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Abstract

This article gives bounds on a substantial number of BID (bond
incident degree) indices for connected graphs in terms of their or-
der, size, and maximum degree. The considered BID indices include,
among others, the Sombor index (together with its reduced version),
atom-bond sum-connectivity index, symmetric division deg index,
sum-connectivity index, harmonic index, and Randić index. All
the graphs that attain the obtained bounds are also characterized.
All the established bounds are valid also for molecular graphs. A
graph of order n and size m is called an (n,m)-graph. The obtained
bounds provide a partial solution to the problem of finding graphs
with extremum (considered) BID indices over the class of all con-
nected (n,m)-graphs with a fixed maximum degree under certain
constraints.
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1 Introduction

In mathematical chemistry, particularly in the study of molecular graphs,

a topological index is a numerical quantity associated with the molecular

graph of a chemical compound. One of the primary goals of studying

topological indices in chemistry is to encode structural information about

molecules into numerical values. Particularly, such indices are useful in

quantitative structure-activity relationship studies and can be employed to

correlate molecular structure with various chemical and physical properties

[18,41].

A molecular graph’s bond incident degree index (BID index, for short

[6]) is a topological index that is determined by adding up the contributions

from each edge (bond), provided that each edge’s contribution depends

only on the degrees of its incident vertices (atoms) [44]. As far as the

authors are aware, the earliest known BID index is the Platt index [35,36].

For a graph G, its Platt index is defined as

Pℓ(G) =
∑
ab∈E

(da + db − 2),

where E denotes the set of edges of G and db represents the degree of the

vertex b; other (chemical) graph theoretical terms used in this paper can be

found in some stand books on (chemical) graph theory, like [13,15,41,47].

The Platt index has a significant connection with the first Zagreb indexM1

(see [14,26]), which is one of the most extensively researched BID indices:

Pℓ(G) = M1(G)− 2|E|.

The set of all distinct elements in a graph G’s degree sequence is known

as the degree set of G. For a graph G, the general form [24, 27, 46] of a

BID index of G is given as follows:

BID(G) =
∑
ab∈E

FBID(da, db), (1)

where FBID is a non-negative function defined the Cartesian square of
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the degree set of G such that FBID(da, db) = FBID(db, da). The choices

FBID(da, db) = da + db − 2 and FBID(da, db) = da + db in (1) yield the

Platt index and the first Zagreb index, respectively. Other choices for the

function FBID used in (1), that correspond to the certain BID indices

considered in this paper, are given in Table 1.

Table 1. Some BID indices that are taken into account in this article.

The function FBID(da, db) Equation (1) corresponds to Symbol

(da db)
−1/2 Randić index [31,38] R

2(da + db)
−1 harmonic index [12,22] H

√
(da db)−1(da + db − 2) atom-bond connectivity index [5, 19, 21,28] ABC

2
√
da db(da + db)

−1 geometric-arithmetic index [17,37,45] GA

(du + dv)−1/2 sum-connectivity index [12,50] SC(
(da)2 + (db)

2
)
(da db)

−1 symmetric division deg index [7, 46] SDD(
(da + db − 2)−1(da db)

)3
augmented Zagreb index [10,23] AZI

(da + db)
−1(da db) inverse sum indeg index [9, 46] ISI

√
(da)2 + (db)2 Sombor index [25,33] SO

√
(da − 1)2 + (db − 1)2 reduced Sombor index [25,33] SOred√
1− 2(da + db)−1 atom-bond sum-connectivity index [11] ABS

4 da db (da + db)
−2 harmonic-arithmetic index [2] HA√(

(da)2+(db)2
)
(2dadb)−1 modified symmetric division deg index [2] SDD∗

In certain cases, mathematical properties of many BID indices are sim-

ilar or the same [29,30,40,42,43]. Due to this fact, the properties of these

indices are nowadays being studied in unified ways. Many attempts have

already been made in this regard; for example, BID indices were studied

generally in [4, 48, 49] for general graphs, [1, 8, 32] for particular classes of

graphs, [3,20,39] for molecular graphs, where a graph having a maximum
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degree less than 5 is called a molecular graph.

The present article provides sharp bounds on a significant number of

BID indices for connected graphs in terms of their order, size, and maxi-

mum degree. The first Zagreb index (and hence the Platt index) and the

indices listed in Table 1 are particularly discussed. The graphs that attain

the obtained bounds are also characterized.

A graph of order n and size m is referred to as an (n,m)-graph. In the

rest of this paper, we consider only connected graphs.

2 Upper bounds

In this section, first we establish an upper bound on an arbitrary BID

index under certain constraints, and then we derive upper bounds on the

following BID indices: ABS, SO, SOred, SDD, SDD∗, M1 (see Table 1).

If G is a graph with maximum degree ∆ and if ma,b denotes the number of

elements of the set {xy ∈ E : dx = a, dy = b}, then Equation (1) can be

rewritten as

BID(G) =
∑

1≤i≤j≤∆

mi,j FBID(i, j) (2)

Using (2), we derive our first result as follows.

Theorem 1. Let G be an (n,m)-graph of maximum degree ∆ ≥ 2. Con-

sider a BID index defined via (2) and let i, j, be the integers satisfying

1 ≤ i ≤ j ≤ ∆ with j ≥ 2 provided that (i, j) ̸∈ {(1,∆), (∆,∆)}. If the

function ΨBID defined by

ΨBID(i, j,∆)=

(
2−∆

i −
∆
j

)
FBID(1,∆) +

(
∆
i + ∆

j −∆−1
)
FBID(∆,∆)

∆− 1

+ FBID(i, j), (3)

is negative valued, then

BID(G) ≤ 1

∆− 1

(
(n∆−2m)FBID(1,∆)+

(
m(∆+1)−n∆

)
FBID(∆,∆)

)
,

(4)
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where the equality in (4) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. For G, the following system of equations holds:

m1,2 + m1,3 + · · ·+ m1,∆ = η1

m2,1 + 2m2,2 + m2,3 + · · ·+ m2,∆ = 2η2

m3,1 + m3,2 + 2m3,3 + · · ·+ m3,∆ = 3η3

...

m∆,1 + m∆,2 + m∆,3 + · · ·+ 2m∆,∆ = ∆η∆

η1 + η2 + η3 + · · ·+ η∆ = n

η1 + 2η2 + 3η3 + · · ·+∆η∆ = 2m,

(5)

where ηi is the number of elements of {x ∈ V (G) : dx = i} for i ∈
{1, 2, . . . ,∆}. For every i ∈ {1, 2, . . . ,∆}, we define Θi as follows:

Θ1 = η1 − m1,∆

Θ2 = 2η2

Θ3 = 3η3

...

Θ∆−1 = (∆− 1)η∆

Θ∆ = ∆η∆ − m1,∆ − 2m∆,∆.

(6)

From Systems (5) and (6), we have

∆∑
i=1

Θi = 2(m− m1,∆ − m∆,∆) (7)



612

and
∆∑
i=1

Θi

i
= n−

(
1

∆
+ 1

)
m1,∆ − 2

∆
m∆,∆ . (8)

Solving Equations (7) and (8) for m1,∆ and m∆,∆, we have

m1,∆ =
1

∆− 1

(
n∆− 2m+

∆∑
i=1

(
1− ∆

i

)
Θi

)
(9)

and

m∆,∆ =
1

∆− 1

(
m(∆ + 1)− n∆+

∆∑
i=1

(
∆

i
− ∆+ 1

2

)
Θi

)
. (10)

Define A = {(i, j) : 1 ≤ i ≤ j ≤ ∆, (i, j) ̸= (1,∆), (i, j) ̸= (∆,∆)}. By

utilizing (5) and (6) in (9) and (10), we have

m1,∆ =
1

∆− 1

n∆− 2m+
∑

(i,j)∈A

(
2− ∆

i
− ∆

j

)
mi,j

 (11)

and

m∆,∆ =
1

∆− 1

m(∆ + 1)− n∆+
∑

(i,j)∈A

(
∆

i
+

∆

j
−∆− 1

)
mi,j

 .

(12)

Now, by using (11) and (12) in (2), we have

BID(G) =
(n∆− 2m)FBID(1,∆) +

(
m(∆ + 1)− n∆

)
FBID(∆,∆)

∆− 1

+
∑

(i,j)∈A

mi,j ΨBID(i, j,∆), (13)

where ΨBID(i, j,∆) is defined via (3). Since ΨBID(i, j,∆) < 0, the desired

result follows from Equation (13).

Many existing BID indices satisfy the conditions of Theorem 1. In

what follows, we prove that the mentioned conditions hold for the indices:
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ABS, SO, SOred, SDD, M1 (see Table 1).

Corollary 1. If G is an (n,m)-graph of maximum degree ∆ ≥ 2, then

for the atom-bond sum-connectivity (ABS) index the following inequality

holds:

ABS(G) ≤ n∆− 2m√
∆2 − 1

+
m(∆ + 1)− n∆√

∆(∆− 1)
, (14)

where the equality in (14) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. The function ΨBID defined via (3) for the ABS index becomes

ΨABS(i, j,∆) =

(
2− ∆

i − ∆
j

)√
∆−1
∆+1 +

(
∆
i + ∆

j −∆− 1
)√

∆−1
∆

∆− 1

+

√
1− 2

i+ j
. (15)

We assume that i, j,∆, are real numbers satisfying 1 ≤ i ≤ j ≤ ∆ and

j ≥ 2 provided that (i, j) ̸= (1,∆) and (i, j) ̸= (∆,∆). Then, the partial

derivative of the function ΨABS with respect to j is given as

∂

∂j
ΨABS(i, j,∆) =

1

(i+ j)3/2

√
1

i+ j − 2
+

∆−
√

∆(∆+ 1)

j2
√
∆2 − 1

. (16)

We note that

d

d∆

(
∆−

√
∆(∆+ 1)√

∆2 − 1

)
=

(∆+ 1)3/2 − 2
√
∆

2
√
∆(∆2 − 1)3/2

> 0,

for ∆ ≥ 2. Thus, Equation (16) implies that

∂

∂j
ΨABS(i, j,∆) ≥ 1

(i+ j)3/2

√
1

i+ j − 2
+

j −
√
j(j + 1)

j2
√

j2 − 1
. (17)

We use ΦABS(i, j) to denote the right-hand side of (17) . Then

∂

∂i
ΦABS(i, j) = (3− 2i− 2j)

(
1

(i+ j − 2)(i+ j)3

)3/2

(i+ j)2 < 0
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for i ≥ 1 and j ≥ 2. Hence, (17) yields

∂

∂j
ΨABS(i, j,∆) ≥ ΦABS(j, j) =

1

j
√
j(j − 1)

(√
j

j + 1
− 3

4

)
> 0

for 1 ≤ i ≤ j ≤ ∆ and j ≥ 2. Consequently, if all the members of the set

{i, j,∆} are integers satisfying 1 ≤ i ≤ j ≤ ∆ and j ≥ 2 provided that

(i, j) ̸= (1,∆) and (i, j) ̸= (∆,∆), then we have

ΨABS(1, j,∆) ≤ ΨABS(1,∆− 1,∆)

=

√
∆− 2

∆
+

1

(∆− 1)3/2

(
1√
∆

− ∆(∆− 2) + 2√
∆+ 1

)
< 0,

Also,

ΨABS(i, j,∆) ≤ ΨABS(i,∆,∆) =
1− i

i
√

∆−1
∆

+
i−∆

i
√
∆2 − 1

+

√
1− 2

i+∆
<0

for 2 ≤ i ≤ j ≤ ∆ with (i, j) ̸= (∆,∆). Now, the desired bound follows

from Theorem 1.

Corollary 2. Let G be an (n,m)-graph of maximum degree ∆ ≥ 2. Then,

for the Sombor (SO) index, the following inequality holds:

SO(G) ≤
√
∆2 + 1(∆n− 2m) +

√
2∆(∆m+m−∆n)

∆− 1
, (18)

where the equality in (18) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. The function ΨBID defined via (3) for the SO index becomes

ΨSO(i, j,∆) =
√
i2 + j2 +

√
∆2 + 1 (2ij −∆(i+ j))

ij(∆− 1)

+

√
2∆
(
∆
(

1
i +

1
j − 1

)
− 1
)

∆− 1
. (19)
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Assume that i, j,∆ are real numbers satisfying 1 ≤ i ≤ j ≤ ∆ and j ≥ 2

provided that (i, j) ̸= (1,∆) and (i, j) ̸= (∆,∆). The partial derivative of

the function ΨSO with respect to ∆ is given as

∂

∂∆
ΨSO(i, j,∆) =

ΦSO(i, j,∆)

ij(∆− 1)2
√
∆2 + 1

, (20)

where

ΦSO(i, j,∆) =
[
i
{
∆(∆− 2)

(√
2
√
∆2 + 1−∆

)
+
(
−∆

(√
2∆
√
∆2 + 1− 2

√
2
√
∆2 + 1 + 2

)
+

√
2
√
∆2 + 1− 2

)
j + 1

}
+∆ (∆− 2)

(√
2
√
∆2 + 1−∆

)
j + j

]
.

After some lengthy (but elementary) calculations, it is verified that

ΦSO(i, j,∆) < 0

under the considered constraints. Thus, from (20), we have

∂

∂∆
ΨSO(i, j,∆) < 0

and thereby

ΨSO(i, j,∆) ≤ ΨSO(i, j, j)=
√
i2 + j2 +

(i− j)
√
j2 + 1−

√
2(i− 1)j2

i(j − 1)
<0

under the considered constraints. Therefore, by Theorem 1, we have the

required result.

Corollary 3. If G is an (n,m)-graph of maximum degree ∆ ≥ 2, then for

the reduced Sombor index SOred the following inequality holds:

SOred(G) ≤
(√

2∆ +
√
2− 2

)
m−

(√
2− 1

)
∆n, (21)

where the equality in (21) holds if and only if the degree set of G is either
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{∆} or {1,∆}.

Proof. The function ΨBID defined via (3) for the reduced Sombor index

SOred becomes

ΨSOred
(i, j,∆) =

1

ij

[(√
2− 1

)
∆i−

(√
2∆ +

√
2− 2

)
ij

+ ij
√
(i− 2)i+ (j − 2)j + 2 +

(√
2− 1

)
j∆
]
. (22)

Assume that i, j,∆ are real numbers satisfying 1 ≤ i ≤ j ≤ ∆ and j ≥ 2

provided that (i, j) ̸= (1,∆) and (i, j) ̸= (∆,∆). The partial derivative of

the function ΨSOred
with respect to ∆ satisfies

∂

∂∆
ΨSOred

(i, j,∆) =
(√

2− 1
)(1

i
+

1

j

)
−
√
2 < 0 (23)

and thereby

ΨSOred
(i, j,∆) ≤ ΨSOred

(i, j, j)

=
i
(√

(i− 2)i+ (j − 2)j + 2−
√
2j + 1

)
+
(√

2− 1
)
j

i
<0

under the considered constraints. Now, the desired result follows from

Theorem 1.

Corollary 4. Let G be an (n,m)-graph of maximum degree ∆ ≥ 2. Then,

for the symmetric division deg (SDD) index, the following inequality holds:

SDD(G) ≤ 2m

∆
+ (∆− 1)n, (24)

where the equality in (24) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. The function ΨBID defined via (3) for the SDD index becomes

ΨSDD(i, j,∆) =
∆
(
i2 + i+ j2 + j

)
−∆2(i+ j)− 2ij

ij∆
. (25)
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We assume that i, j,∆ are real numbers satisfying 1 ≤ i ≤ j ≤ ∆ and j ≥ 2

provided that (i, j) ̸= (1,∆) and (i, j) ̸= (∆,∆). Denote by ΦSDD(i, j,∆)

the expression present in the numerator of the right-hand side of (25). The

partial derivative of the function ΦSDD with respect to ∆ satisfies

∂

∂∆
ΦSDD(i, j,∆) = i2 − 2∆(i+ j) + i+ j2 + j < 0

and thus ΦSDD(i, j,∆) ≤ ΦSDD(i, j, j) = j(i − j)(i − 1) ≤ 0 for 1 ≤ i ≤
j ≤ ∆ and j ≥ 2, where the equation ΦSDD(i, j,∆) = 0 holds if and only

if either (i, j,∆) = (1,∆,∆) or (i, j,∆) = (∆,∆,∆); but, neither of these

two cases is possible because of the assumption (i, j) ̸∈ {(1,∆), (∆,∆)}.
Therefore, under our constraints, ΦSDD(i, j,∆) < 0 and hence from (25)

we have ΨSDD(i, j,∆) < 0. Now, the required result follows from Theorem

1.

Corollary 5. Let G be an (n,m)-graph of maximum degree ∆ ≥ 2. Then,

for the first Zagreb index M1, the following inequality holds:

M1(G) ≤ 2(∆ + 1)m−∆n, (26)

where the equality in (26) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. The function ΨBID defined via (3) for M1 satisfies

ΨM1
(i, j,∆) = −2(∆ + 1) +

∆

i
+ i+

∆

j
+ j < 0

for the integers i, j,∆, satisfying 1 ≤ i ≤ j ≤ ∆ and j ≥ 2 provided that

(i, j) ̸= (1,∆) and (i, j) ̸= (∆,∆). Hence, by Theorem 1 we have the

required result.

Here we remark that Corollary 5 follows also from Theorem 4.3 of [16].

Also, several bounds of the type (26) exist in literature; here, we compare

briefly them with (26) without giving detail. The bound presented in

Theorem 23 of [14] and the one given in Corollary 5 are incomparable.

The bound reported in Corollary 4 of [14] is weaker than the one given
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in Corollary 5. For the case of trees, although the bound presented in

Corollary 5 is better than the one given in Theorem 95 of [14]; however,

both of these bounds are weaker than the bound mentioned after Theorem

96 on Page 57 in [14].

Corollary 6. Let G be a molecular (n,m)-graph of maximum degree ∆ ≥
2. Then, for the modified symmetric division deg index SDD∗, the follow-

ing inequality holds:

SDD∗(G) ≤
√
2∆(∆m+m−∆n) +

√
∆2 + 1(∆n− 2m)√

2∆(∆− 1)
, (27)

where the equality in (27) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. The function ΨBID defined via (3) for SDD∗ becomes

ΨSDD∗(i, j,∆) =
∆
(

1
i +

1
j − 1

)
−1

∆− 1
+

√
∆+ 1

∆

(
2−∆(i+j)

ij

)
√
2(∆− 1)

+

√
i
j + j

i√
2

.

However, ΨSDD∗(i, j,∆) < 0 for every (i, j,∆) ∈ {(1, 2, 3), (1, 2, 4), (1, 3,
4), (2, 2, 3), (2, 2, 4), (2, 3, 3), (2, 3, 4), (2, 4, 4), (3, 3, 4), (3, 4, 4)}. Therefore,

the desired result follows from Theorem 1.

As ΨSDD∗(2, 7, 7) > 0, we remark here that we cannot utilize Theorem

1 when we consider general graphs in Corollary 6 instead of molecular

graphs.

3 Lower bounds

In the current section, we present first a lower bound on an arbitrary BID

index under certain constraints and then we derive lower bounds on the

following BID indices: H, SC, R, GA, HA (see Table 1).

Theorem 2. Let G be an (n,m)-graph of maximum degree ∆ ≥ 2. Con-

sider a BID index defined via (2) and let i, j, be the integers satisfying

1 ≤ i ≤ j ≤ ∆ with j ≥ 2 provided that (i, j) ̸∈ {(1,∆), (∆,∆)}. If the
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function ΨBID(i, j,∆) defined via (3) is positive valued then

BID(G) ≥ 1

∆− 1

(
(n∆−2m)FBID(1,∆)+

(
m(∆+1)−n∆

)
FBID(∆,∆)

)
.

(28)

where the equality in (28) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. The proof is completely analogous to the proof of Theorem 1.

Many existing BID indices satisfy the conditions of Theorem 2. In

what follows, we prove that the mentioned conditions hold for the indices:

H, SC, R (see Table 1).

Corollary 7. Let G be an (n,m)-graph of maximum degree ∆ ≥ 2. Then,

for the harmonic index H, the following inequality holds:

H(G) ≥ m(∆− 1) + n∆

∆(∆+ 1)
, (29)

where the equality in (29) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. Note that if i, j, are integers satisfying 1 ≤ i ≤ j ≤ ∆ with j ≥ 2

provided that (i, j) ̸∈ {(1,∆), (∆,∆)}, then ∆ ≥ 3. The function ΨBID

defined via (3) for the index H becomes

ΨH(i, j,∆) =
2

i+ j
+

1

∆
− i+ j + 2ij

ij(∆ + 1)
.

Assume that i, j,∆ are real numbers satisfying 1 ≤ i ≤ j ≤ ∆ with

∆ ≥ 3 and j ≥ 2 provided that (i, j) ̸∈ {(1,∆), (∆,∆)}. Then, the partial

derivative of the function ΨH with respect to ∆ is given as

∂

∂∆
ΨH(i, j,∆) =

i+ j

ij(1 + ∆)2
+

2

(1 + ∆)2
− 1

∆2
. (30)

For ∆ ≥ 3, it holds that

2

(1 + ∆)2
− 1

∆2
> 0
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and hence from (30) we conclude that

∂

∂∆
ΨH(i, j,∆) > 0.

Thus,

ΨH(i, j,∆) ≥ ΨH(i, j, j) =
2

i+ j
− i+ 1

i(j + 1)
≥ 0

for 1 ≤ i ≤ j ≤ ∆ with ∆ ≥ 3 and j ≥ 2, where the equation ΨH(i, j,∆) =

0 holds if and only if either (i, j,∆) = (1,∆,∆) or (i, j,∆) = (∆,∆,∆);

but, neither of these two cases holds because of our assumption (i, j) ̸∈
{(1,∆), (∆,∆)}. Therefore, ΨH(i, j,∆) > 0 and hence the required result

follows from Theorem 2.

Corollary 8. If G is an (n,m)-graph of maximum degree ∆ ≥ 2, then for

the sum-connectivity (SC) index the following inequality holds:

SC(G) ≥ m+ (m− n)∆

(∆− 1)
√
2∆

+
n∆− 2m

(∆− 1)
√
∆+ 1

, (31)

where the equality in (31) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. The function ΨBID defined via (3) for the sum-connectivity (SC)

index becomes

ΨSC(i, j,∆) =
1√
i+ j

+

(
1
i +

1
j − 1

)
∆− 1

(∆− 1)
√
2∆

+
2− (i+j)∆

ij

(∆− 1)
√
∆+ 1

.

Assume that i, j,∆ are real numbers satisfying 1 ≤ i ≤ j ≤ ∆ and j ≥ 2

provided that (i, j) ̸= (1,∆) and (i, j) ̸= (∆,∆). The partial derivative of

the function ΨSC with respect to j is given as

∂

∂j
ΨSC(i, j,∆) =

1(√
2(∆+1)√

∆
+ 2

√
∆+ 1

)
j2

− 1

2(i+ j)3/2
. (32)

Note that

d

d∆

 1
√
2(∆+1)√

∆
+ 2

√
∆+ 1

 < 0
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and thus Equation (32) implies that

∂

∂j
ΨSC(i, j,∆) ≤ 1

j2
(√

2(j+1)√
j

+ 2
√
j + 1

) − 1

2(i+ j)3/2
. (33)

Denote by ΦSC(i, j) the right-hand side of (33). Since ∂
∂iΦSC(i, j) > 0, it

holds that

ΦSC(i, j) ≤ ΦSC(j, j) = −
√

2j(j + 1) + j − 3

4j3/2
(√

2j + 2
√

j(j + 1) +
√
2
) < 0.

Hence, (33) implies that the function ΨSC is strictly decreasing in j and

thereby we have

ΨSC(i, j,∆) ≥ ΨSC(i,∆,∆) =
1√

∆+ i
−

(i− 1)
√
∆+

√
2(∆−i)√
∆+1√

2 i(∆− 1)
≥ 0

for 1 ≤ i ≤ j ≤ ∆ with j ≥ 2, where the equation ΨSC(i, j,∆) = 0

holds if and only if either (i, j,∆) = (1,∆,∆) or (i, j,∆) = (∆,∆,∆);

but, neither of these two cases (for the equality) holds because of our

assumption (i, j) ̸∈ {(1,∆), (∆,∆)}. Therefore, ΨSC(i, j,∆) > 0, and

hence Theorem 2 yields the desired result.

Corollary 9. Let G be an (n,m)-graph of maximum degree ∆ ≥ 2. Then,

for the Randić index R, the following inequality holds:

R(G) ≥

(√
∆− 1

)
m+∆n

∆
(√

∆+ 1
) , (34)

where the equality in (34) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. The function ΨBID defined via (3) for the Randić index R becomes

ΨR(i, j,∆) =

√
∆3ij −

√
∆ij −∆(i+ j) + ∆

√
ij + ij(√

∆+ 1
)
∆ij

. (35)
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Assume that i, j,∆ are real numbers satisfying 1 ≤ i ≤ j ≤ ∆ and j ≥ 2

provided that (i, j) ̸= (1,∆) and (i, j) ̸= (∆,∆). Denote by ΦR(i, j,∆) the

expression present in the numerator of the right-hand side of (35). Then

∂

∂∆
ΦR(i, j,∆) =

3

2

√
∆ij − i

(
j

2
√
∆

+ 1

)
+
√
ij − j > 0,

and thereby we have

ΦR(i, j,∆) ≥ ΦR(i, j, j) = j3/2
(√

i− 1
)(√

j −
√
i
)
,

which gives ΦR(i, j,∆) > 0 because (i, j) ̸∈ {(1,∆), (∆,∆)}. Therefore,

from (35) we have ΨR(i, j,∆) > 0, and hence by Theorem 2, we have the

required result.

Corollary 10. Let G be a molecular (n,m)-graph of maximum degree ∆ ≥
2. Then, for the geometric-arithmetic index GA, the following inequality

holds:

GA(G) ≥ (∆ + 1)(m+m∆− n∆) + 2(n∆− 2m)
√
∆

∆2 − 1
, (36)

where the equality in (36) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. The function ΨBID defined via (3) for GA becomes

ΨGA(i, j,∆) =

(
2− ∆

i − ∆
j

)
2
√
∆

∆+1 +
(

∆
i + ∆

j −∆− 1
)

∆− 1
+

2
√
i j

i+ j
.

However, ΨGA(i, j,∆) > 0 for every (i, j,∆) ∈ {(1, 2, 3), (1, 2, 4), (1, 3, 4),
(2, 2, 3), (2, 2, 4), (2, 3, 3), (2, 3, 4), (2, 4, 4), (3, 3, 4), (3, 4, 4)}. Therefore, the
desired result follows from Theorem 2.

Palacios [34] proved that for any n-order connected graph G with size

m and maximum degree ∆ ≥ 2, the following inequality holds

GA(G) ≥ 2m2

n∆
(37)



623

with equality if G is regular. Note that the size of a molecular graph of

order n belongs to the interval

• [n− 1, 2n] if the maximum degree is 4,

•
[
n− 1, 3

2n
]
if the maximum degree is 3,

• [n− 1, n] if the maximum degree is 2;

in all three cases, the bound (36) is better than (37).

Corollary 11. Let G be a molecular graph (n,m)-graph of maximum de-

gree ∆ ≥ 2. Then, for the harmonic-arithmetic (HA) index, the following

inequality holds:

HA(G) ≥ (∆(∆ + 4)− 1)m− (∆− 1)∆n

(∆ + 1)2
, (38)

where the equality in (38) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Proof. The proof is similar to the proof of Corollary 10.

As ΨGA(2, 5, 5) < 0 and ΨHA(2, 5, 5) < 0, we remark here that we

cannot utilize Theorem 2 when we consider general graphs in Corollaries

10 and 11 instead of molecular graphs.

4 Concluding remarks

In the previous two sections, we see that either Theorem 1 or Theorem 2

is applicable to several well-known BID indices. However, there are some

renowned BID indices to which we cannot apply either of the aforemen-

tioned theorems. For instance, the function ΨBID defined via (3) for the

atom-bond connectivity (ABC) index, inverse sum index (ISI) index and

augmented Zagreb index (AZI) becomes

ΨABC(i, j,∆) =

√
2
(
∆
(

1
i +

1
j −1

)
−1
)

∆
√
∆− 1

+
2ij−∆(i+ j)

ij
√
∆(∆− 1)

+

√
i+ j − 2

ij
,
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ΨISI(i, j,∆) =
(2ij −∆(i+ j))

(
i(∆(j − 1) + j)−∆j

)
2(∆ + 1)ij(i+ j)

,

ΨAZI(i, j,∆) =
i3j3

(i+ j − 2)3
+
∆6
(
∆
(

1
i +

1
j −1

)
−1
)

8(∆− 1)4
+
∆3
(
2−∆(i+j)

ij

)
(∆− 1)4

.

Since

ΨABC(2, 4, 4) > 0, ΨABC(1, 3, 4) < 0, ΨABC(2, 7, 7) > 0;

ΨISI(2, 4, 4) < 0, ΨISI(1, 3, 4) > 0, ΨISI(2, 7, 7) < 0;

ΨAZI(2, 4, 4) < 0, ΨAZI(1, 3, 4) > 0, ΨAZI(2, 7, 7) < 0;

neither Theorem 1 nor Theorem 2 is applicable to the indices ABC, ISI

and AZI (even for molecular graphs).

k≥0︷ ︸︸ ︷
Figure 1. A graph with 2k + 6 vertices, referred in Corollary 12.

We remark that the results obtained in the previous two sections pro-

vide a partial solution to the problem of finding graphs with extremum

(considered) BID indices over the class of all (n,m)-graphs with a fixed

maximum degree under certain constraints. For example, Corollary 11

implies the next result.

Corollary 12. Among all (n, n + 2)-graphs of maximum degree 3, only

the graph(s) with degree set {1, 3} attain(s) the minimum HA index, where

n = 2k + 6 with k ≥ 0; for example, see Figure 1.

In (6), we define Θi by keeping in mind the quantities m1,∆ and m∆,∆.

One may think about other possibilities; for instance,

(i) m2,2 and m2,3, or

(ii) mδ,∆ and m∆,∆, or
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(iii) m1,n−1 and mn−1,n−1, or

(iv) m1,2 and m2,2.

The derivation of the result for any of the above-mentioned cases is fully

analogous to that of Theorem 1. We end this paper by reporting a result

that corresponds to the first case in the above-mentioned four possibilities.

Theorem 3. Let G be an (n,m)-graph with maximum degree of at least 2.

Consider a BID index defined via (2) and let i, j, be the integers satisfying

1 ≤ i ≤ j ≤ n − 1 with j ≥ 2 provided that (i, j) ̸∈ {(2, 2), (2, 3)}. If the

function ΨBID defined by

ΨBID(i, j) =

(
5− 6

i
− 6

j

)
FBID(2, 2) + 6

(
1

i
+

1

j
− 1

)
FBID(2, 3)

+ FBID(i, j), (39)

is negative valued, then

BID(G) ≤ 6
[
FBID(2, 2)−FBID(2, 3)

]
n+
[
6FBID(2, 3)−5FBID(2, 2)

]
m,

(40)

where the equality in (40) holds if and only if the degree set of G is either

either {2} or {2, 3} such that no two vertices of degree 3 are adjacent. If

the function ΨBID defined via (39) is positive valued, then the inequality

(40) is reversed.

Proof. Define Θi for every i ∈ {1, 2, . . . , n− 1} as follows:

Θ1 = η1

Θ2 = 2η2 − 2m2,2 − m2,3

Θ3 = 3η3 − m2,3

Θj = j · ηj when 4 ≤ j ≤ n− 1,

(41)

where ηa is defined just after (5) and ma,b is defined just before (2). Here,
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we have
n−1∑
i=1

Θi = 2(m− m2,2 − m2,3) (42)

and
n−1∑
i=1

Θi

i
= n− m2,2 −

5

6
m2,3 . (43)

Solving Equations (42) and (43) for m2,2 and m2,3, we have

m2,2 = 6n− 5m+

n−1∑
i=1

(
5

2
− 6

i

)
Θi (44)

and

m2,3 = 6m− 6n+ 3

n−1∑
i=1

(
2

i
− 1

)
Θi. (45)

Define A = {(i, j) : 1 ≤ i ≤ j ≤ n − 1, (i, j) ̸= (2, 2), (i, j) ̸= (2, 3)}.
Then, Equations (44) and (45) can be rewritten as

m2,2 = 6n− 5m+
∑

(i,j)∈A

(
5− 6

i
− 6

j

)
mi,j (46)

and

m2,3 = 6

m− n+
∑

(i,j)∈A

(
1

i
+

1

j
− 1

)
mi,j

 . (47)

By utilizing (46) and (47) in (2), we have

BID(G) = m2,2FBID(2, 2) + m2,3FBID(2, 3) +
∑

(i,j)∈A

mi,jFBID(i, j)

= 6
[
FBID(2, 2)−FBID(2, 3)

]
n+

[
6FBID(2, 3)−5FBID(2, 2)

]
m

+
∑

(i,j)∈A

mi,j ΨBID(i, j), (48)

where ΨBID(i, j) is defined via (39). Now, the desired conclusion follows

from (48).
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[21] E. Estrada, L. Torres, L. Rodŕıguez, I. Gutman, An atom-bond con-
nectivity index: modelling the enthalpy of formation of alkanes, In-
dian J. Chem. 37A (1998) 849–855.

[22] S. Fajtlowicz, On conjectures of graffiti II, Congr. Num. 60 (1987)
189–197.

[23] B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J.
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[45] D. Vukičević, B. Furtula, Topological index based on the ratios of
geometrical and arithmetical means of end-vertex degrees of edges, J.
Math. Chem. 46 (2009) 1369–1376.
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