with equality if and only if ∆ = δ = 3, i.e. G is a 3-regular graph.

Proof. Assume N(x) = {x1, x2, · · · , xt}, where t = d(x), and tj = d(xj)

for 1 ≤ j ≤ t. Then

∑
y∈N(x)

(d(x) + d(y))β =

t∑
j=1

(t+ tj)
β ,

∑
e,f∈I(x)

(dL(e) + dL(f))
β =

∑
1≤i<j≤t

(2t+ ti + tj − 4)β .

We only need to prove that

t∑
j=1

(tj + t)β ≤ (
∆ + 3

∆+ 5
)β

∑
1≤i<j≤t

(ti + tj + 2t− 4)β .

Let’s introduce a function f(a) = a+δ+2t−4
a+t . Then f(a) = (1+ δ+t−4

a+t ) is a

decreasing function for a ∈ [3,∆], thus we have

tj + δ + 2t− 4

tj + t
≥ ∆+ δ + 2t− 4

t+∆
,

1

tj + t
≥ ∆+ δ + 2t− 4

t+∆

1

tj + δ + 2t− 4

≥ ∆+ δ + 2t− 4

t+∆

1

tj + ti + 2t− 4
,

(tj + t)β ≤ (
t+∆

∆+ δ + 2t− 4
)β(ti + tj + 2t− 4)β

t∑
j=1

(tj + t)β ≤ 1

t− 1

∑
1≤i,j≤t,i ̸=j

(
t+∆

∆+ δ + 2t− 4
)β(ti + tj + 2t− 4)β

=
2

t− 1
(

t+∆

∆+ 2t− 1
)β

∑
1≤i<j≤t

(ti + tj + 2t− 4)β .
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Now, let gβ(t) =
2

t−1 (
t+∆

∆+2t−1 )
β . Since 3 ≤ t ≤ ∆,

g′β(t) =

−2

(t− 1)2

( t+∆

∆+ 2t− 1

)β

+
2β

t− 1

( t+∆

∆+ 2t− 1

)β−1 (∆ + 2t− 1)− 2(t+∆)

(∆ + 2t− 1)2

=
−2

t− 1

( t+∆

∆+ 2t− 1

)β−1( 1

t− 1

t+∆

∆+ 2t− 1
+

β(∆ + 1)

(∆ + 2t− 1)2

)
< 0,

gβ(t) is a decreasing function. And gβ(t) ≤ gβ(3) = (∆+3
∆+5 )

β . Therefore,

t∑
j=1

(tj + t)β ≤ (
∆ + 3

∆+ 5
)β

∑
1≤i<j≤t

(ti + tj + 2t− 4)β .

Moreover, the equality holds if and only if t = ti = tj = ∆ = δ = 3, i.e. G

is a 3-regular graph.

Lemma 2. (Chen [1]) Let β ≥ 0 and x is a vertex of a graph G of order

n with d(x) ≥ 3,∑
e,f∈I(x)

(dL(e) + dL(f))
β ≥

∑
y∈N(x)

(d(x) + d(y))β ,

with equality if and only if G ∼= K1,3 and x is the center.

Lemma 3. (Chen [1]) Let β ≥ 0 be a real number. If P ∈ P of a connected

graph G not isomorphic to a path, then∑
ef∈E(L(G))

e,f∈E(P )

(dL(e) + dL(f))
β ≥

∑
xy∈E(P\End3(P ))

(d(x) + d(y))β .

Theorem 3. Let β ≥ 0 and G ̸∼= Pn, then

χβ(L(G)) ≥

χβ(G), if δ(G) ≤ 2;

2(1 +
2

∆ + 3
)βχβ(G), if δ(G) ≥ 3.

Moreover, χβ(L(G)) = χβ(G) if and only if G ∼= K1,3 or Cn, and χβ(L(G)) =

2(1 + 2
∆+3 )

βχβ(G) if and only if G is a 3-regular graph.
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Proof. We first prove the case δ(G) ≥ 3. Observe that

χβ(G) =
∑

xy∈E(G)

(d(x) + d(y))β =
1

2

∑
x∈V (G)

∑
y∈N(x)

(d(x) + d(y))β ,

and

χβ(L(G)) =
∑

x∈V (G)

∑
e,f∈I(x)

(dL(e) + dL(f))
β .

For each vertex x ∈ V (G) with d(x) ≥ 3, by Lemma 1, we have

∑
e,f∈I(x)

(dL(e) + dL(f))
β ≥

(
1 +

2

∆ + 3

)β ∑
y∈N(x)

(d(x) + d(y))β .

Summing up the above inequalities, we conclude that

χβ(L(G)) ≥ 2(1 +
2

∆ + 3
)βχβ(G),

with the equality if and only if G is a 3-regular graph.

Now, we prove the case δ(G) ≤ 2. If 2 = δ = ∆, then G ∼= Cn, and

L(G) ∼= Cn, we have χβ(L(G)) = χβ(G). Next, we consider 1 ≤ δ < ∆.

Based on the degree of G, we note that

χβ(G) =
∑

x∈V (G)

d(x)≥3

∑
y∈N(x)

(d(x) + d(y))β − 1

2

∑
x∈V (G)

d(x)≥3

∑
y∈N(x)

d(y)≥3

(d(x) + d(y))β

+
∑
P∈P

∑
xy∈E(P\End3(P ))

(d(x) + d(y))β ,

and

χβ(L(G)) =
∑

x∈V (G)

d(x)≥3

∑
e,f∈I(x)

(dL(e) + dL(f))
β

+
∑
P∈P

∑
ef∈E(L(G))

e,f∈E(P )

(dL(e) + dL(f))
β . (∗)
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For each vertex x ∈ V (G) with d(x) ≥ 3, by Lemma 2, we have∑
e,f∈I(x)

(dL(e) + dL(f))
β ≥

∑
y∈N(x)

(d(x) + d(y))β .

For P ∈ P, by Lemma 3, we have∑
ef∈E(L(G))

e,f∈E(P )

(dL(e) + dL(f))
β ≥

∑
xy∈E(P\End3(P ))

(d(x) + d(y))β .

Substitute the above two equations into (∗), we conclude that

χβ(L(G)) ≥
∑

x∈V (G)

d(x)≥3

∑
y∈N(x)

(d(x) + d(y))β

+
∑
P∈P

∑
xy∈E(P\End3(P ))

(d(x) + d(y))β .

≥
∑

x∈V (G)

d(x)≥3

∑
y∈N(x)

(d(x) + d(y))β − 1

2

∑
x∈V (G)

d(x)≥3

∑
y∈N(x)

d(y)≥3

(d(x) + d(y))β

+
∑
P∈P

∑
xy∈E(P\End3(P ))

(d(x) + d(y))β = χβ(G).

And

−1

2

∑
x∈V (G)

d(x)≥3

∑
y∈N(x)

d(y)≥3

(d(x) + d(y))β +
∑
P∈P

∑
xy∈E(P\End3(P ))

(d(x) + d(y))β = 0

i.e., χβ(L(G)) = χβ(G) if and only if G ∼= K1,3.

Next, we will discuss the bounds for χβ(L(G)) in terms of χβ(G) when

β < 0.

Lemma 4. Let β < 0 and P ̸∼= Pn. If P ∈ P is a pendant path with length

of 2, then

∑
ef∈E(L(G))

e,f∈E(P )

(dL(e) + dL(f))
β ≥

(∆+ 1

3

)β ∑
xy∈E(P )

x,y/∈End3(P )

(d(x) + d(y))β .
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Proof. Recall that the definition of pendant path, we assume P = x0x1x2,

where d(x0) ≥ 3, d(x1) = 2, d(x2) = 1. Let e1 = x0x1, e2 = x1x2. Then∑
xy∈E(P )

x,y/∈End3(P )

(d(x) + d(y))β = (d(x1) + d(x2))
β = 3β ,

∑
ef∈E(L(G))

e,f∈E(P )

(dL(e) + dL(f))
β = (dL(e1) + dL(e2))

β = (d(x0) + 1)β

Furthermore, we can conclude that

∑
ef∈E(L(G))

e,f∈E(P )

(dL(e) + dL(f))
β −

(∆+ 1

3

)β ∑
xy∈E(P )

x,y/∈End3(P )

(d(x) + d(y))β

= (d(x0) + 1)β −
(∆+ 1

3

)β

3β

≥ (∆ + 1)β − (∆ + 1)β = 0.

The proof is now finished.

Lemma 5. (Carballosa [2]) Let β < 0, δ ≤ 2 and a vertex x of a connected

graph G of order n with d(x) ≥ 3, then∑
e,f∈I(x)

(dL(e) + dL(f))
β

≥



(∆+ 3

4

)β ∑
y∈N(x)

(d(x) + d(y))β , if ∆ ̸= 4;

min
{(7

4

)β

,
3

2

(9
5

)β} ∑
y∈N(x)

(d(x) + d(y))β , if ∆ = 4.

Lemma 6. (Chen [1]) Let β < 0. If G does not contain a pendant path

with length of 2, then

∑
ef∈E(L(G))

e,f∈E(P )

(dL(e) + dL(f))
β ≥

(∆+ 3

4

)β ∑
xy∈E(P\End3(P ))

(d(x) + d(y))β .
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Theorem 4. Let β < 0 and δ ≤ 2. If G a connected graph not isomorphic

to Pn, then

χβ(L(G)) ≥



(
∆+1
3

)β

χβ(G), if G contains a pendant path of length 2

and ∆ ≥ 5;(
∆+1.5

3

)β

χβ(G), if ∆ = 4, or contains a pendant path of

length 2 and ∆ = 3.

Proof. Similar to the proof of Theorem 3, we first have

χβ(G) =
∑

x∈V (G)

d(x)≥3

∑
y∈N(x)

(d(x) + d(y))β − 1

2

∑
x∈V (G)

d(x)≥3

∑
y∈N(x)

d(y)≥3

(d(x) + d(y))β

+
∑
P∈P

∑
xy∈E(P\End3(P ))

(d(x) + d(y))β ,

and

χβ(L(G)) =
∑

x∈V (G)

d(x)≥3

∑
e,f∈I(x)

(dL(e)+dL(f))
β+

∑
P∈P

∑
ef∈E(L(G))

e,f∈E(P )

(dL(e)+dL(f))
β .

For each vertex x ∈ V (G) with d(x) ≥ 3, since min{( 74 )
β , 3

2 (
9
5 )

β} ≥
(∆+1.5

3 )β , thus by Lemma 5, we have

∑
e,f∈I(x)

(dL(e)+dL(f))
β ≥


(∆+ 3

4

)β ∑
y∈N(x)

(d(x) + d(y))β , if ∆(G) ̸= 4;

(∆+ 1.5

3

)β ∑
y∈N(x)

(d(x) + d(y))β , if ∆(G) = 4.

If G does not contain a pendant path of length 2, then by Lemma 6,

we have∑
ef∈E(L(G))

e,f∈E(P )

(dL(e) + dL(f))
β ≥

(∆+ 3

4

)β ∑
xy∈E(P\End3(P ))

(d(x) + d(y))β .
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Otherwise, if G contains a pendant path of length 2 and ∆ ≥ 5. By Lemma

4, we have∑
ef∈E(L(G))

e,f∈E(P )

(dL(e) + dL(f))
β

≥ min{
(∆+ 3

4

)β

,
(∆+ 1

3

)β

}
∑

xy∈E(P\End3(P ))

(d(x) + d(y))β

=
(∆+ 1

3

)β ∑
xy∈E(P\End3(P ))

(d(x) + d(y))β .

If G contains a pendant path of length 2 and ∆ = 3, we have∑
ef∈E(L(G))

e,f∈E(P )

(dL(e) + dL(f))
β

≥ min{
(∆+ 3

4

)β

,
(∆+ 1.5

3

)β

}
∑

xy∈E(P\End3(P ))

(d(x) + d(y))β

=
(∆+ 1.5

3

)β ∑
xy∈E(P\End3(P ))

(d(x) + d(y))β .

Combining the above, we conclude that if G contains a pendant path

of length 2 and ∆ ≥ 5, then

χβ(L(G)) ≥ min
{(∆+ 3

4

)β

,
(∆+ 1

3

)β}( ∑
x∈V (G)

d(x)≥3

∑
y∈N(x)

(d(x) + d(y))β

+
∑
P∈P

∑
xy∈E(P\End3(P ))

(d(x) + d(y))β
)
≥

(∆+ 1

3

)β

χβ(G).

If ∆ = 4, or G contains a pendant path of length 2 and ∆ = 3, then have

χβ(L(G)) ≥
(∆+ 1.5

3

)β

χβ(G).

This completes the proof.
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