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Pérez-Beńıteza,∗
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Abstract

The n-dimensional unit hypercubes, Qn (n = 1 to 4), are used
as n-dimensional graphs (Stereoisograms) to describe the stereoiso-
meric (enantiomeric and/or diastereomeric) relationships of molecu-
les containing one to four RS-stereogenic centers. To achieve this
goal, the strings of 0’s and 1’s, used for labelling the vertices of unit
hypercubes, are substituted by strings of R’s and S’s-descriptors
coming from the CIP priority rules. The development of those n-
dimensional unit hypercubes along ordered axes and the application
of combinatorial techniques allow to locate the enantiomeric pairs at
antipodal vertices (points related by a chirality center, which satis-
fies the bitwise operation known as “NOT”); whereas diastereomers
are related by mirror planes, whose reflection results in a partial
permutation of the RS-descriptors. These facts are in good agree-
ment with the literature and the principles of the combinatorial
theory applied to such hypercubes. On the other hand, because the
maximum number of stereoisomers 2n is not always held, “pseudo
hypercubes” containing one or more “ghost vertices” are proposed
to include the meso (achiral) stereoisomers.

1 Introduction

Although the foundations of stereochemistry date back to 1874, with the

works of Jacobus H. van ’t Hoff Jr. [1] and Joseph A. Le Bel [2], the formal

representation of the stereoisomeric relationships that exist among a set

of stereoisomers is currently under examination [3, 4]. They established

independently that the four substituents connected to a carbon atom can

be arranged in space in two different ways, labeled later by R. S. Cahn,

C. Ingold and V. Prelog with the chiral descriptors R (R from Rectus =

right) and S (S from Sinister = left) (Figure 1) [5].

Figure 1. The chiral descriptors R (rectus = right) and S (sinister
= left), coming from the CIP-system, are used to describe
the two possible arrangements in space (clockwise and coun-
terclockwise, respectively), of the four different substituents
around a tetrahedral stereogenic center.
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If one tetrahedral carbon atom carrying four different substituents gen-

erates two possible orientations of its substituents, then a molecular skele-

ton composed of n chiral carbons is possible to exist in 2n combinatorial

arrangements of R’s and S’s called by van ’t Hoff and Le Bel as stereoiso-

mers (Le Bel–van ’t Hoff rule) [6].

About this, a breakthrough was achieved in the field of mathemati-

cal stereochemistry, thanks to the contributions by Shinsaku Fujita, who

a few years ago proposed the use of one or more types of five possible

stereoisograms based on a new arrow language [4, 7, 8]. For example, the

set of stereoisomers (2R, 3R)-, (2R, 3S)-, (2S, 3R)- and (2S, 3S)-2,3-

dihydroxybutanoic acids can be drawn as in Figure 2a, where C - and

S -axis describe the chirality and sclerality relationships, respectively [4].

In this stereoisogram, the red double-headed arrows at the vertical

axis describe a mathematical operation that drives one steroisomer to

convert in the corresponding enantiomer (meaning a “Full R/S permu-

tations”), whereas the blue double-headed arrows describe the conversion

of one steroisomer to one or more diastereomers (meaning “Partial R/S

permutations”) [4, 7, 8].

To follow mathematizing the stereochemistry of these types of com-

pounds, in a previous paper we carried out a change of the binary de-

scriptors R and S by 0 and 1, respectively, and with the aid of the lan-

guage coined by Fujita, both a set of matrices and polygonal stereoiso-

grams were developed; for example, the full set of stereoisomers of 2,3-

dihydroxybutanoic acid could be rewritten and redrawn as in Figure 2b [9].

Note that the enantiomeric pairs are located in opposed corners of that

square stereoisogram and can be recognized because the string of R’s/S’s

of one enantiomer is fully permuted in its pair: (RR) vs (SS) and (RS)

vs (SR). On the other hand, in diastereomers, one or more, but not all

of R’s/S’s are permuted; so, in the current example, blue arrows indicate

that (SR) and (RS) are diastereomers of (RR).

Figure 3 illustrates, as a second example, the octagonal stereoisogram

for a compound possessing three stereogenic centers, for which 23 = 8

stereoisomers are expected; in particular, the eight possible stereoisomers

of 2,3,4-trihydroxypentanoic acid are presented. Note again, in Figure
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Figure 2. (a) Fujita’s stereoisogram showing the stereoisomeric re-
lationships among the four possible stereoisomers of 2,3-
dihydroxybutanoic acid [4]; (b) Binary matrices and polyg-
onal stereoisogram approach indicating the full (red arrows)
and partial (blue arrows) permutations of the binary strings
based on R’s/S’s and 0’s/1’s: unlike diastereomers, enan-
tiomers are located at opposite corners [9].

3a, that the enantiomeric pairs are located at antipodal vertices; however,

this polygonal stereoisogram turns more complicated if we try to point

the diasteromeric relationships among the eight stereoisomers; thus, in

Figure 3b is presented only the six diastereomers of (2R, 3R, 4R)-2,3,4-

trihydroxypentanoic acid.

This drawback led us to look for n-dimensional diagrams to illustrate

the complete series of stereoisomers and their corresponding stereoisomeric

relationship, and we found a good correlation between our matrix approach

(composed of 0’s and 1’s) with those schemes developed in the graph the-

ory; specifically, we refer to the n-dimensional unit hypercubes (also known

as Qn or n-cubes), because they are composed precisely by 0’s and 1’s.
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Figure 3. (a) Octagonal stereoisogram showing the four enantiomeric
pairs of 2,3,4-trihydroxypentanoic acid. In (b), the polygo-
nal stereoisogram was modified from reference [10], to rep-
resent only the six diastereomers of (2R, 3R, 4R)-2,3,4-
trihydroxypentanoic acid. For simplicity, the locators at Fis-
cher’s projections are omitted in the labels that indicate the
stereochemistry of chiral carbon atoms C2, C3 and C4.

2 Graph theory and its application in chem-

istry

Also in 1874, the famous British mathematician Arthur Cayley used the

graph theory for trying to determine a formula for counting the number

of isomers of acyclic alkanes [10]. In his approach, Cayley built acyclic

connected graphs (molecular graphs) and named them “plerogram” and

“kenogram”, being the last one a hydrogen-suppressed molecular graph
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of the corresponding alkane (Figure 4). The success of these mathemat-

ical trees in several fields of science derives from the fact that the user

can assign to them the meaning he needs. Thus, in the case of Cayley’s

kenograms (Figure 4b), the classification of carbon atoms as primary (C1,

C6 and Ca−d), secondary (C4), tertiary (C3 and C5) and quaternary (C2)

depends on the number of their connections with other carbons.

Figure 4. Plerogram (a) and kenogram (b) for 2,2,3,5-
tetramethylhexane. Open and filled circles represent
hydrogen and carbon atoms, respectively

In fact, in the words of A. T. Balaban: “All structural formulas of

covalently bonded compounds are graphs: they are therefore called molec-

ular graphs, or better, constitutional graphs” [11]. Going further, these

formulas evolved favorably to also describe the position of the substituents

in space, giving raise to “Configurational graphs” or molecular projections

(i.e. Fischer’s projections in Figures 2 and 3). Because of the plethora

of symbols that are currently being used by chemists to draw molecular

structures, we suggested naming them as “Pure and Hybrid Geometric

Molecular Formulas” [12], containing the last ones both different kinds of

lines and alphanumeric elements such as points, asterisks, letters, numbers,

etc.; in any case, they are “molecular trees or molecular graphs”.

3 The n-dimensional unit hypercube graphs

The n-dimensional unit hypercubes (Qn or n-cubes) are Cayley’s graphs

whose vertex sets are restricted to the binary alphabet {0, 1}. This means

they contain 2n vertices (labeled with n-bit binary strings) and n(2n−1)

edges; moreover, every edge links two vertices whenever their labels differ

in a single bit. Hypercubes Qn for n = 1 to 4 are represented respectively
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as a line, a square, a cube and a hypercube (better known as tesseract)

(Figure 5a-d).

Figure 5. The first four n-dimensional unit hypercubes Qn or n-cubes
(for n = 1 to 4) (a-d) and the obtaining of Q3 (cube) from
the displacement of Q2 (square) in one unit (e). The strings
of 0’s and 1’s correspond to the coordinate values of (x),
(x, y), (x, y, z) or (x, y, z, w).

One of the most popular ways for constructing a hypercube Qn is to use

the previous hypercube Qn−1 as a generator: two copies of the geometric

entity labeled Qn−1 are displayed in parallel, at a distance equal to a vector

unit [13, 14]. Then, the corresponding vertices are joined using lines, in

such a way that each vertex satisfies the condition mentioned above. For

example, the building of Q3 (cube) starting from Q2 (square) is illustrated

in Figure 5e, and an animated construction of Q1 to Q4 can be watched

on open websites [15]. Note that the growing process implies the use of a

new coordinate and the insertion of a new bit in the corresponding string

(e.g. (00) → (000) in the building of Q3 starting from Q2).

Whereas the first three hypercubes Q1, Q2 and Q3 can be easily con-

ceptualized in our three-dimensional world (a line, a square and a cube,

respectively), the building and bidimensional representation of Q4, which
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requires a 4-coordinate system (x, y, z, w), is a little tricky; it is schema-

tized, for example, as two concentric cubes joined by edges, which form

the lateral faces of six new skeletal cubes, to give a total amount of eight

cubes (See 6th column for n = 4 in Table 1). Although the eight cubes of

the hypercube Q4 have the same size, the inner cube seems to be smaller

than the external one, and the six middle cubes appear as truncated square

pyramids (Figure 5d).

Table 1. Summary of the geometric features of the first four hyper-
cubes Qn (n = 1 to 4).

Dimension Hypercube Corners Edges Squares Cubes Hypercubes
(n) Graph

(Qn)
1 Line 2 1 0 0 0

(Q1)
2 Square 4 4 1 0 0

(Q2)
3 Cube 8 12 6 1 0

(Q3)
4 Hypercube 16 32 24 8 1

(Q4)

Formula
(n
0

)
2n

(n
1

)
2n−1

(n
2

)
2n−2

(n
3

)
2n−3

(n
4

)
2n−4

Where
(
n
k

)
≡ n!

k!(n−k)!
. For example, the number of cubes in a hypercube Q4 is:(

n
3

)
2n−3 =

(
4
3

)
24−3 = 8. Moreover, the column “corners” is written in bold letters because they

represent the number of stereoisomers mentioned in the current approach.

The hypercube Q4 is the most famous of all of hypercubes, because it

has driven the imagination of many scientists, technicians and artists from

around the world. The word “Hypercube” has been taken as brand name

for the scientific software company Hypercube Inc. [16]; the polyhedron net

of Q4 was used by Salvador Daĺı in his 1954 oil-on-canvas painting known

as “Crucifixión” of Jesus or “Corpus Hypercubus” [17] and among many

scientific papers devoted to the usage or application of Q4, its “concentric

cubes” version (or tesseract) has been used by Erik A. Schultes et al., for

describing sequenomics as a combinatorial approach in biological building

blocks (e.g. set string length-4 {A,G}4) [18].
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3.1 The n-dimensional unit hypercube

stereoisograms, Qn or n-cube stereoisograms

In our previous work, after the replacement of R’s/S’s by 0’s/1’s, a set

of stereoisomers was represented as a matrix, whose rows are bit strings

length-n of 0’s and 1’s (Figure 2b). Currently, after the replacement

of 0’s/1’s by R’s/S’s, a set of stereoisomers is represented as a unit n-

dimensional hypercube; this means that the number of stereogenic centers

is also the number of coordinates (x, y, z, w, ...) necessary to describe the

corresponding unit n-hypercube. Thus, Q1 (a line), Q2 (a square), Q3

(a cube) and Q4 (a hypercube) are used to host 2n stereoisomers of com-

pounds possessing n = 1 to 4 stereogenic centers, respectively (See Table

1). Besides, if we keep the arrows notation coined by S. Fujita, it is pos-

sible to observe, at glance, the stereoisomeric relationships among them

(Figure 6):

1. Q1 has two vertices to host enantiomers R and S (Figure 6a). In the

language of bits, the red arrow indicates the permutation of 0 and 1, de-

noted as
(
0
1

)
. Additionally, there are not diastereomers, because for n = 1

we have 2n − 2 = 21 − 2 = 0.

2. Q2 has four vertices to host the two pairs of enantiomers RR/SS and

RS/SR (Figure 6b). They are located at opposed square’s corners and

are connected by red arrows that indicate, for each pair of enantiomers, a

full permutation of R’s/S’s, that in permutation notation of bits are
(
0 0
1 1

)
and

(
0 1
1 0

)
. Those arrows intersect at the square’s center, meaning that

there is a chirality center, as it is the line’s midpoint in Q1. With blue

arrows that indicate a partial permutation of R’s/S’s, each stereoisomer

is connected along edges with its two diastereomers (2n − 2 = 22 − 2 = 2).

In matrix notation of bits, the partial permutation of (RR), that gener-

ates its diastereomers (RS) and (SR), can be written as
(
0 0
0 1

)
and

(
0 0
1 0

)
,

respectively.
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3. Q3 has eight vertices to host the four pairs of enantiomers RRR/SSS,

RRS/SSR, RSR/SRS and SRR/RSS. These enantiomeric pairs are

located at antipodal vertices and are connected by colored arrows that

intersect at the cube’s center, meaning again, that the hypercube’s center

is a chirality center (Figure 6c). On the other hand, two kinds of diastere-

omers can be identified in Q3. Firstly, type-I diastereomers are the three

ones connected along the edges by blue arrows, that produce the permu-

tation of only one bit. Secondly, type-II diastereomers are the three ones

connected along the face’s diagonals by green arrows, that produce the

permutation of two of their three bits. For example, the one-bit permuta-

tion in type-I diastereomers of (2S, 3S, 4S) = (111) are
(
1 1 1
0 1 1

)
,
(
1 1 1
1 0 1

)
and

(
1 1 1
1 1 0

)
; whereas the two-bit permutations in type-II diastereomers are(

1 1 1
0 0 1

)
,
(
1 1 1
0 1 0

)
and

(
1 1 1
1 0 0

)
.

Figure 6. The substitution of R’s/S’s by 0’s/1’s allows to use the n-
dimensional unit hypercubes as hypercube stereoisograms.
Enantiomeric pairs are located at antipodal vertices and con-
nected by red arrows in (a-b) and by colored arrows in (c).
Diastereomers are connected by blue arrows in (b) and by
blue and green arrows in (d) and (e). For the sake of clarity,
enantiomers and diastereomers of Q3 are presented sepa-
rately in (c-d) and even more, only diastereomers of (2S,
3S, 4S) are illustrated in (e) as follow: type-I diastereomers
(one-bit permutation) are connected by blue arrows along
the edges, whereas type-II diastereomers (two-bit permuta-
tions) are connected by green arrows along face’s diagonals.
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3.2 Mathematical properties of n-dimensional unit

hypercube stereoisograms

1. The n-dimensional unit hypercubes possess 2n vertices, the same as

the maximum number of stereoisomers of compounds possessing n stere-

ogenic centers. For taking advantage of this approach, the binary alphabet

{0, 1} is changed by the binary alphabet of chiral descriptors {R,S}, or
even better, the labels of both alphabets are kept. This change converts n-

dimensional hypercubes into n-dimensional hypercube stereoisograms that

host a set of 2n stereoisomers.

2. The enantiomeric pairs (2n/2 = 2(n−1)) are located at antipodal ver-

tices. They are related by a chirality center that produces the full permu-

tation of 0’s/1’s or R’s/S’s (Figure 6c). The bitwise operation that affords

this result is known as “NOT”. For example, to obtain the enantiomeric

pair of (001):

NOT (001) = (110) ≡ NOT (RRS) = (SSR).

And the resulting bit string is the complement of the initial, meaning that

their sum is equal to the unit vector length-n [9]:

(001) + (110) = ((0 + 1) (0 + 1) (1 + 0)) = (111)

or: (RRS) + (SSR) = ((R+ S) (R+ S) (S +R)) = (SSS).

Observe that R (or 0) is neutral on addition operation.

3. In a hypercube stereoisogram, except for the arrow connecting an enan-

tiomer to its couple, the number of diastereomers of a given stereoisomer

is determined by the number of arrows that connect it with the remaining

vertices (2n − 2). For example, there are 0, 2 and 6 connections (diastere-

omers), for stereoisomers (S) in Q1, (SS) in Q2 and (SSS) in Q3 (Figure

6).

Thus, these arrows indicate the permutation of one or more bits, but

not all, and are vectors normal to mirror planes that produce such permu-

tations. In turn, some of these planes are Cartesian (Figure 7a-b for Q2

and Q3), while other ones are dihedral planes (Figure 7c, for Q3).
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Figure 7. Diastereomers are related by Cartesian planes that permute
one bit in Q2 and Q3 (a-b) and dihedral planes that permute
two bits in Q3. For the sake of clarity, Cartesian (b) and
dihedral planes (c) are presented separately and, in each
case, only one reflection operation is schematized at right.

4 Pseudohypercube stereoisograms for a set

of stereoisomers containing meso-type

compounds

It is very well known that a compound containing n stereogenic centers do

not always accomplishes the rule of the maximum number of stereoisomers,

2n. If an improper symmetry element (a symmetry plane, σ, an inversion

center, i, or an improper rotation axis, Sm : m ≥ 3) is present in one of

the compounds belonging to a series of stereoisomers, then it is not chiral

and therefore does not has an enantiomeric couple; however, it must be

included in the hypercube stereoisogram as a “ghost node”, that connects

only with its antipodal vertex through Fujita type-arrow corresponding to
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homostereoisomers (Figure 8).

Figure 8. Although n = 2, the maximum number of stereoisomers, 2n,
of 2,3-dihydroxybutanodioic acid is not 4 but 3. This is due
to stereoisomer (2R, 3S), which possesses a symmetry plane
and, after a rotation of 180° around z axis, its mirror image
(2S, 3R) is congruent with it (a-b). This fact is registered in
a pseudohypercube of Q2 as a “ghost node” and with Fujita-
type arrow for homostereomers between (2R, 3S) and (2S,
3R) (c).

5 Conclusions

The substitution of the binary language {0, 1} by {R, S} in the unit n-

dimensional hypercubes resulted in a successful representation for the 2n

stereoisomers of compounds possessing n stereogenic centers. The enan-

tiomers are hosted in antipodal vertices, whereas, with exception of its

antipodal vertex, each stereoisomer connects with the remaining vertices

that are their 2n − 2 diastereomers. Thus, in the hypercube stereoiso-

grams, enantiomers are related by the hypercube’s center which acts as a

chirality center, whereas diastereomers are related by mirror planes (di-
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astereomeric planes). Paying attention to the permuting elements into the

binary strings, the diastereomeric planes result in different types or classes,

one of them is for the Cartesian planes that permute only the bit vector

orthogonal to each one of those planes. On the other hand, for a set of

stereoisomers containing an achiral (meso) compound, it is proposed the

building of a pseudo hypercube that includes a “ghost node”, which must

be equalized with its antipodal vertex.
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