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Abstract

In this article, we survey the results on examining orbit struc-
tures combined with polynomials, automorphism groups, roots of
polynomials, and the construction of graphs with prescribed orbit
structures. The orbit polynomial has been defined as the

∑
n cxn,

where c represents the number of orbits of graph G with size n. By
subtracting this polynomial from 1, the modified orbit polynomial
O⋆

G(x) = 1 − OG(x) is obtained which possesses a unique positive
root denoted by δ. This root can be seen as a relative measure of
symmetry. The study of orbit structures in graphs and their associ-
ated automorphism groups is a fundamental topic in graph theory.
The understanding and analysis of these structures provide valuable
insights into the symmetries in graphs, enabling the exploration of
various graph properties and their applications in diverse fields such
as network analysis, computer science, and chemistry.
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1 Introduction

In the field of quantum chemistry, the early Hückel theory has been used

to calculate the energy levels of p-electrons in conjugated hydrocarbons.

These energy levels are determined as the eigenvalues of the characteris-

tic/spectral polynomial associated with the molecular graph [4]. Hosoya

[20] and other researchers [14, 16, 17] extended this concept by replacing

the adjacency matrix with other matrices based on graph invariants.

Counting polynomials in mathematical chemistry were initially intro-

duced by Hosoya [21]. Subsequently, various other counting polynomials

were proposed, such as the matching polynomial [7, 15, 19], independence

polynomial [13, 18], king polynomial [3, 24], color polynomial [3], and star

or clique polynomials [8,9]. A comprehensive overview of graph polynomi-

als can be found in reference [1]. By having the orbits and their structures

in a graph, we can infer many algebraic properties about the automor-

phism group and thus about the similar vertices. For example, the length

of orbits of a network provides important information about each individ-

ual component in the network. In other words, all vertices in an orbit have

the same properties such as the degree of vertices which yield useful data

about the number of components’ interconnections. Finding the count-

ing polynomial [20] of a graph often helps to investigate the structural

properties of regarding graph.

Dehmer et al. [5] introduced the orbit polynomial as a significant poly-

nomial that utilizes vertex orbit sizes’ cardinalities. The orbit polynomial

is defined as
∑

n cx
n, where c represents the number of orbits of graph

G with size n, and the coefficients are all positive. By subtracting this

polynomial from 1, the modified orbit polynomial O⋆
G(x) = 1 − OG(x) is

obtained, which possesses a unique positive root denoted by δ. This root

can be utilized as a relative measure of a graph’s symmetry and is an indi-

cator of the level of symmetry present, allowing for comparisons between

graphs based on this characteristic.

Furthermore, certain bounds for the unique positive root of O⋆
G were

computed in [5], demonstrating its significant value in various fields, in-

cluding chemistry, bioinformatics, and structure-oriented drug design. In
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[11], a study explored the structural attributes of a graph’s automorphism

group, the corresponding orbit polynomial for certain graph operations,

and introduced a new counting polynomial for comparison to the degen-

eracy of an orbit polynomial.

It is important to note that characteristic polynomials do not uniquely

characterize graphs due to the existence of isospectral graphs [2].

The study of orbit structures in graphs and their associated automor-

phism groups is a fundamental topic in graph theory. The understanding

and analysis of these structures provide valuable insights into the symme-

tries present in graphs, allowing for the exploration of various graph prop-

erties and their applications in several fields such as crystallography [25],

physics [29], network analysis [22], computer science [30], engineering sci-

ences [28] and chemistry [26]. This survey article aims to present a com-

prehensive overview of the results obtained in the study of orbit structures

in graphs. We proceed as follow:

In Section 2, all definitions and results needed in this paper are given.

The Section 3 focuses on the results related to orbit polynomials and auto-

morphism groups. These results establish connections between the num-

ber of orbits and the structure of the automorphism group of a graph.

Theorems such as the edge-orbit polynomial theorem and the relationship

between the orbit polynomial and the automorphism group shed light on

the nature of these structures and their influence on graph properties. Be-

sides, this section explores the roots of orbit polynomials. Investigating the

properties and characteristics of these roots provides valuable information

about the symmetries and structures of graphs. Lemmas and theorems

related to the uniqueness, bounds, and distribution of these roots offer

important tools for analyzing the symmetries present in different types of

graphs. In continuing this section, the focus shifts to graphs with three

distinct orbit sizes. Theorems and corollaries in this section investigate the

properties of such graphs and provide conditions for the existence and be-

havior of their orbit polynomials. Understanding the symmetries present

in graphs with multiple orbit sizes contributes to a deeper comprehension

of their overall structure and properties.

Lastly, Section 4 explores the construction and interpretation of graphs
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that achieve prescribed orbit structures. Theorems and algorithms related

to these constructions provide valuable insights into the possibilities of de-

signing graphs with specific orbit structures, allowing for the customization

of graph properties for various applications.

Overall, this survey article aims to provide a comprehensive overview of

the results obtained in the study of orbit structures in graphs. By explor-

ing the relationships between orbit polynomials, automorphism groups,

roots of polynomials, and the construction of graphs with prescribed orbit

structures, we gain valuable insights into the symmetries and properties

of graphs.

2 Preliminaries

In this study, we use the notation V (G) and E(G) to represent the sets of

vertices and edges of the graph G, respectively. We consider graphs that

are finite, simple, and connected.

The automorphism group consists of all permutations on the set of

vertices that preserve their adjacency relationship. For a graph G, e = xy

is an edge if and only if p(x)p(y) is an edge. We denote the automorphism

group of graph G by Aut(G).

A vertex orbit for a vertex u in graph G is the set of all images α(v),

where α is an automorphism of G. If a graph G is vertex-transitive, it

means that it has only one orbit and thus all vertices are interchangeable.

A similar concept applies to edge-transitive graphs.

Next, we consider an edge-automorphism of a graph G, which is a

bijection on the set of edges that maintains adjacency. The set of all

edge-automorphisms of a graph G forms a group under the composition

of functions. An automorphism of G gives rise to a corresponding edge-

automorphism of G. The set Aut⋆(G) is a subgroup of Aut(G) containing

edge-automorphisms of G induced by each automorphism of G.

Given the method of action of the automorphism group of graph G on

the edge set, we can define the edge orbit polynomial as follows.

Definition 1. Suppose E1, . . . , Eh are all edge-orbits under the action of

the group Aut(G) on the edge set of G. We define the edge-orbit polyno-
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mial of G as:

ŌG(x) =

h∑
i=1

x|Ei|.

Moreover, we can define the modified version of the edge orbit polynomial

as:

Ō⋆
G(x) = 1−

h∑
i=1

x|Ei|.

Here, |Ei| signifies the number of edges in the i-th edge orbit of G

under the action of Aut(G).

We define the support of an automorphism g ∈ Aut(G) as supp(g) =

{g(u) : u ∈ V (G)}. Two permutations f and g are said to be disjoint if

supp(f)∩ supp(g) = ∅. Let A and B be finite groups and B act on the set

X. The wreath product of groups A and B is a group given by:

A ≀B = {(f, b) | f : X → A is a function, b ∈ B}.

We can define the group operation as (f1, b1)(f2, b2) = (g, b1b2), where

for any i ∈ X, g(i) = f1(i)f2(i
b1). The wreath product is useful in

describing the symmetry of networks. For example, let H be a net-

work formed from the union of r copies of a graph M . Then, we have

Aut(H) ∼= Sr ≀Aut(M), which means that the automorphisms of H consist

of permutations of the copies of M that commute with Aut(M), together

with permutations of the copies induced by Aut(M).

3 Results

In summary, this section explores various aspects of orbit polynomials and

their relation to graph symmetry. It presents several theorems and results

that provide insights into the properties of graphs with multiple orbit sizes.

The section also discusses the use of the measure δ as a relative indica-

tor of graph symmetry and its correlation with other symmetry measures.

Furthermore, it introduces a method for constructing graphs with pre-

scribed orbit structures, which offers a valuable tool for generating graphs

with a well-defined degree of symmetry. These results contribute to our
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understanding of graph symmetry and provide new perspectives on the

relationship between algebraic and information-theoretic measures.

3.1 Orbit polynomials and automorphism groups

Here, we report various theorems and corollaries related to orbit polynomi-

als and automorphism groups. We begin with the theorem stated in [10],

which implies that for a network N with n vertices and (n − 1) orbits,

the orbit polynomial ON is given by ON (x) = x2 + (n − 2)x, and the

automorphism group Aut(N ) is isomorphic to Z2. This theorem provides

valuable information about the orbit polynomial and automorphism group

of networks with a specific number of vertices and orbits.

Next, we explore another theorem from [11] that relates the edge-orbit

polynomial ŌT (x) to the graph isomorphism with Sn. Moving on, we

encounter a theorem from [11] that focuses on graphs without pendant

edges. The theorem states that if the orbit polynomial OG is equal to

ŌG, then G is isomorphic to the cycle graph Cn. This result highlights

the relationship between the orbit polynomial and the graph structure,

specifically for graphs without pendant edges.

Additionally, we come across a theorem from [12] that examines the

orbit polynomial OG of a graph G with order n and coefficients a, b, and

c. The theorem implies that if 1 ≤ a, b, c ≤ 3, then the automorphism

group Aut(G) is a {2, 3}-group. This theorem provides insights into the

automorphism group structure based on the coefficients of the orbit poly-

nomial.

Furthermore, we discuss a corollary from [22] that builds upon the

concept of generators and support sets of the automorphism group. The

corollary establishes the relationship between the orbit polynomial OG and

the support sets of the generators.

To illustrate the concepts discussed, we consider a specific graph G de-

picted in Figure 1. The graph exhibits a typical arrangement of symmetric

subgraphs found in real-world networks. The authors in [22] determined

the automorphism group structure ofG as Aut(G) ∼= Z2
2×S3×S4×(Z2≀Z2).

These results deepen our understanding of the structural properties, sym-

metries, and geometric factors present in network.
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Theorem 1. [10] Let N be a network on n ≥ 3 vertices and (n−1) orbits.

Then ON (x) = x2 + (n− 2)x and Aut(N ) ∼= Z2.

Theorem 2. [11] The graph T is isomorphic to the star graph Sn if and

only if its edge-orbit polynomial ŌT (x) is equal to xn − 1.

Theorem 3. [11] Let G be a graph without a pendant edge. Then OG(x) =

ŌG(x) if and only if G ∼= Cn.

Theorem 4. [12] Let G be a graph of order n with the orbit polynomial

OG(x) = ax+ bx2 + cx3, where a, b, and c are three positive integers such

that 1 ≤ a, b, c ≤ 3. Then the automorphism group of G, denoted Aut(G),

is a {2, 3}-group, i.e., all the prime divisors of |Aut(G)| are either 2 or 3.

Theorem 5. [22] Let S be a set of generators of Aut(G), where 1 /∈ S, and

S can be written as the union of disjoint subsets S1, S2, . . . , Sm. Then, we

have that Aut(G) is isomorphic to the direct product ⟨S1⟩×⟨S2⟩×. . .×⟨Sm⟩,
where each ⟨Si⟩ denotes the subgroup generated by Si.

A network G that satisfies Theorem 5 is referred to as locally symmet-

ric. More specifically, G is said to be locally symmetric if its automorphism

group Aut(G) can be factorized into multiple geometric factors.

For a graph G and a subset of generators S ⊆ G, let supp(S) denote

the union of supports of all elements of S.

Corollary. [12] Suppose S is a set of generators of Aut(G) without the

identity 1, and S can be expressed as the disjoint union S = S1 ∪ · · · ∪ Sm

for some m ≥ 1. Let t be the number of singleton sets in S. Then OG(x) =

tx+
∑m

i=1 x
supp(si) and O⋆

G(x) = 1− tx−
∑m

i=1 x
supp(si).

In Figure 6, we see a graph K that exemplifies a common arrangement

of symmetric subgraphs observed in many real-world networks. The au-

tomorphism group of K is intricately related to the automorphism groups

of the subgraphs induced by its orbits. In a prior work, the authors of [30]

determined the automorphism group of K to be

Aut(K) ∼= Z2
2 × S3 × S4 × (Z2 ≀ Z2).

Therefore, we have OK(x) = 12x + 5x2 + x3 + 2x4 and O⋆
K(x) =

1− (11x+ 6x2 + x3 + 2x4).
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Figure 1. Vertices belonging to the same orbit share the same color,
while singleton orbits are represented by white vertices.

3.2 Roots of orbit-polynomial

In this section, we begin with new results that establish the relationship

between the roots of the orbit-polynomial and the properties of the graph

or network. The first lemma states that the value of δ = δ(G), is equal to

1 if and only if the graph G is vertex-transitive. The next lemma states

that if a graph has the trivial automorphism group, then δ = 1
n , where

n is the order of the graph. The third theorem asserts that this graph

polynomial has a unique positive zero δ ≤ 1. The fourth theorem states

that if a graph is not vertex-transitive, then its largest root δ is greater

than or equal to 1
n . This theorem provides a lower bound for the largest

root of the orbit-polynomial in non-vertex-transitive graphs.

Next, we encounter a theorem that deals with graphs having two or-

bit sizes with corresponding multiplicities. The theorem states that the

unique, positive root of the equation O⋆
G(δ) = 1−(an1 ·δn1+an2 ·δn2) = 0 is

greater than 1
1+M , where M is the maximum of the multiplicities an1 and

an2 . This result provides a relationship between δ and the multiplicities

of the orbit sizes in the graph.

The subsequent theorem considers the case where one of the orbit sizes

is fixed while the other varies. It establishes a relationship between the

roots δ1 and δ2 of the equation O⋆
G(δ) = 1−(an1δ

n1+an2δ
n2) = 0, when n1

is fixed but n2 varies. If δ2 > δ1, then the theorem provides an inequality
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relating n2 and the values of δ1 and δ2. This result allows us to compare

the roots of the equation for different values of n2.

The following two theorems, consider the orbit polynomial and mod-

ified orbit polynomial O⋆
G and their zeros. The first theorem states that

for a graph on n vertices, all the zeros of the modified orbit polynomial

lie in the disc C = {z∈C : |z| < 1+
√
8n

2 }. This result provides a geometric

constraint on the location of the zeros of the modified orbit polynomial.

The second theorem states that for a network on n vertices that is

not vertex-transitive and has a non-identity automorphism, all zeros of

the orbit polynomial lie in the interval
(

−1
n−2 , n− 2

]
. The subsequent

theorem provides another condition for the roots of the orbit polynomial

in a network. It states that if for each i in the range 1 to n, m ≤ i
√
ai, where

ai is the coefficient of xi in the orbit polynomial, then δ is in the interval

(0, 1
m ]. The penultimate theorem asserts that for any rational number α in

the interval (−∞, 0], there exists a network such that the orbit polynomial

evaluated at α is 0. Furthermore, it states that the set of all roots of the

orbit polynomial is dense. This result implies that the roots of the orbit

polynomial can take on a wide range of values.

Finally, the last theorem considers the case where a network has an

orbit of order n − i, where i is less than or equal to half the number of

vertices n. It states that δ is in the interval ( 1
i+1 , 1).

Overall, these results provide insights into the roots of the orbit-polynomial

in various graph and network structures. They establish relationships be-

tween δ and graph properties such as vertex-transitivity, multiplicities of

orbit sizes, and coefficients of the orbit polynomial.

Lemma 1. [5] δ(G) = 1 if and only if G is vertex-transitive.

Lemma 2. [5] Let G = (V,E) be a graph of order n. If G has the trivial

automorphism group, then δ(G) = 1
n .

Theorem 6. [5] The graph polynomial O⋆
G(z) = 1− OG(z) has a unique

positive zero δ < 1.

Theorem 7. [5] Let G = (V,E) be a graph and |V | = n which is not

vertex-transitive. Then δ(G) ≥ 1
n .
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Theorem 8. [6] Let G = (V,E) be a graph with two orbit sizes n1 and

n2 with corresponding multiplicities an1 and an2 , respectively, so that an1 ·
n1 + an2 · n2 = |V |. Let δ be the unique, positive root of the equation

O⋆
G(δ) = 1 − (an1 · δn1 + an2 · δn2) = 0. Then δ > 1

1+M , where M :=

max{an1 , an2}.

Theorem 9. [6] Let G = (V,E) be a graph with two orbit sizes n1 and n2

with corresponding multiplicities an1 and an2 , respectively, so that an1 ·n1+

an2 · n2 = |V |. Let δ1 be the zero of O⋆
G(δ) = 1 − (an1δ

n1 + an2δ
n2) = 0,

where n1 and n2 are fixed, but arbitrary. Assuming n1 is fixed, but n′
2

varies, let δ2 be the root of the equation O⋆
G(δ) = 1−(an1δ

n1
2 +an′

2
δ
n′
2

2 ) = 0.

If δ2 > δ1, then n′
2 >

ln(
1−an1 δ

n1
1

a
n′
2

)

ln(δ1)
.

Theorem 10. [10] Suppose G is a graph on n vertices, then all zeros of

modified orbit polynomial O⋆
G lie in disc C = {z∈C : |z| < 1+

√
8n

2 }.

Theorem 11. [10] Let N be a network on n ≥ 3 vertices that is not vertex-

transitive and Aut(N ) ̸= id, with the orbit polynomial ON (x) =
∑t

i=1 aix
i.

Then all zeros lie in
(

−1
n−2 , n− 2

]
.

Theorem 12. [10] Let N be a network on n ≥ 3 vertices with the orbit

polynomial ON (x) =
∑t

i=1 aix
iand O⋆

N (x) = 1 −
∑t

i=1 aix
i. If for i ∈

{1, 2, . . . , n}, m ≤ i
√
ai, then δ ∈ (0, 1

m ].

Theorem 13. [10] For any rational number α in the interval (−∞, 0]

there is a network N such that ON (α) = 0. More generally, the set of all

roots of ON is dense.

Theorem 14. [10] If the network N has an orbit of order n− i (i ≤ n
2 ),

then δ ∈ ( 1
i+1 , 1).

3.3 Graphs with three different orbit sizes

In this section, we will focus on creating graphs with predetermined orbit

orders. This is possible due to the classification of 2-orbit graphs, which

is discussed in the reference [10]. We will begin by exploring graphs with

three orbits. The first theorem as stated in the citation [6], provides an
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important result regarding the positive root δ of the equation O∗
G(δ) =

1 − (an1 · δn1 + an2 · δn2 + an3 · δn3) = 0. It establishes that δ must be

greater than 1
1+M , where M is the maximum among the multiplicities an1 ,

an2 , and an3 . This theorem provides a lower bound for δ in graphs with

three orbit sizes.

The second theorem, from [6] considers the same setting but assumes

fixed values for n2 and n3, while allowing n1 to vary without bound. It

states that the limiting value of the positive root δ as n1 increases is the

solution to the equation −an2 · δn2 − an3 · δn3 + 1 = 0. The third theorem

introduces the concept of fixed and varying orbit sizes. The graph G has

three orbit sizes n1, n2, and n3, with corresponding multiplicities an1
,

an2
, and an3

. The theorem considers two roots, δ1 and δ2. δ1 is the

root of the equation O⋆
G(δ) = 1 − (an1

δn1 + an2
δn2 + an3

δn3) = 0, when

n1, n2, and n3 are fixed, but arbitrary. δ2 is the root of the equation

O⋆
G(z) = 1 − (an′

1
· δn

′
1

2 + an2
· δn2

2 + an3
· δn3

2 ) = 0, where n1 varies while

n2 and n3 remain fixed. The theorem establishes a relationship between

δ1 and δ2, stating that if δ2 > δ1, then n′
1 >

ln(
1−an2 δ

n2
1 −an3 δ

n3
1

a
n′
1

)

ln(δ1)
.

Lastly, the fourth theorem, cited from [6], focuses on a specific equation

O⋆
G(z) = 1− (2zn + z) = −2zn − z + 1 = 0. The theorem states that the

unique positive root δ of this equation satisfies δ ≥ 1
3 .

Theorem 15. [6] Consider a graph G = (V,E) with three orbit sizes

n1, n2, n3, and their corresponding multiplicities an1
, an2

, an3
such that

an1
· n1 + an2

· n2 + an3
· n3 = |V |. The positive root of the equation

1− (an1
· δn1 + an2

· δn2 + an3
· δn3) = 0 is denoted by δ. Then, it follows

that δ > 1
1+M , where M := max{an1

, an2
, an3

}.

Theorem 16. [6] Let G = (V,E) be a graph with three orbit sizes n1,

n2, n3, with corresponding multiplicities an1
, an2

, an3
, so that an1

· n1 +

an2
· n2 + an3

· n3 = |V |. Let δ be the unique, positive root of the equation

O⋆
G(z) = 1−(an1

·δn1+an2
·δn2+an3

·δn3) = 0. We assume that the numbers

n2 and n3 are fixed, but arbitrary, and n1 is unbounded. The limiting value

of δ ∈ (0, 1) is the root of the equation −an2
· δn2 − an3

· δn3 + 1 = 0.

Theorem 17. [6] Let G = (V,E) be a graph with three orbit sizes n1, n2,

n3, and corresponding multiplicities an1 , an2 , an3 , such that an1 ·n1+an2 ·
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n2 + an3 · n3 = |V |. Let δ1 be the zero of O⋆
G(δ) = 1− (an1δ

n1 + an2δ
n2 +

an3δ
n3) = 0, assuming fixed but arbitrary values for n1, n2, n3. Let δ2 be

the root of the equation O⋆
G(z) = 1− (an′

1
· δn

′
1

2 + an2 · δ
n2
2 + an3 · δ

n3
2 ) = 0,

where we assume fixed values for n2, n3 but vary n1. If δ2 > δ1, then

n′
1 >

ln(
1−an2

δ
n2
1 −an3

δ
n3
1

a
n′
1

)

ln(δ1)
.

Theorem 18. [6] The positive root δ of the equation O⋆
G(z) = 1− (2zn +

z) = −2zn − z + 1 = 0 is such that δ ≥ 1
3 .

Dehmer et al. [5] propose that the measure δ can be used as a rela-

tive indicator of a graph’s symmetry. If the value of δ(G1) is greater than

that of δ(G2), it is reasonable to infer that G1 exhibits more symmetry

compared to G2, based on the counts and sizes of their respective automor-

phism group orbits. By applying this symmetry measure to a set of graphs

G, a rank order can be established: δ(G[1]) > δ(G[2]) > ... > δ(G[n]). This

rank order defines a partial ordering of the graphs.

The authors aim to demonstrate the comparative symmetry of graphs

from different classes using their corresponding δ values. Their analysis

affirms that the δ values accurately reflect the symmetry of the graphs.

Additionally, the authors derive explicit expressions for special orbit poly-

nomials for branched trees. The motivation behind considering these graph

classes stems from their utility in various disciplines such as chemistry

and bioinformatics. These structures often serve as fundamental com-

ponents for understanding complex systems based on networks. Linear

and branched trees, including linear and branched alkanes, play signifi-

cant roles in chemistry, drug design, and related fields. Therefore, it is

essential to characterize these structures using quantitative measures like

δ and establish interrelations between different graph classes.

For instance, the authors examine the roots of the orbit polynomials

for the trees Pn and P b1
n , where P b1

n is formed by attaching an end vertex

to an ”inner” vertex on the original path (see Figure 2). They present a

theorem based on the comparison of these roots, which further supports

their research on orbit polynomials and graph symmetry.

Theorem 19. Let OPn
(z) and O

P
b1
n
(z) be the orbit polynomials of Pn

and P b1
n , respectively, and denote the unique, positive roots of O⋆

Pn
(z) and
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Figure 2. Path graph P6 and branched paths P b1
n , P b2

n , and P b3
n

O⋆

P
b1
n

(z) by δ(Pn) and δ(P b1
n ), respectively. The inequality δ(Pn) > δ(P b1

n )

is satisfied.

The authors examined the relationship between δ and two other sym-

metry measures for graphs, namely the entropy measure Ia(G) and the

symmetry index S(G). They computed the Pearson correlation coeffi-

cient (r) between δ and these measures using exhaustively generated trees.

These trees were generated using Nauty [27] and are valuable for applica-

tions in fields like chemistry, bioinformatics, and computer science due to

their unique topology. It was observed that the correlation between δ and

S is weak. However, the correlation between δ and Ia is stronger, indicat-

ing a similarity in their input, which is based on vertex orbits. The scatter

plots depicted in Figures 3 and 4 further illustrate the weak correlation

between δ and S.

In conclusion, the analysis indicates that δ, as an algebraic graph

measure, possesses distinct characteristics compared to the information-

theoretic measures Ia and S. Although there are some correlations be-

tween δ and these measures, the differences in their underlying principles

and reliance on vertex orbits contribute to the observed variations in cor-

relation strength.
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Figure 3. (a) Correlation between δ and Ia based on T14. (b) Corre-
lation between δ and Ia based on T15.

Figure 4. (a) Correlation between δ and S based on T16. (b) Correla-
tion between δ and S based on T17.

3.4 Achieving prescribed orbit structures in graphs:

Construction and interpretation

Mowshowitz et al. [23] delve into the question of whether a given partition

of a positive integer can be represented by the orbit sizes of the automor-

phism group of a graph. Through their work, they provide a compelling

proof that demonstrates the existence of connected, undirected graphs

with predetermined orbit structures within their automorphism groups.

The authors accomplish this by explicitly constructing the graphs in ques-

tion, ensuring that the component graphs have the minimum number of

edges possible. Furthermore, they introduced a specialized class of trees
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that possess prescribed orbit structures. The methods developed in this

research offer a valuable tool for generating graphs with a well-defined

degree of symmetry.

Theorem 20. [23] Let n be a positive integer such that n =
∑t

i=1 i ·ki, for
some positive integer t, where ki is the number of values equal to i in the

sum. If k1 ≤ 1 or k1 ≥ 6, then there exists a graph G whose automorphism

group Aut(G) has t orbits of sizes k1, k2, ..., kt, respectively.

Theorem 21. [23] Let n, ki, and t be as given in the hypotheses of The-

orem 20, with ki ≥ 2 (2 ≤ i ≤ t) and ki ≤ kj for i ≤ j. There exists

a tree with n vertices whose automorphism group has ki orbits of size i,

2 ≤ i ≤ t, and k1 =
∑t

i=2 ki +
(
ki

2

)
.

4 Application in real-world networks

In their study, Ghorbani et al. [10] examine several set of real-world net-

works with distinct topologies. They aim to explore the relationship be-

tween the symmetry measure δ and the orbit entropy Ia, as well as their

correlation with the topological indices of the networks. The results re-

veal a significant correlation between δ and Ia indicating that changes

in symmetry are accompanied by variations in orbit entropy. However,

no significant correlation is observed between δ and the symmetry index

S(G).

To further analyze the networks, various topological indices including

the first Zagreb index, second Zagreb index, spectral radius, Randic in-

dex, Laplacian Estrada index, Laplacian energy, Harary index, Estrada

index, energy, Balaban ID, and atom-bond connectivity, were calculated.

Among these indices, the results highlight that Laplacian energy exhibits

the strongest correlation with the symmetry measure δ.

Overall, this study sheds light on the relationship between symme-

try, orbit entropy, and various topological indices in real-world networks,

providing valuable insights into the structural characteristics of these net-

works.

Dehmer et al. [6] explored the practical application of the symmetry
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measure δ by calculating it for three molecular structures. The purpose of

this calculation is to demonstrate the measure’s effectiveness in capturing

symmetry. The authors specifically focused on hydrocarbons, which are

fundamental components of mineral oils and various other products. These

hydrocarbons are represented by chemical formulae of the form CnHm.

The authors consider three sets of graphs for their analysis. The first

set comprises isomers derived from C14H28, the second set consists of iso-

mers derived from C14H26, and the third set includes isomers derived from

C14H26 with a restriction that the structures must have two rings with a

minimum size 5. The different topologies of connected carbon atoms define

the set of isomers, and the authors provide examples of isomeric structures

with different degrees of symmetry (see Figure 5). To demonstrate the ef-

Figure 5. G1: An isomer of the set C14H30. δ(G1) = 0.307026. G2:
An isomer of the set C14H28 with δ(G2) = 0.626615. G3:
An isomer of the set C14H26 with δ(G3) = 0.119633. The
vertices are labeled by orbit numbers, where a given vertex
belongs to orbit 1, 2, 3, 4, or 5. If a vertex is not labeled by
a number, it represents a singleton orbit.

fectiveness of the δ measure in capturing symmetry, the authors calculate

δ values for three molecular structures. The calculated δ values indicate

the degree of symmetry for each structure, with higher values indicating

greater symmetry. The authors state that higher δ values correspond to

greater symmetry, with the maximum value of δ being 1, achieved in ver-

tex transitive graphs. In Figure 6, the histograms of the frequencies of δ

values for each set are provided, showing similarities in the distributions

with high frequencies at low symmetry.
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Figure 6. The distribution of the δ-values for the three sets containing
chemical structures can be visualized through a plot of fre-
quency, f , as log10(f + 1).

The authors discuss the minimum and maximum values of δ for graphs

with a given number of vertices (C-atoms). The minimum value of δ

corresponds to asymmetric graphs, where each atom is in a separate orbit.

The maximum value of δ is obtained when all atoms are in a singleton orbit,

indicating maximum symmetry. Furthermore, the authors mentioned the

use of automorphism groups of graphs to obtain orbit data and calculate

the symmetry measure δ. However, the results show that in all three sets,

the numerical relationship between δ and the size of the automorphism

group |Aut(G)| is relatively weak. The Pearson correlation coefficients

for the three sets are 0.33, 0.45, and 0.50, respectively. This suggests

that there is not a strong linear correlation between δ and the size of the

automorphism group in these cases. Overall, this analysis [5] explores the

symmetry of chemical structures using graph representations and the δ

measure. It turned out, that δ is a suitable symmetry measures as it gives

meaningful values.

5 Summary and conclusion

In this paper, we surveyed existing results on the so-called orbit polyno-

mial. It was introduced by Dehmer et al. [5] and brought many valuable
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results when exploring the symmetry of graphs. In the course of the sur-

vey, we reviewed many results where the orbit polynomial-approach got

applied. In the fowllowing, we briefly sketch an idea how to generalize this

approach.

If OG(x) is the orbit polynomial of G, then we used the equation

O⋆
G(x) = 1 − OG(x) = 0 to infer the unique root δ that lies between

zero and one. We note that this idea can be easily generalized and used

in other graph domains. So, consider the graph polynomial

PG(z) = anz
n + · · ·+ a1z + a0,

where ai capture structural information of the graph (e.g., distances be-

tween vertices, degrees, orbit sizes etc.). If a0 ̸= 0, then we generalize the

above stated idea bu considering P ⋆
G(z) := 1−z ·PG(z) to obtain the unique

positive zero between (0, 1]. If a0 = 0, then we have the case as illustrated

in the survey for the orbit polynomial. Besides considering the unique and

positive zero of P ⋆
G(z) := 1 − z · PG(z) = 0 and P ⋆

G(z) := 1 − PG(z) = 0,

we could also investigate all zeros of a graph polynomial PG(z) and P ⋆
G(z).

This would lead to the investigation of all zeros of

PG(z) = anz
n + · · ·+ a1z + a0 = 0,

or

P ⋆
G(z) = 1− (anz

n + · · ·+ a1z) = 0,

or

P ⋆
G(z) = 1− z(anz

n + · · ·+ a1z + a0) = 0.

This would enable us to establish a direct connection to the theory of

eigenvalues.

References

[1] K. Balasubramanian, On graph theoretical polynomials in chemistry,
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