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Abstract

In this paper, we explore the connection between the energy and
spread of the adjacency, Laplacian, and signless Laplacian matri-
ces for graphs. We then introduce new limitations for the energy
and spread of these matrices, based on previous research and our
findings.

1 Introduction

Let G be a graph, with its order and size denoted by n and m, respectively.

The degree of a vertex v in G, dG(v), is the number of edges incident to v.

The edge degree of an edge e in G, dG(e), is the number of edges incident

∗Corresponding author.
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to e. In this work, we use ∆, δ, and ∆e to denote the maximum degree,

minimum degree, and maximum edge degree of G, respectively.

The chromatic number of a graph G, denoted by χ(G) or simply χ, is

the smallest number of colors necessary to assign to the vertices of G so

that adjacent vertices do not have the same color.

Two edges that are not adjacent are called independent edges. The

matching number of a graph G, denoted by α′(G) or simply α′, is the

number of edges in the largest independent set of edges in G.

The clique number of a graph G, denoted by ω(G) or simply ω, is the

number of vertices in the largest complete subgraph of G.

A vertex cover of a graph G is a set of vertices that includes at least one

endpoint of every edge in the graph. The vertex cover number of graph G,

denoted by β(G) or simply β, is the size of a minimum vertex cover of G.

In the following, D and ρ represent the diameter and the number of

components of G, respectively.

A graph G has a vertex set denoted by V (G) = {v1, v2, . . . , vn}. The

adjacency matrix of G is represented as A(G), where aij = 1 if there is

an edge between vertices vi and vj , and aij = 0 otherwise. We obtain the

diagonal matrix of G, denoted by D(G), by taking the row sums of A(G),

which gives us the degree of each vertex in G. The Laplacian matrix of G

is defined as L(G) = D(G)−A(G), while the signless Laplacian matrix of

G is denoted by Q(G) = D(G) + A(G). The eigenvalues of A(G), L(G),

and Q(G) are known as A-, L-, and Q-eigenvalues, respectively, and are

arranged in decreasing order: λ1 ≥ λ2 ≥ · · · ≥ λn, α1 ≥ α2 ≥ · · · ≥ αn =

0, and q1 ≥ q2 ≥ · · · ≥ qn ≥ 0.

Adjacency energy E(G) [16], Laplacian energy LE(G) [17], and signless

Laplacian energy QE(G) [1] of G are defined as:

E(G) =

n∑
i=1

|λi| , LE(G) =

n∑
i=1

∣∣∣∣αi −
2m

n

∣∣∣∣ , QE(G) =

n∑
i=1

∣∣∣∣qi − 2m

n

∣∣∣∣ .
For details of the mathematical theory of these, nowadays very popular,

graph-spectral invariants see the book [24], the recent papers [7–12], and

the references cited therein. Also, the adjacency spread AS(G) [15], Lapla-

cian spread LS(G) [13], and signless Laplacian spread QS(G) [30, 36], of
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G are defined as:

AS(G) = λ1 − λn, LS(G) = α1 − αn−1, QS(G) = q1 − qn.

The spectrum of A(G), L(G), and Q(G) can be represented as fol-

lows: Spec(A(G)) = (λ1, λ2, . . . , λn), Spec(L(G)) = (α1, α2, . . . , αn), and

Spec(Q(G)) = (q1, q2, . . . , qn).

The first Zagreb index M1(G) [35] and Randić index R(G) [38] of G

can be defined as:

M1 = M1(G) =
∑

v∈V (G)

dG(v)
2, R = R(G) =

∑
uv∈E(G)

1√
dG(u)dG(v)

.

The adjacency, Laplacian, and signless Laplacian eigenvalues satisfy:

n∑
i=1

λi = 0,

n∑
i=1

λ2
i = 2m, (1)

n∑
i=1

αi = 2m,

n∑
i=1

α2
i = 2m+M1(G), (2)

n∑
i=1

qi = 2m,

n∑
i=1

q2i = 2m+M1(G). (3)

We denote the union of p copies of a graph H by pH. Let V (H) =

{v1, v2, . . . , vn}. The duplication graph DpH is a graph with pn vertices.

It is obtained from pH by joining vertex vi to every neighbor of vi in the

j-th copy of Gj where 1 ≤ j ≤ p and 1 ≤ i ≤ n.

In a theorem from [32], it is shown that there is a relationship between

the eigenvalues of H and DpH.

Theorem 1. [32] Suppose G is a graph with eigenvalues λ1, . . . , λn. Then

the eigenvalues of the adjacency matrix of the duplication graph DpH are

pλi, where 1 ≤ i ≤ n and 0 with the multiplicity (p− 1)n.

In this study, we explore the connection between the energy and spread

of the adjacency, Laplacian, and signless Laplacian matrices for graphs.

We then introduce new limitations for the energy and spread of these

matrices, based on previous research and our findings.
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2 Main result

In this section, we will prove our main results which establish the rela-

tionship between the energy and spread of the adjacency, Laplacian, and

signless Laplacian matrices of graphs. Firstly, we will start by presenting

the theorem that plays the main role in achieving our objectives.

Theorem 2. Let a1, a2, . . . , an be real numbers such that
∑n

i=1 ai = 0,

a1 = max1≤i≤n ai and an = min1≤i≤n ai. Then

n∑
i=1

ai
2 ≤ 1

2
(a1 − an)

n∑
i=1

|ai|. (4)

The equality holds if and only if {ai : 1 ≤ i ≤ n} ⊆ {a1, 0, an}.

Proof. Given
∑n

i=1 ai = 0, we have:

n∑
i=1

ai
2 =

1

2

n∑
i=1

(2ai − a1 − an)ai ≤
1

2

n∑
i=1

|2ai − a1 − an||ai|. (5)

The equality holds if and only if (2ai − a1 − an)ai ≥ 0 for i = 1, 2, . . . , n.

We also know that 1 ≤ i ≤ n, then an−a1 ≤ 2ai−a1−an ≤ a1−an.

The equality on the left side holds if and only if ai = an, whilst the equality

on the right side holds if and only if ai = a1. Therefore, for 1 ≤ i ≤ n,

|2ai−a1−an| ≤ a1−an and the equality holds if and only if ai ∈ {a1, an}.
Hence, for 1 ≤ i ≤ n:

|2ai − a1 − an||ai| ≤ (a1 − an)|ai|. (6)

The equality holds if and only if ai ∈ {a1, 0, an}.
By combining Equations (5) and (6), we get:

n∑
i=1

ai
2 ≤ 1

2

n∑
i=1

|2ai − a1 − an||ai|

≤ 1

2

n∑
i=1

(a1 − an)|ai| =
1

2
(a1 − an)

n∑
i=1

|ai|.
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The equality in (4) holds if and only if the equality in (5), and also for all

1 ≤ i ≤ n, the equalities in (6) hold. Therefore, the equality in (4) holds

if and only if {ai : 1 ≤ i ≤ n} ⊆ {a1, 0, an}, as desired.

In the following theorem, we will derive the relationship between the

energy and spread of adjacency, Laplacian, and signless Laplacian matrices

of graphs.

It is worth noting that Jahanbani and Sheikholeslami proved in [19]

that E(G) ≥ 4m
AS(G) , with equality holding for G ∼= Kn and G ∼= Kn

2 ,n2
.

Theorem 3. Let G be graph of order n and size m. Then

(i) E(G) ≥ 4m
AS(G) and the equality holds if and only if {λi : 1 ≤ i ≤ n} ⊆

{λ1, 0, λn}. Moreover, if G is bipartite, then the equality holds if and

only if G ∼=
k⋃

i=1

Kai,bi ∪ rK1, where n =
k∑

i=1

(ai + bi) + r, r ≥ 0 and

a1b1 = a2b2 = · · · = akbk.

(ii) LE(G) ≥ 2nM1(G)+4m(n−2m)
nα1

and the equality holds if and only if {αi :

1 ≤ i ≤ n} ⊆ {α1,
2m
n , 0}. Moreover, the equality holds if G ∼= Kn

or G ∼= Kn
2 ,n2

.

(iii) QE(G) ≥ 2nM1(G)+4m(n−2m)
nQS(G) and the equality holds if and only if

{qi : 1 ≤ i ≤ n} ⊆ {q1, 2m
n , qn}. Moreover, the equality holds if

G ∼= Kn or G ∼= Kn
2 ,n2

.

Proof. (i) Let ai = λi for i = 1, 2, . . . , n. Then, by the first part of relation

(1), we have
∑n

i=1 ai = 0. Thus, by using Theorem 2,

n∑
i=1

λ2
i ≤ 1

2
(λ1 − λn)

n∑
i=1

|λi| =
1

2
AS(G)E(G).

Then, by the second part of relation (1), 2m ≤ 1
2AS(G)E(G). Hence,

we conclude that E(G) ≥ 4m
AS(G) and the equality holds if and only if

{λi : 1 ≤ i ≤ n} ⊆ {λ1, 0, λn}. The first part of the proof is done.

Suppose that equality holds. Let λ1 ≥ λ2 ≥ · · · ≥ λp > 0 ≥ λp+1 ≥
λp+2 ≥ λn. By Theorem 2, we have {λi : 1 ≤ i ≤ n} ⊆ {λ1, 0, λn}.
Then G has at most three distinct eigenvalues and hence the diameter is



550

at most 2, see [4]. If d(G) = 1, then G ∼= Kn and hence the equality

holds. Otherwise, d(G) = 2. In this case there are exactly three distinct

eigenvalues in G, that is, λ1 > 0 > λn. Now, we assume that G is a

bipartite graph with p components. Then we obtain λi = −λn−i+1 (1 ≤

i ≤ p) and if n > 2p, λj = 0 (j = p + 1, . . . , n − p). Moreover,
p∑

i=1

λ2
i =

n∑
i=p+1

λ2
i = m. Thus we have

n∑
i=1

λ2
i = 2m = λ1

n∑
i=1

|λi|,

that is,
n∑

i=1

(λ1 − |λi|) |λi| = 0, that is,

λ1 = λ2 = · · · = λp = −λn−p+1 = −λn−p+2 = · · · = −λn.

First we assume that G is connected. For any connected graph, it is well-

known that λ1 > λ2. Thus we have p = 1 and hence λ1 = −λn, λi = 0 for

i = 2, . . . , n− 1. Therefore G ∼= Ka,b (a+ b = n).

Next we assume that G is disconnected. Let G =
k⋃

i=1

Gi ∪ rK1, where

r ≥ 0. For each Gi (1 ≤ i ≤ k), Gi
∼= Kai,bi with aibi = mi such

that m1 = m2 = · · · = mk. Hence G ∼=
k⋃

i=1

Kai,bi ∪ rK1, where n =

k∑
i=1

(ai + bi) + r, r ≥ 0, and a1b1 = a2b2 = · · · = akbk.

Conversely, let G ∼=
k⋃

i=1

Kai,bi ∪ rK1, where n =
k∑

i=1

(ai + bi) +

r, r ≥ 0, and a1b1 = a2b2 = · · · = akbk. Then λ1 = λ2 = · · · = λk =

−λn−k+1 = · · · = −λn−1 = −λn =
√
aibi (i = 1, . . . , k) and λi = 0

(i = k + 1, k + 2, . . . , n − k). Thus we have E(G) = 2k
√
a1b1, m =

k∑
i=1

aibi = k a1b1 and AS(G) = 2λ1 = 2
√
a1b1. Hence E(G) = 4m

AS(G) .

(ii) Let ai = αi − 2m
n for i = 1, 2, . . . , n. Then, by the first part of
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relation (2), we can write
∑n

i=1 ai = 0. Thus, by Theorem 2,

n∑
i=1

(
αi −

2m

n

)2

≤ 1

2
α1LE(G).

Then, by the second part of relation (2), we have nM1(G)+2m(n−2m)
n ≤

1
2α1LE(G). Therefore, LE(G) ≥ 2nM1(G)+4m(n−2m)

nα1
and the equality holds

if and only if {αi : 1 ≤ i ≤ n} ⊆ {α1,
2m
n , 0}. Clearly, if G ∼= Kn, then

Spec(L(G)) = (

n−1 items︷ ︸︸ ︷
n, . . . , n , 0)

and so LE(G) = 2nM1(G)+4m(n−2m)
nα1

= 2(n − 1). Moreover, if G ∼= Kn
2 ,n2

,

then

Spec(L(G)) =
(
n,

n−2 items︷ ︸︸ ︷
n

2
, . . . ,

n

2
, 0
)

and so LE(G) = 2nM1(G)+4m(n−2m)
nα1

= n.

(iii) Let ai = qi − 2m
n for i = 1, 2, . . . , n. Then, by the first part of

relation (3), we have
∑n

i=1 ai = 0. Thus, by using Theorem 2,

n∑
i=1

(
qi −

2m

n

)2

≤ 1

2
QS(G)QE(G).

Hence, by the second part of relation (3), we have nM1(G)+2m(n−2m)
n ≤

1
2 QS(G)QE(G). It concludes that QE(G) ≥ 2nM1(G)+4m(n−2m)

nQS(G) and the

equality holds if and only if {qi : 1 ≤ i ≤ n} ⊆ {q1, 2m
n , qn}.

Clearly if G ∼= Kn, then

Spec(Q(G)) = (2n− 2,

n−1 items︷ ︸︸ ︷
n− 2, . . . , n− 2)

and so QE(G) = 2nM1(G)+4m(n−2m)
nQS(G) = 2(n− 1). Moreover, if G ∼= Kn

2 ,n2
,

then

Spec(Q(G)) =
(
n,

n−2 items︷ ︸︸ ︷
n

2
, . . . ,

n

2
, 0
)
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and so QE(G) = 2nM1(G)+4m(n−2m)
nQS(G) = n.

If we have an n×n matrix M , and there exists another matrix B such

that MB = BM = In, then we say that M is non-singular. This means

that M has no zero eigenvalues. In other words, all of the eigenvalues of

M are non-zero.

Corollary 1. If A(G) is nonsingular, then E(G) ≥ 4m
AS(G) with equality if

and only if G ∼= Kn.

Consider the following questions related to a graph G of order n and

size m:

1. If E(G) = 4m
AS(G) , then what is the structure of graph G?

2. If LE(G) = 2nM1(G)+4m(n−2m)
nα1

, then what is the structure of graph

G?

3. If QE(G) = 2nM1(G)+4m(n−2m)
nQS(G) , then what is the structure of graph

G?

Proposition 4. Let G be a graph with m edges. If E(G) = 4m
AS(G) , then

E(DnG) = 4|E(DnG)|
AS(DnG) .

Proof. Let v ∈ V (G). By definition of DnG, we can say that there are n

copies of v in DnG, all with degree ndG(v). For any graph H, it is known

that
∑

v∈V (H) dH(v) = 2|E(H)|. Then, according to Theorem 1, we have

4|E(DnG)|
AS(DnG)

=
2n
∑

v∈V (G) ndG(v)

nAS(G)
=

4n2m

nAS(G)
= n

4m

AS(G)
, (7)

E(DnG) =

n∑
i=1

|nλi| = nE(G). (8)

Therefore, using relations (7) and (8), we can conclude that if E(G) =
4m

AS(G) , then E(DnG) = 4|E(DnG)|
AS(DnG) .

We need to refer to the theorem presented in [26] to prove our upcoming

results.
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Theorem 5. [26] Let G be a graph. Then M1 ≥ 4m2

n and the equality

holds if and only if G is a regular graph.

Corollary 2. Let G be graph. Then

i) LE(G) ≥ 4m
α1

and the equality holds if and only if G is a regular graph

and {αi : 1 ≤ i ≤ n} ⊆ {α1,
2m
n , 0}. Moreover, the equality holds if

G ∼= Kn or G ∼= Kn
2 ,n2

.

ii) QE(G) ≥ 4m
QS(G) and the equality holds if and only if G is a regular

graph and {qi : 1 ≤ i ≤ n} ⊆ {q1, 2m
n , qn}. Moreover, the equality

holds if G ∼= Kn or G ∼= Kn
2 ,n2

.

Proof. The proof follows from Theorems 3(ii), 3(iii) and 5.

Remark 1. Let G be a graph. According to Theorem 3, we reach to the

following results:

i) Each upper bound on AS(G) gives a lower bound for E(G). Also, each

upper bound on E(G) gives a lower bound for AS(G).

ii) Each upper bound on α1 drives a lower bound for LE(G). Also, each

upper bound on LE(G) gives a lower bound for α1.

iii) Each upper bound on QS(G) leads a lower bound for QE(G). More-

over, each upper bound on QE(G) gives a lower bound for QS(G).

3 Applications

In this section, we will present new bounds for the energy and spread of the

adjacency, Laplacian, and signless Laplacian matrices of graphs, building

upon previous publications and our results.

Theorem 6. Let G be a graph with m ≥ 1. Then

i) [33] E(G) ≤
√
2mn.

ii) [21] E(G) ≤ 2m
n +

√
(n− 1)(2m− 4m2

n2 ) for 2m ≥ n, and the equality

holds if and only if G is isomorphic to n
2K2 or Kn or a non-complete

connected strongly regular graph with two non-trivial eigenvalues both

with absolute value
√
(2m− ( 2mn )2)/(n− 1).
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iii) [18] E(G) ≤ m
R +

√
(n− 1)(2m− (mR )2 and the equality holds if and

only if G ∼= Kn.

iv) [18] E(G) ≤ (χ−1)+
√

(n− 1)(2m− (χ− 1)2) and the equality holds

if and only if G ∼= Kn.

v) [18] E(G) ≤ D
√
n− 1 +

√
(n− 1)(2m− ( D

√
n− 1)2) and the equality

holds if and only if G ∼= Kn.

vi) [5] E(G) ≤ 2m− 2m
n ( 2mn − 1)− ln(n| detA|

2m ), where A is a nonsingular

matrix, and the equality holds if and only if G ∼= Kn.

vii) [37] E(G) ≤ 2α′√2∆e + 1, where ∆e is an even number, and the

equality holds if and only if each component of G is isomorphic to

K1 or K2.

viii) [37] E(G) ≤ α′
(√

2ν + 2
√
2ν +

√
2ν − 2

√
2ν
)
, where ν = ∆e+1 is

an even number, and the equality holds if and only if each component

of G is isomorphic to K1 or P3.

ix) [42] E(G) ≤
√

M1

n +
√
(n− 1)(2m− M1

n ) and the equality holds if

and only if G is isomorphic to n
2K2 or Kn or a non-complete con-

nected strongly regular graph with two non-trivial eigenvalues both

with absolute value
√
(2m− ( 2mn )2)/(n− 1).

x) [40] E(G) ≤
√
∆ +

√
(n− 1)(2m−∆) and the equality holds if and

only if G ∼= n
2K2.

xi) [40] E(G) ≤ 2 cos( π
n+1 )+

√
(n− 1)

(
2m− (2 cos( π

n+1 ))
2
)
, where G is

a connected graph, and the equality holds if and only if G ∼= P2.

xii) [40] E(G) ≤ 2β
√
∆ and the equality holds if and only if G ∼= βK1,∆∪

(n− β)K1.

xiii) [6] E(G) ≤
√
2m(n− δ) + 4

√
m3(1− 1

ω ).

Corollary 3. Let G be a graph with m ≥ 1. Then

i) AS(G) ≥ 2
√
2mn
n and the equality holds if G ∼= n

2K2.
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ii) AS(G) ≥ 4m

(
2 m

n +
√
(n− 1)(2m− 4 m2

n2 )

)−1

for 2m ≥ n, and the

equality holds if and only if G is isomorphic to n
2K2 or Kn or a

non-complete connected strongly regular graph with two non-trivial

eigenvalues both with absolute value
√
(2m− ( 2mn )2)/(n− 1).

iii) AS(G) ≥ 4m
(
m
R +

√
(n− 1)(2m− (mR )2)

)−1
and the equality holds if

and only if G ∼= Kn.

iv) AS(G) ≥ 4m
(
(χ− 1) +

√
(n− 1)(2m− (χ− 1)2)

)−1

and the equ-

ality holds if and only if G ∼= Kn.

v) AS(G) ≥ 4m

(
D
√
n− 1 +

√
(n− 1)(2m− ( D

√
n− 1)2)

)−1

and the equ-

ality holds if and only if G ∼= Kn.

vi) AS(G) ≥ 4m
(
2m− 2m

n ( 2mn − 1)− ln(n| detA|
2m )

)−1

, where A is a non-

singular matrix, and the equality holds if and only if G ∼= Kn.

vii) AS(G) ≥ 4m
(
2α

√
2∆e + 1

)−1
, where ∆e is an even number, and the

equality holds if and only if each component of G is isomorphic to

K1 or K2.

viii) AS(G) ≥ 4m
(
α
(√

2ν + 2
√
2ν +

√
2ν − 2

√
2ν
))−1

, where ν = ∆e

+ 1 is an even number, and the equality holds if and only if each

component of G is isomorphic to K1 or P3.

ix) AS(G) ≥ 4m

(√
M1

n +
√
(n− 1)(2m− M1

n )

)−1

, and the equality ho-

lds if and only if G is isomorphic to n
2K2 or Kn or a non-complete

connected strongly regular graph with two non-trivial eigenvalues both

with absolute value
√
(2m− ( 2mn )2)/(n− 1).

x) AS(G) ≥ 4m
(√

∆+
√

(n− 1)(2m−∆)
)−1

and the equality holds if

and only if G ∼= n
2K2.

xi) AS(G) ≥ 4m
(
2 cos( π

n+1 ) +
√
(n− 1)

(
2m− (2 cos( π

n+1 ))
2
))−1

, where

G is a connected graph, and the equality holds if and only if G ∼= P2.
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xii) AS(G) ≥ 4m
(
2β

√
∆
)−1

and the equality holds if and only if G ∼=
βK1,∆ ∪ (n− β)K1.

xiii) AS(G) ≥ 4m

(√
2m(n− δ) + 4

√
m3(1− 1

ω )

)−1

.

Proof. The proof follows from Theorems 3(i) and 6.

Theorem 7. If G is a graph with m ≥ 1, then

i) [15] AS(G) ≤ 2
√
m and the equality holds if and only if G is the union

of a complete bipartite subgraph and some trivial subgraphs.

ii) [15] For m > ⌊n2

4 ⌋, AS(G) ≤ 2m
n−1 +

√
2m
(

n−2
n−1

)(
1− 2m

n(n−1)

)
and

the equality holds if and only if G ∼= Kn.

iii) [15] For m > ⌊n2

4 ⌋, AS(G) ≤ 2m
n +

√
2m−

(
2m
n

)2 − ω + 2 and the

equality holds if and only if G ∼= Kn.

iv) [29] AS(G) ≤ 2 4
√
M1 −m+ 4f , where f is the number of all 4-cycles

in G, and the equality holds if and only if G is the union of a complete

bipartite subgraph and some trivial subgraphs.

v) [27] AS(G) ≤ n, where G is a regular graph, and the equality holds if

G ∼= Kn or Kn
2 ,n2

.

vi) [28] AS(G) ≤
√
2kn, where G is a connected k-regular graph, and the

equality holds if G ∼= Kn
2 ,n2

.

vii) [28] AS(G) ≤ 2
√
2(n− 2), where n ≥ 3 and χ = 2, and the equality

holds if G ∼= K2,n−2.

Corollary 4. If G is a graph with m ≥ 1, then

i) E(G) ≥ 2
√
m and the equality holds if and only if G is the union of a

complete bipartite subgraph and some trivial subgraphs.

ii) For m > ⌊n2

4 ⌋, E(G) ≥ 4m
(

2m
n−1 +

√
2m
(

n−2
n−1

)(
1− 2m

n(n−1)

))−1

and

the equality holds if and only if G ∼= Kn.
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iii) For m > ⌊n2

4 ⌋, E(G) ≥ 4m

(
2m
n +

√
2m−

(
2m
n

)2 − ω + 2

)−1

and the

equality holds if and only if G ∼= Kn.

iv) E(G) ≥ 2m
(

4
√
M1 −m+ 4f

)−1
, where f is the number of all 4-cycles

in G, and the equality holds if and only if G is the union of a complete

bipartite subgraph and some trivial subgraphs.

v) E(G) ≥ 4m
n , where G is a regular graph, and the equality holds if G ∼=

Kn or Kn
2 ,n2

.

vi) E(G) ≥ 4m√
2kn

, where G is a connected k-regular graph, and the equality

holds if G ∼= Kn
2 ,n2

.

vii) E(G) ≥ 2m√
2(n−2)

, where n ≥ 3 and χ = 2, and the equality holds if

G ∼= K2,n−2.

Proof. The proof follows from Theorems 3(i) and 7.

Theorem 8. Let G be a graph with m ≥ 1. Then

i) [17] LE(G) ≤
√
nM1 + 2m(n− 2m) and the equality holds if and only

if there exist α ≥ 1 and k ≥ 2 such that G ∼= αKk ∪ (k − 2)αK1.

ii) [17] LE(G) ≤ 2m
n ρ +

√
(n− ρ)

(
nM1+2m(n−2m)

n − ρ
(
2m
n

)2)
, and for

ρ = 1 the equality holds if and only if G is a complete graph or a

non-complete connected strongly regular graph with two non-trivial

eigenvalues both with absolute value
√
(2m− ( 2mn )2)/(n− 1); Oth-

erwise, the equality holds if there exist α ≥ 1 and k ≥ 2 such that

G ∼= αKk ∪ (k − 2)αK1 and (k − 1)α = ρ.

iii) [17] G has no isolated vertex. Then LE(G) ≤ nM1+2m(n−2m)
n the

equality holds if and only if G ∼= n
2K2.

iv) [43] LE(G) ≤
√

nM1+2m(n−2m)
n (n− 1) + nd

2
n , where d =

∣∣det (L(G)

− 2m
n I
)∣∣.

Corollary 5. Let G be a graph with m ≥ 1. Then
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i) α1 ≥ (2nM1 + 4m(n− 2m))
(
n
√

nM1 + 2m(n− 2m)
)−1

and the equ-

ality holds if and only if there exist α ≥ 1 and k ≥ 2 such that

G ∼= αKk ∪ (k − 2)αK1.

ii) α1 ≥
(
2mρ+n

√
(n− ρ)

(nM1+2m(n−2m)
n − ρ

(
2m
n

)2))−1 (
2nM1+4m(n

− 2m)
)
, and for ρ = 1 the equality holds if and only if G is a

complete graph or a non-complete connected strongly regular graph

with two non-trivial eigenvalues both with absolute value

√
2m−( 2m

n )2

n−1 ;

Otherwise, the equality holds if there exist α ≥ 1 and k ≥ 2 such that

G ∼= αKk ∪ (k − 2)αK1 and (k − 1)α = ρ.

iii) For every graph G with no isolated vertex, α1 ≥ 2 and the equality

holds if and only if G ∼= n
2K2.

iv) α1 ≥
(
2nM1 + 4m(n − 2m)

)(
n
√

nM1+2m(n−2m)
n (n− 1) + nd

2
n

)−1

,

where d =
∣∣ det (L(G)− 2m

n I
)∣∣.

Proof. The proof follows from Theorems 3(ii) and 8.

Corollary 6. Let G be a graph with m ≥ 1. Then α1 ≥ 2
√
mn
n and the

equality holds if and only if G ∼= n
2K2.

Proof. One can observe that the function f(x) = (2nx+4m(n−2m))(
n
√

nx+2m(n−2m)
) is

increasing on (−∞,+∞). Thus, the proof follows from Corollary 5(i) and

Theorem 5.

Theorem 9. Let G be a graph with m ≥ 1. Then

i) [2] α1 ≤ ∆e + 2 and the equality holds if and only if G is a bipartite

regular or a bipartite semi-regular, where G is a connected graph.

ii) [20] α1 ≤ n with equality holds if and only if the complement Gc of G

is disconnected.

iii) [39] α1 ≤
√
2∆2 + 4m− 2δ(n− 1) + 2∆(δ − 1) and the equality holds

if and only if G is a bipartite regular, where G is a connected graph.

iv) [39] For every nonregular connected graph G, α1 < 2∆ − 2
2n2−n and

α1 < 2∆− 2
(2D+1)n .
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v) [23] α1 ≤ 2m+
√

m(n−2)(n(n−1)−2m)

n−1 and the equality holds if and only

if G ∼= Kn or K1,n−1, where G is a connected graph.

vi) [41] α1 ≤ ∆ +
√

2m+∆(δ − 1)− δ(n− 1) and the equality holds if

and only if G is a bipartite regular, where G is a connected graph.

vii) [31] α1 ≤ ∆+
√
2m
(
1− 1

ω

)
.

viii) [25] For every triangle-free graph, α1 ≤ ∆+
√
m and α1 ≤ ∆ + n

2

with either equality if G ∼= Kn
2 ,n2

.

Corollary 7. Let G be a graph with m ≥ 1. Then

i) LE(G) ≥ (2nM1 + 4m(n− 2m)) (n(∆e + 2))
−1

with equality if G ∼=
Kn

2 ,n2
.

ii) LE(G) ≥ 2nM1+4m(n−2m)
n2 with equality if G ∼= Kn.

iii) LE(G) ≥
(
n
√
2∆2 + 4m− 2δ(n− 1) + 2∆(δ − 1)

)−1

(2nM1 + 4m(n

− 2m)) with equality if G ∼= Kn
2 ,n2

.

iv) For every nonregular connected graph G,

LE(G) > (2nM1 + 4m(n− 2m))

(
n(2∆− 2

2n2 − n
)

)−1

,

LE(G) > (2nM1 + 4m(n− 2m))

(
n(2∆− 2

(2D + 1)n
)

)−1

.

v) LE(G) ≥ (2nM1 + 4m(n − 2m))
(
n

2m+

√
m(n−2)

(
n(n−1)−2m

)
n−1

)−1

and

the equality holds if and only if G ∼= Kn, where G is a connected

graph.

vi) LE(G) ≥
(
n(∆ +

√
2m+∆(δ − 1)− δ(n− 1))

)−1

(2nM1 + 4m(n −
2m)) with equality if G ∼= Kn

2 ,n2
.

vii) LE(G) ≥
(
n(∆ +

√
2m
(
1− 1

ω

)
)
)−1

(2nM1 + 4m(n − 2m).
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viii) For every triangle-free graph,

LE(G) ≥ (2nM1 + 4m(n− 2m))
(
n(∆ +

√
m)
)−1

,

LE(G) ≥ (2nM1 + 4m(n− 2m))
(
n(∆ +

n

2
)
)−1

with either equality if G ∼= Kn
2 ,n2

.

Proof. The proof follows from Theorems 3(ii) and 9.

Corollary 8. Let G be a graph with m ≥ 1. Then

i) LE(G) ≥ 4m
∆e+2 with equality if G ∼= Kn

2 ,n2
.

ii) LE(G) ≥ 4m
n with equality if G ∼= Kn.

iii) LE(G) ≥ 4m√
2∆2+4m−2δ(n−1)+2∆(δ−1)

with equality if G ∼= Kn
2 ,n2

.

iv) For every nonregular connected graph G, LE(G) > 4m
(
2∆− 2

2n2−n

)−1

and LE(G) > 4m
(
2∆− 2

(2D+1)n

)−1
.

v) LE(G) ≥ 4m

(
2m+

√
m(n−2)(n(n−1)−2m)

n−1

)−1

and the equality holds if

and only if G ∼= Kn, where G is a connected graph.

vi) LE(G) ≥ 4m
(
∆+

√
2m+∆(δ − 1)− δ(n− 1)

)−1

with equality if

G ∼= Kn
2 ,n2

.

vii) LE(G) ≥ 4m
(
∆+

√
2m
(
1− 1

ω

))−1

.

viii) For every triangle-free graph, LE(G) ≥ 4m (∆ +
√
m)

−1
and LE(G)

≥ 4m
(
∆+ n

2

)−1

with either equality if G ∼= Kn
2 ,n2

.

Proof. The proof follows from Corollary 7 and Theorem 5.

Theorem 10. Let G be a graph with m ≥ 1. Then

i) [1] QE(G) ≤ 4m(1 − 1
n ) and the equality holds if and only if G ∼=

K2 ∪ (n− 2)K1.

ii) [14] QE(G) ≤ 2(2m+ 1−∆− 2m
n ) and the equality holds if and only

if G ∼= K1,n−1.
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iii) [22] QE(G) ≤ 2m
n−1 + n − 2 +

√
(n− 2)

(
2m2

n−1 + 8m∆−4m2

n +mn− 4
)

and the equality holds if and only if G ∼= K2.

Corollary 9. Let G be a graph with m ≥ 1. Then

i) SQ(G) ≥ (2nM1 + 4m(n− 2m))
(
4nm(1− 1

n )
)−1

and the equality ho-

lds if and only if G ∼= K2 ∪ (n− 2)K1.

ii) Every connected graph G satisfies

SQ(G) > (nM1 + 2m(n− 2m))

(
n(2m+ 1−∆− 2m

n
)

)−1

.

iii) SQ(G) ≥ 2nM1+4m(n−2m)

n

(
2m
n−1+n−2+

√
(n−2)

(
2m2

n−1+
8m∆−4m2

n +mn−4
)) and the equality

holds if and only if G ∼= K2.

Proof. The proof follows from Theorems 3(iii) and 10.

Corollary 10. Let G be a graph with m ≥ 1. Then

i) SQ(G) ≥ n
n−1 and the equality holds if and only if G ∼= K2.

ii) Every connected graph G satisfies SQ(G) > 4m
(
2m+ 1−∆− 2m

n

)−1
.

iii) SQ(G) ≥ 4m

2m
n−1+n−2+

√
(n−2)

(
2m2

n−1+
8m∆−4m2

n +mn−4
) and the equality ho-

lds if and only if G ∼= K2.

Proof. The proof follows from Corollary 9 and Theorem 5.

Theorem 11. Let G be a graph with m ≥ 1. Then

i) [30] SQ(G) ≤ max{dG(v) +m(v) : v ∈ V (G)} where

m(v) =
∑

uv∈E(G)

dG(u)

dG(v)
.

The equality holds if and only if G is a bipartite regular or a bipartite

semi-regular.
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ii) [36] For every connected graph G with ∆ ≤ n − 2, SQ(G) ≤ 2n − 4

with equality if and only if G ∼= C4.

iii) [36] For n ≥ 5, SQ(G) ≤ 2n− 4 and the equality holds if and only if

G ∼= Kn−1 ∪ K1.

iv) [3] SQ(G) ≤
√
2M1 + 4m− 8m2

n and SQ(G) ≤
(
2m
(

2m
n−1 + n−2

n−1∆+

(∆− δ)(1− ∆
n−1 )

)
+4m− 8m2

n

) 1
2

with either equality if and only if

G ∼= Kn
2 ,n2

.

v) [3] For every k-regular graph G, SQ(G) ≤
√
2nk and the equality holds

if and only if G ∼= Kn
2 ,n2

.

vi) [34] For every regular graph G, SQ(G) ≤ n with equality holds if and

only if the complement Gc of G is disconnected.

Corollary 11. Let G be a graph with m ≥ 1. Then

i) For every connected graph G, QE(G) ≥ (2nM1 + 4m(n− 2m))(nmax{
dG(v) +m(v) : v ∈ V (G)})−1, where m(v) =

∑
uv∈E(G)

dG(u)
dG(v) with

equality if G ∼= Kn
2 ,n2

.

ii) For every connected graph G with ∆ ≤ n− 2,

QE(G) ≥ (nM1 + 2m(n− 2m)) (n(n− 2))
−1

.

Also the equality holds if and only if G ∼= C4.

iii) For n ≥ 5, QE(G) > (nM1 + 2m(n− 2m)) (n(n− 2))
−1

.

iv) QE(G) ≥ (2nM1 + 4m(n− 2m))

(
n
√
2M1 + 4m− 8m2

n

)−1

and

QE(G) ≥ 2nM1 + 4m(n− 2m)

n

√
2m
(

2m
n−1 + n−2

n−1∆+ (∆− δ)(1− ∆
n−1 )

)
+ 4m− 8m2

n

with either equality if and only if G ∼= Kn
2 ,n2

.

v) For every k-regular graph G, QE(G) ≥ (2nM1 + 4m(n− 2m))(n
√
2nk)−1

and the equality holds if and only if G ∼= Kn
2 ,n2

.
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vi) For every regular graph G, QE(G) ≥ 2nM1+4m(n−2m)
n2 with equality if

G ∼= Kn or Kn
2 ,n2

.

Proof. The proof follows from Theorems 3(iii) and 11.

Corollary 12. Let G be a graph with m ≥ 1. Then

i) For every connected graph G, QE(G) ≥ 4m(max{dG(v) + m(v) : v ∈
V (G)})−1 where m(v) =

∑
uv∈E(G)

dG(u)
dG(v) . The equality holds if G ∼=

Kn
2 ,n2

.

ii) For every connected graph G with ∆ ≤ n − 2, QE(G) ≥ 2m
n−2 with

equality if and only if G ∼= C4.

iii) For n ≥ 5, QE(G) > 2m
n−2 .

iv) QE(G) ≥ 2
√
m and QE(G) ≥ 4m√

2m( 2m
n−1+

n−2
n−1∆+(∆−δ)(1− ∆

n−1 ))+4m− 8m2

n

with either equality if and only if G ∼= Kn
2 ,n2

.

v) For every k-regular graph G, QE(G) ≥
√
2nk and the equality holds if

and only if G ∼= Kn
2 ,n2

.

vi) For every regular graph G, QE(G) ≥ 4m
n with equality if G ∼= Kn or

Kn
2 ,n2

.

Proof. The proof follows from Corollary 11 and Theorem 5.
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