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Abstract

Steady states are frequently used to investigate the long-term be-
haviors of (bio)chemical systems. Recently, there has been a grow-
ing interest in network-based approaches due to their efficiency in
deriving parametrizations of positive steady states in systems with
mass-action kinetics. In this study, we extend this approach to
derive positive steady states in networks under non-mass-action ki-
netics, specifically mixed kinetics. In a system with mixed kinetics,
some reactions may follow mass-action kinetics, while others in the
same network follow different rate laws, such as quotient rate laws.
An example of such complexity is evident in a mathematical model
of the insulin signaling pathway in type 2 diabetes. To compute
its positive steady states, we adapt our existing network decom-
position approach, originally designed for mass-action kinetics, to
handle networks with non-mass-action kinetics. This approach in-
volves breaking down a given network into smaller, independent
subnetworks to derive the positive steady states of each subnetwork
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separately. These individual steady states are then combined to ob-
tain the positive steady states of the entire network. This strategy
makes computations more manageable for complex and large net-
works. More importantly, this method could separate reactions with
purely mass-action kinetics into certain subnetworks from those that
follow different rate laws. We also present an illustrative example
that provides insights into methods for transforming networks with
mixed kinetics into their associated mass-action systems.

1 Introduction

In the past decades, significant attention has been given to chemical re-

action networks (CRNs) to study dynamical behaviors of (bio)chemical

systems. In particular, steady states are often used to describe the long-

term behaviors of these systems. To parametrize the positive steady states

of mass-action systems, in particular, the method of network translation

[13,16] that modifies the structure of the network, can be employed [15,17].

By “parametrization” we simply mean expressing the steady states of a

network in terms of the parameters of the model. Furthermore, a net-

work obtained after applying the network translation is called a translated

network.

To illustrate the process of network translation, consider a very simple

CRN with only two reactions 0 → A (production of A) and A + B → B

(interaction between A and B results in the disappearance of A). The

reaction A + B → B can be shifted to A → 0 (i.e., replacing an original

reaction with the same stoichiometric vector) while still associating it with

the rate law of the original second reaction based on the complex A + B

(i.e., k2ab) to maintain the dynamics of the system. We clarify that B does

not disappear in the network that is why the concentration b still appears in

the rate function. Such shifting is done to obtain a network with desirable

properties needed for the method of network translation to work but still

preserving the stoichiometric vectors in the network, i.e., both A+B → B

and 0 → A just loses a single A. Hence, network translation produces two

structures. One structure, called the stoichiometric network, is a network

with nodes that are identified by the new reactions. The other structure,

called kinetic-order network, is a network with nodes coming from the old
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or original source nodes which impose the original kinetics. A network with

these two structures is called a generalized (chemical reaction) network

[20, 21]. Further details are given in Section 2.4.

Specifically, if one is able to determine a translated network of a CRN

with mass-action kinetics where the underlying network has weak reversibi-

lity and zero deficiency (i.e., both stoichiometric and kinetic-order net-

works are weakly reversible and zero deficiency), then one can easily de-

rive the parametrization of the network’s positive state using the method

introduced by Johnston et al. [17]. Weak reversibility means that each re-

action is on a directed cycle when the CRN is regarded as a directed graph,

while deficiency measures the linear dependency among the reactions in

the network [22]. Existence of positive steady states for weakly reversible

mass-action systems were studied in [2].

Recently, Hernandez et al. [12] proposed a significantly more efficient

way of solving positive steady states for networks with mass-action kinetics

that can be decomposed into independent subnetworks. The method first

decomposes the network into independent subnetworks and then parame-

trizes the positive steady states of the subnetworks individually using the

method of Johnston et al. [17] (rather than directly parametrizing the

positive steady states of the whole network). Finally, the positive steady

states of the subnetworks are combined to derive the parametrized positive

steady states of the whole network.

In this work, we modify and extend the method of Hernandez et al. [12]

to accommodate networks that follow non-mass-action kinetics (e.g., poly-

nomial, Michaelis-Menten, Hill-type, quotient, or mixed kinetics). For

subnetworks that endowed with purely mass-action or power-law kinetics,

we still apply the method proposed by Johnston et al. [17]. On the other

hand, for subnetworks that follow a different kinetics, we compute manu-

ally for the steady states. We apply our method to derive the parametrized

positive steady states of a complex mathematical model of an insulin sig-

naling pathway in type 2 diabetes [1]. Parametrizations of positive steady

states are useful in assessing essential biological characteristics like ab-

solute concentration robustness and multistationarity, as documented or

mentioned in various studies [3, 4, 17,23].
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2 Preliminaries

In this section, we discuss the basic and important concepts on CRNs

and chemical reaction systems [6, 7]. We also present useful concepts and

results regarding decomposition of CRNs [5,6, 9, 12].

2.1 Notations

Let R≥0 denote the set of non-negative real numbers, and R>0 the set of

positive real numbers. Similarly, let Z≥0 be the set of non-negative integers.

2.2 Chemical reaction networks

Definition 1. A chemical reaction network N is a triple of nonempty and

finite sets (S, C,R) where

1. S is the set of species X1, . . . , Xm,

2. C is the set of complexes of the form y =

m∑
i=1

yiXi with yi ∈ Z≥0,

and

3. R ⊂ C×C is the set of reactions that satisfies the following properties:

a. (y, y) /∈ R for each y ∈ C, and

b. for each y ∈ C, there exists a y′ ∈ C such that (y, y′) ∈ R or

(y′, y) ∈ R.

We often use the notation y → y′ to denote the reaction (y, y′). In the

definition, m is the number of species in the network, while we let n and r

be the numbers of complexes and reactions, respectively. In the reaction

y → y′, the complex y is called a reactant or source complex while the

complex y′ is called a product complex. Furthermore, we can identify the

complexes with vectors in Rm.

One can view a CRN as a directed graph with complexes as vertices

and reactions as edges. The (strong) linkage classes of the CRN are the

(strongly) connected components of the graph. A CRN is weakly reversible

if each of its linkage classes is a strong linkage class. Equivalently, it is

weakly reversible if each reaction belongs to a directed cycle.
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Example 1. Consider the CRN in Figure 1, which we denote by N . This

network has three species (A,B, and C), seven complexes (B +C, A+C,

A, 0, B, 2C, and C) and five reactions (R1, R2, R3, R4, and R5). In

particular, for reaction R1 : B +C → A+C, B +C is its source complex

while A + C is its product complex. In addition, R2 : A → 0 is an

outflow reaction that denotes degradation or consumption of species A.

Specifically, the zero complex (0) can be interpreted as the exterior of the

network environment. On the other hand, R2 : 0 → B is an inflow of

reaction that denotes production or supply of species B.

The CRN has three linkage classes because there are three connected

components. Furthermore, N is not weakly reversible because there are

reactions that do not belong to a cycle (e.g., R1 : B + C → A+ C).

Figure 1. A simple example of a CRN. a The CRN has three
species (A,B, and C), seven complexes (B + C, A + C, A,
0, B, 2C, and C) and five reactions (R1, R2, R3, R4, and
R5). b The representation of the CRN where the reactions
are grouped according to their respective linkage classes.

From a dynamical perspective, the concentrations of the species can

vary when a reaction y → y′ occurs at a certain time. The change can be

quantified by the difference y′ − y, which is called the reaction vector of

the reaction y → y′. All the changes caused by the reactions belong to the

subspace of the ambient space Rm, known as the stoichiometric subspace

of a CRN defined as

S := span {y′ − y|y → y′ ∈ R} .

The m × r matrix where the i-th column contains the coefficients of the
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associated species in the i-th reaction vector is called the stoichiometric

matrix.

We now introduce an important concept in the theory of CRNs:

Definition 2. The deficiency of a CRN is δ = n − ℓ − s where n is

the number of complexes, ℓ is the number of linkage classes, and s is the

dimension of the stoichiometric subspace (or the rank of the stoichiometric

matrix).

Example 2. Consider the CRN in Example 1. The reaction vector as-

sociated to a reaction in the CRN can be obtained by subtracting from

the product complex the reactant complex. For instance, the reaction

vector associated with the first reaction B + C → A + C can be ob-

tained by subtracting B +C (source complex) from A+C (product com-

plex). Hence, the first reaction vector is (A + C) − (B + C) = A − B.

By associating species A, B, and C with the standard basis vectors of

the Euclidean space R3 (three corresponds to the number of species),

A−B = 1A−1B+0C = 1·[1, 0, 0]⊤−1·[0, 1, 0]⊤+0·[0, 0, 1]⊤ = [1,−1, 0]⊤.

This is precisely the first column of the stoichiometric matrix of the CRN.

The same procedure is done to obtain all the reaction vectors, and hence,

all the columns of the stoichiometric matrix. The rank of this stoichio-

metric matrix is three (s = 3) (one can see this be inspection in Figure

2 (right)). From Figure 1b, there are seven complexes (n = 7) and three

linkage classes (ℓ = 3). Thus, the deficiency is δ = n−ℓ−s = 7−3−3 = 1.

We associate kinetics with a CRN to describe the dynamics of a given

system. We define the kinetics and, consequently, a chemical reaction

system in the following manner.

Definition 3. A kinetics for a reaction network N = (S, C,R) is an as-

signment to each reaction y → y′ ∈ R of a continuously differentiable rate

function Ky→y′ : RS
≥0 → R≥0 such that the following positivity condition

holds: Ky→y′(c) > 0 if and only if supp y ⊂ supp c, where supp y refers

to the support of the vector y. The system (N ,K) is called a chemical

kinetic system or a chemical reaction system.
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Figure 2. The stoichiometric matrix of the simple CRN in Fig-
ure 1. A reaction vector is obtained by subtracting the
source complex from the product complex of a reaction. Af-
ter getting all the reaction vectors, the stoichiometric matrix
is constructed by placing these vectors as columns, following
the order of the reactions in the network.

Definition 4. The species formation rate function of a chemical reaction

system (N ,K) is defined as f (x) =
∑

y→y′∈R
Ky→y′ (x) (y′ − y).

The system of ordinary differential equations (ODEs) of a chemical

reaction system is given by
dx

dt
= f (x). In addition, a steady state or an

equilibrium of the system is a vector of concentration of species that makes

f the zero vector. The set of positive steady states of the network N with

specified kinetics K is denoted by E+ := E+(N ,K).

Definition 5. A kinetics for a CRN (S, C,R) is mass-action if for each

reaction y → y′ (i.e., [y1, y2, . . . , ym]⊤ → [y′1, y
′
2, . . . , y

′
m]⊤),

Ky→y′(x) = ky→y′

∏
i∈S

xyi

i

for some ky→y′ > 0.

For example, suppose that a CRN that has mass-action kinetics con-

tains the reaction A+B → B. The associated kinetics (or rate law) for the

reaction is kab, i.e., the product of the concentrations a and b of species A

and B, respectively (determined by the source complex A+B) multiplied

by the rate constant k.
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A mass-action system is a CRN endowed with mass-action kinetics. If

at least one reaction does not follow the mass-action rate function, then

the system is called non-mass-action. For instance, if the rate function

of a certain reaction in a network follows a quotient rate law, then the

corresponding system is not a mass-action system.

Example 3. Consider again the CRN presented in Examples 1 and 2.

Figure 3 shows how to obtain the ODEs of the simple CRN under mass-

action kinetics. The concentrations of the species A, B, and C are denoted

as a, b, and c, respectively. To get the rate function for reaction R1 :

B + C → A+ C, we multiply the concentrations of the species present in

the source complex, i.e., bc. We then multiply it by the rate constant k1

that we associate with the reaction R1. Thus, the rate function for the

first reaction is k1bc. A similar procedure can be applied to obtain the

rate functions of the remaining reactions.

To obtain the ODEs associated with a CRN with mass-action kinetics,

we multiply the reaction rate by the reaction vector, e.g., k1bc · [1,−1, 0]⊤.

We do this for each reaction and get the sum over all these reactions. We

then equate the result to the vector of time derivatives of the concentra-

tions of the species (Figure 3 bottom). Simplifying, we get the following

system of ODEs:

da

dt
=k1bc− k2a

db

dt
=− k1bc+ k3

dc

dt
=− k4c

2 + k5c.

2.3 Decomposition of chemical reaction networks

We start this section with a formal definition of the general decomposition

of reaction networks (Appendix 6.A [6], Section 5.4 [5]).

Definition 6. Let N be a reaction network and R its reaction set. A

decomposition of the reaction network into N1, N2, . . . , Nα is induced by
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Figure 3. The ODEs of a CRN (in Figure 1) with mass-action
kinetics. Assume that the CRN follows the mass-action ki-
netics. To obtain the ODEs, we need to compute the reaction
rate and the reaction vector for each reaction. The left-hand
side of the ODEs is composed of the time derivatives of the
concentration of the species. On the other hand, to get the
right-hand side of the ODEs, multiply the reaction vector by
the associated reaction rate of each reaction. Then, get the
sum of all these products over all the reactions.

a partition of R into R1,R2, . . . ,Rα, respectively. The resulting networks

N1, N2, . . . , Nα are called subnetworks of N .

Technically, we consider each Ni to have the same set of species as N ,

although some of the species seem to have no role or be absent in this

particular subnetwork. In addition, we consider Ni = (S, Ci,Ri) where

Ci is the set of all complexes that appear as a product or reactant of a

reaction in the subnetwork i [6]. If N has only one subnetwork under the

decomposition, we say that it has a trivial decomposition. In this case,

α = 1 and the network itself is its only subnetwork.

We note that each subnetwork Ni has its own stoichiometric subspace
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Si ⊆ S. We are now ready to define the concept of independent decompo-

sition:

Definition 7. A network decomposition is said to be independent if the

stoichiometric subspace of the whole network is equal to the direct sum of

the stoichiometric subspaces of the subnetworks.

An equivalent way of showing independence of a CRN decomposition

is to show that the rank of the stoichiometric matrix is equal to the sum

of the ranks of the stoichiometric matrices of the subnetworks.

We are interested with independent decompositions of CRNs because

the set of positive steady states of the whole network is equal to the in-

tersection of the sets of positive states of the independent subnetworks as

given in Theorem 2 in Appendix A.

Hernandez et al. [9,11] developed a method of determining the finest in-

dependent decomposition, i.e., independent decomposition with the high-

est number of subnetworks. It was shown that this finest independent

decomposition is unique [9]. This method is simple and efficient as we

partition the reaction set via partitioning the rows of the associated stoi-

chiometric matrix of the network. Additionally, programs developed using

Octave and MATLAB were created by P. Lubenia so that one can easily

obtain the finest independent decomposition by providing the reactions of

the given network [18].

2.4 Translated networks

We now discuss the notion of the generalized chemical reaction networks

(GCRNs) developed by Stefan Müller and Georg Regensburger [20, 21].

Suppose that G is a directed graph with vertex set V and edge set E ⊆
V × V . On an edge i → j := (i, j), i is called the source vertex. Denote

by Vs the set of all source vertices in V . We define a GCRN as a directed

graph G, with vertex set V , together with two maps: (i) y : V → Rm
≥0 that

assigns to each vertex a stoichiometric complex, and (ii) ỹ : Vs → Rm
≥0 that

assigns to each vertex a kinetic complex.

We also introduce the concept of network translation by Matthew John-

ston [16]. A GCRN N ′ is said to be a network translation of a CRN N if
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the reaction vectors of the original reactions are preserved, and the original

source complexes of N are transferred as kinetic complexes in N ′ [16,17].

The generalized network N ′ is also called a translated network. Therefore,

the original CRN N and the translated network N ′ have the same set of

ODEs, i.e., they are dynamically equivalent.

For example, suppose that a network NE has only one reaction A →
2A. We form N ′

E by replacing the original reaction by 0 → A with the

same reaction vector as the original, i.e., A− 0 = 2A−A. In addition, we

consider the original source complex (A) of the original reaction A → 2A

to dictate the rate function (ka) to maintain the dynamics. Thus, the

translated network NE is dynamically equivalent to N ′
E .

As a result, a translated network is a GCRN with two associated struc-

tures: the stoichiometric CRN and the kinetic-order CRN. The deficiencies

of the stoichiometric and kinetic-order CRNs are called effective deficiency

and kinetic deficiency, respectively.

When both the effective and kinetic deficiencies of a weakly reversible

translated network of a CRN are both zero, then we can parametrize the

positive steady states of a CRN efficiently with a formula given in Theorem

3 in Appendix B.

2.5 Previous works and relation to the current work

Recently, Hernandez et al. [12] proposed a framework to parametrize the

positive steady states of CRNs, endowed with mass-action kinetics, effi-

ciently via network decomposition. Their method was illustrated to be

useful for power-law systems [10], a larger class of kinetic systems which

contains the mass-action kinetics. Furthermore, Villareal et al. [24] ex-

tended the method of parametrization for CRNs that can be decomposed

into n identical and independent subnetworks for any positive integer n.

Based on Theorem 2 in Appendix A, the set of positive steady states

of a given network is the intersection of the sets of positive steady states of

its subnetworks when the underlying decomposition is independent. This

result allowed Hernandez et al. [12] and Hernandez and Buendicho [10]

to use the method of Johnston et al. [17] on each of the subnetworks

(endowed with mass-action kinetics and power-law kinetics, respectively).
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The parametrized steady states of each subnetwork are then combined to

obtain the positive steady states of the original network.

Here in our current work, we consider networks that follow kinetics

outside the previously considered kinetics (i.e., mass-action and power-

law). For instance, we consider the case when reactions have different

kinetics, e.g., some reactions follow the mass-action rate law, while others

follow a certain quotient rate law.

3 Results and discussion

We propose the following general step-by-step procedure to determine the

parametrized steady states of a system:

S1. Decompose the given CRN into independent subnetworks.

S2. For each subnetwork, either

a. use the method of Johnston et al. (Theorem 3 in Appendix B)

if it follows mass-action kinetics, or

b. compute the positive steady states directly from the ODEs.

S3. Combine the positive steady states of the subnetworks to get the

positive steady states of the whole network.

Remark. Jonhston et al. [16] provided a linear programming method to

assist in finding weakly reversible and deficiency zero networks. Further-

more, Hong et al. [13] provided a characterization on when a CRN can be

translatable into a weakly reversible network by investigating the kernel

of the stoichiometric matrix of the CRN and bounds on checking if the

translated network has deficiency zero. A MATLAB computational pack-

age was built to facilitate the process. Importantly, network translation

was applied to several networks [12–17].

What makes our new approach different from previous works [10,12] is

the second step. Previous approaches apply the method of Johnston et al.

to all subnetworks since each subnetwork follows mass-action or power-

law kinetics. Our new approach applies the method of Johnston et al.
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only on subnetworks with mass-action (or power-law) kinetics. For those

that follow non-mass-action (or non-power-law) kinetics such as quotient

kinetics, we compute the steady states directly from the ODEs. We apply

this approach to a complex mathematical network that involves reactions

with non-mass-action rate laws.

3.1 Computation of positive steady states of a com-

plex insulin signaling pathway network with mi-

xed kinetics via network decomposition

We now illustrate our proposed method by solving for the positive steady

state parametrization of a model of the insulin signaling in type 2 diabetes

[1]. The CRN of the model has 36 reactions and 27 species (Figure 4a).

We let ki be the rate constant of reaction Ri. Furthermore, we let xj

be the concentration of species Xj , keeping the indices of the species as

presented in [19] (see Appendix C for a list of the variables used in the

model and their definition).

The insulin signaling cascade is activated by insulin reception by insulin

receptors whose different states are represented by species X2, X3, X4,

X6, and X7. Intermediate reactions lead to translocation of the insulin-

regulated glucose transporter GLUT4 in the cytosol (X20) to the plasma

membrane (X21), allowing glucose uptake by the cell. Glucose is the main

energy currency of the cell; thus, a functioning insulin signaling cascade is

necessary for cells to function efficiently.

The list of reactions (left) with the associated rate laws (right) are

given as follows:

R1 : X2 → X3 k1x2

R2 : X2 → X4 k2x2

R3 : X3 → X4 k3x3

R4 : X4 → X7 k4x4

R5 : X7 +X25 → X6 +X25 k5x7x25

R6 : X4 → X2 k6x4
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R7 : X6 → X2 k7x6

R8 : X7 +X9 → X7 +X10 k8x7x9

R9 : X10 → X9 k9x10

R10 : X10 +X31 → X22 +X31 k10x10x31

R11 : X22 → X10 k11x22

R12 : X22 → X33 k12x22

R13 : X9 → X23 k13x9

R14 : X23 → X9 k14x23

R15 : X10 +X24 → X10 +X25 k15x10x24

R16 : X25 → X24 k16x25

R17 : X10 +X26 → X10 +X27 k17x10x26

R18 : X27 → X26 k18x27

R19 : X27 +X33 → X29 +X33 k19x27x33

R20 : X22 +X28 → X22 +X29 k20x22x28

R21 : X29 → X28 k21x29

R22 : X28 → X26 k22x28

R23 : X29 +X30 → X29 +X31 k23x29x30

R24 : X27 +X30 → X27 +X31 k24x27x30

R25 : X31 → X30 k25x31

R26 : X7 +X32 → X7 +X33 k26x7x32

R27 : X33 → X32 k27x33

R28 : X29 +X34 → X29 +X35 k28k29x34

R29 : X28 +X34 → X28 +X35 k29
xα
28

k̄α + xα
28

x34

R30 : X35 → X34 k30x35

R31 : X35 +X20 → X35 +X21 k31x35x20

R32 : X21 → X20 k32x21

R33 : X31 +X36 → X31 +X37 k33
xβ
31

k̃β + xα
31

x36
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R34 : X37 → X36 k34x37

R35 : X39 → X38 k35x39

R36 : X37 +X38 → X37 +X39 k36x37x38

where k̃, α, and β are constants.

Brännmark et al modeled the activation of AS160 by the serine-473

phosphorylated PKB and the activation of S6K by mTORC1 using Hill-

type kinetics [1]. These activations, corresponding to reactions R29 and

R33, respectively, are the only reactions that follow non-mass-action ki-

netics. The rest follow mass-action kinetics. Hence, the network follows

mixed kinetics, which is a combination of mass-action and quotient rate

laws.

We solve for the positive steady states of the network by following the

step-by-step procedure we introduced at the beginning of Section 3. Ap-

plying Step S1, we decompose the network into independent subnetworks

(Figure 4b). To easily get the finest independent decomposition (i.e., in-

dependent decomposition with the maximum number of subnetworks), we

use the MATLAB program in [18]. We enter all the reactions in the net-

work and run the program to generate the output giving the independent

decomposition.

We then compute the positive steady states of the subnetworks (Step

S2). Among the 10 subnetworks, eight of them (N1, . . . ,N6,N8, and N10)

follow entirely the mass-action law. Hence, the parametrization method

for mass-action is employed (Step S2a). We illustrate this method for

subnetwork N4 (Figure 5).

To apply Theorem 3, we determine a translated network that is both

weakly reversible and V ⋆-directed (Figure 5a upper right). The translated

network has effective and kinetic deficiency of zero, and hence the positive

steady states can be easily parametrized as described in Figure 5.

On the other hand, the remaining two subnetworks (N7 and N9) follow

mixed kinetics. In particular, reactions R29 and R33 that follow quotient

kinetics belong to subnetworks N7 and N9, respectively. In this case,

the positive steady states of the said subnetworks are computed manually

(Step S2b). Finally, the positive steady state of the whole network is
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Figure 4. Parametrization of positive steady states of CRNs
with mixed kinetics. a A CRN N of a complex mathe-
matical model of insulin signaling in type 2 diabetes. b N is
decomposed into 10 independent subnetworks N1, . . . ,N10.
Here, all the subnetworks except N7 and N9 follow mass-
action kinetics. On the other hand, subnetworks N7 and
N9 involve reactions that follow a quotient rate function.
c The steady state parametrization is computed for each
subnetwork. For subnetworks N1, . . . ,N6,N8,N10, the
parametrization process for mass-action is employed. In par-
ticular, we illustrate this process via subnetwork N4 in Fig-
ure 5. For subnetworks N7 and N9 with just three and two
reactions, respectively, the steady states are computed using
elementary ways of solving equations. d The steady states
of all the subnetworks are merged to get the steady states of
the whole network.
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derived by merging the positive steady states of the subnetworks (Step

S3). In particular, if two subnetworks have the same species, then there

are two expressions for the steady state formula of such species. We equate

these expressions to reduce parameters and for the steady state formula

to agree with both subnetworks.

Upon combining all the solutions and expressing the σ’s and τ ’s in

terms of the species steady state variables, we get the following parametr-

ized positive steady states where the species depend on the free parameters

x3, x7, x10, x21, x26, x31, x33, x34, x36, and x38; and constants k̃, α, and

β:

x2 =
k3
k1

x3

x4 =
k3(k2 + k1)

k1(k4 + k6)
x3

x6 =
k4k3(k2 + k1)

k7k1(k4 + k6)
x3

x9 =

(
k9
k8

+
k12k10

k8(k11 + k12)
x31

)
x10

x7

x20 =
k32
k31

x21

x35

x22 =
k10

k11 + k12
x10x31

x23 =
k13k9
k14k8

x10

x7
+

(
k13
k8

1

x7
+ 1

)
k12k10

k14(k11 + k12)
x10x31

x24 =
k16k4k3(k2 + k1)

k15k5k1(k4 + k6)

x3

x10x7

x25 =
k4k3(k2 + k1)

k5k1(k4 + k6)

x3

x7

x27 =
k17

k18 + k19x33
x26x10

x28 =
k19k17

k22(k18 + k19x33)
x26x10x33

x29 =

(
1 +

k20k10
k22(k11 + k12)

x10x31

)
k19k17

k21(k18 + k19x33)
x26x10x33
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x30 =
k25(

1 + k20k10

k22(k11+k12)
x10x31

)(
k17

k18+k19x33
x26x10

)(
k23k19

k21
x33 + k24

)x31

x32 =
k27
k26

x33

x7

x35 =

(
1 +

k20k10
k22(k11 + k12)

x10x31

)
k28k19k17

k30k21(k18 + k19x33)
x26x10x33x34

+
k29
k30

(
k19k17

k22(k18+k19x33)
x26x10x33

)α

k̄α +
(

k19k17

k22(k18+k19x33)
x26x10x33

)αx34

x37 =
k33
k34

xβ
31

k̃β + xβ
31

x36

x39 =
k36k33
k35k34

xβ
31

k̃β + xβ
31

x38x36

By inspection of the steady state formulas xi of species Xi, the system

has no absolute concentration robustness (ACR) in any species because

each steady state value depends on some free parameters. For instance, x2

depends on x3. Similarly, x37 depends on x31 and x36. ACR is a concept

introduced by Guy Shinar and Martin Feinberg [23] in the journal Science

in 2010. A system with ACR on a particular species means that the value

of the positive steady state for that species does not depend on any initial

condition and hence the same for every positive steady state.

As mentioned by Lubenia and colleagues [19], the parametrized steady

states can potentially be utilized to collaborate with biologists, e.g., by

identifying whether species concentrations can be modified to ensure they

remain at least approximately constant, maintaining their ACR property

and the efficient process they are involved in.

Before we proceed with an important result about merging of steady

states of the subnetworks of a given network in Step S3, we define the

following term.

Definition 8. Let N be a CRN, and N1 and N2 be subnetworks of N .

Subnetworks N1 and N2 are mutually exclusive if the species in N1 do not

appear in any complex or any reaction in N2, and the species in N2 do not

appear in any complex or any reaction in N1.
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Figure 5. Parametrization of positive steady states via net-
work translation. a The original CRN (upper left) is
translated to a dynamically equivalent weakly reversible gen-
eralized network (upper right). The translated network has
two substructures: the stoichiometric CRN (lower left) and
the kinetic-order CRN (lower right). If the deficiencies of
the stoichiometric and kinetic-order CRNs are both zero,
proceed with parametrization of steady states. b Get all the
spanning trees towards each node of the kinetic-order CRN
where the kinetic complexes X10 + X26, X27, X27 + X33,
X29, X22 + X28, and X28 are labeled 1, 2, 3, 4, 5, and 6,
respectively. Compute the tree constant Ki by multiplying
the rate constants associated with the edges of a spanning
tree. Then get the sum of the products over all the span-
ning trees towards complex node i. c Choose an arbitrary
tree containing all the nodes of the kinetic-order CRN (left).

Compute κi→i′ =
Ki′

Ki
, i.e., the quotient between the tree

constants directed towards i′ and i (middle). Additionally,
get the difference between the kinetic nodes associated with
each edge (right). d Construct matrix M such that the rows
are the coefficients in the kinetic differences, H is a gen-
eralized inverse of M (MHM = M) and the ker M = B.
e Compute the parametrized steady states of the original
network.



502

Proposition 1. Let N be a CRN decomposed into its finest independent

subnetworks N1, . . . ,Nm,Nm+1, . . . ,Nk such that N1, . . . ,Nm have purely

mass-action kinetics while Nm+1, . . . ,Nk have non-mass-action kinetics

(e.g., mixed kinetics). Then

1. NM =

m⋃
i=1

Ni is purely mass-action and the largest mass-action inde-

pendent subnetwork of N while NC =

k⋃
i=m+1

Ni has non-mass-action

kinetics.

2. Suppose further that NM and NC are mutually exclusive and both of

them have positive steady states for particular rate constants. Then

the whole network N = NM ∪ NC has positive steady states for the

same rate constants considered for NM and NC .

Proof. (1) directly follows from the assumption thatN1, . . . ,Nm are purely

mass-action while Nm+1, . . . ,Nk are not. (2) Let n and p − n be the

numbers of species of NM and NC , respectively. Since NM and NC are

mutually exclusive, then their steady states can be written in the form

(a1, . . . , an, an+1, . . . , ap) and (b1, . . . , bn, bn+1, . . . , bp), respectively, where

an+1, . . . , ap, b1, . . . , bn are free parameters, i.e., any positive real numbers.

Hence, the positive steady states of the whole network can be written in

the form (a1, . . . , an, bn+1, . . . , bp).

Proposition 1 guarantees that whenever the largest mass-action inde-

pendent subnetwork (NM ), obtained by getting the union of all the mass-

action subnetworks under independent decomposition, and its complement

(NC) are mutually exclusive, then the positive steady states of the whole

network exist, provided that the positive steady steady states of NM and

NC exist. On the other hand, it is difficult to determine if the whole

network has positive steady states when NM and NC are not mutually

exclusive. This is an open problem that can be studied in the future.
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3.2 A remark on the computation of positive steady

states via a transformation of a system to its as-

sociated mass-action system

In some instances, one can find an equivalent mass-action system for a

network with mixed kinetics. The following is an interesting example from

Yu and Craciun [25]. They considered a CRN N with two reactions having

the following associated rate functions:

R1 : X1 +X2 → 2X1
k1x1x2

k2 + x1
(1)

R2 : 2X2 → X1 +X2 k3x
2
1. (2)

The first reaction follows a rational reaction rate function (i.e., Michaelis-

Menten rate function) while the second one follows the standard mass-

action rate function. Because R1 and R2 have different reaction rate func-

tions, we say that the CRN follows mixed kinetics. The associated system

of ODEs for the CRN under the specified mixed kinetics is

dx1

dt
=

k1x1x2

k2 + x1
− k3x

2
1 (3)

dx2

dt
= − k1x1x2

k2 + x1
+ k3x

2
1. (4)

According to Yu and Craciun [25], one can instead study the following

system of ODEs (although the authors did not specify in detail how they

arrived at this equivalent system)

dx1

dt
= k1x1x2 − k2k3x

2
1 − k3x

3
1 (5)

dx2

dt
= −k1x1x2 + k2k3x

2
1 + k3x

3
1 (6)

instead of the system of ODEs comprised of Equations 3 and 4. Note that

Equation 5 can be obtained by multiplying Equation 3 by its denominator

k2 + x1. Similarly, Equation 6 can be obtained by multiplying Equation

4 by the same denominator. The CRN N ′ associated with this system of
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ODEs is as follows:

R1 : X1 +X2 → 2X1 k1x1x2 (7)

R2 : 2X1 → X1 +X2 k′2x
2
1 (8)

R3 : 3X1 → 2X1 +X2 k3x
3
1. (9)

Note that when we multiply the ODEs of N ′ by k2 + x1, we get precisely

the ODEs associated to the mass-action kinetics where k′2 = k2k3.

COMPILES (COMPutIng anaLytic stEady States) is a computational

package [12] developed in MATLAB to compute the analytic positive

steady states of a mass-action system and is available at https://github.

com/Mathbiomed/COMPILES. The user simply inputs all the reactions of

a given network and the program then returns the positive steady state

parametrization of the network. Entering Equations 7, 8, and 9 into the

program, we obtain the following parametrization:

x1 =
σ

k3
and x2 =

σ(k′2 + σ)

k1k3
=

σ(k2k3 + σ)

k1k3

where σ > 0. One can easily check that the parametrization satisfies the

original ODEs with Equations 3 and 4.

This short discussion leads to the open problem of determining associ-

ated ODEs in the format of mass-action. In particular, one may explore

the conditions when a given system has an associated (at least with the

same steady states) or dynamically equivalent mass-action system. We

also note that for complex networks, decomposition of the network into

independent subnetworks can also be employed.

4 Summary and recommendation

We proposed a framework to derive positive steady states of CRNs (with

nontrivial independent decomposition) that follow non-mass-action kinet-

ics, which may include polynomials, quotients, and mixed kinetics. This

is done by modifying the algorithm in previous works that focus on mass-

action and power-law kinetics [10, 12]. In particular, after decomposing a

https://github.com/Mathbiomed/COMPILES
https://github.com/Mathbiomed/COMPILES
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given CRN into independent subnetworks, we compute the positive steady

states of subnetworks that follow purely mass-action (or power-law) kinet-

ics. On the other hand, we manually compute the positive steady states

of subnetworks that follow other types of kinetics. We illustrated this ap-

proach via a complex mathematical model of insulin signaling in type 2

diabetes [1]. Using the obtained steady state parametrization, we were

able to check the ACR property for each species in the given network. It

would be very exciting to study chemical and biological properties of im-

portant systems existing in literature using our approach. Furthermore,

we have initiated looking into transformations of non-mass-action systems

to mass-action. It is interesting to explore research in this direction.

Appendix A Feinberg Decomposition Theo-

rem

In this paper, we focus on independent decomposition due to the following

result by Martin Feinberg [5, 6].

Theorem 2. Let N be a CRN (with kinetics K) decomposed into subnet-

works N1,N2, . . . ,Nα. Furthermore, let K1,K2, . . . ,Kα be the restriction

of K to reactions in N1,N2, . . . ,Nα, respectively. Then

E1
+ ∩ E2

+ ∩ . . . ∩ Eα
+ ⊆ E+

where Ei
+ is the set of positive steady states of subnetwork Ni. If the

network decomposition is independent, then equality holds, i.e.,

E1
+ ∩ E2

+ ∩ . . . ∩ Eα
+ = E+.

Appendix B A detailed discussion on trans-

lated networks

In a GCRN, phantom edges are those that connect the same stoichiometric

complexes. On the other hand, the effective edges are those that connect
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different stoichiometric complexes. We denote by E0 and E∗ the sets of

phantom edges and effective edges in the GCRN, respectively. The reaction

vector associated with a phantom edge is zero since this edge connects

similar stoichiometric complexes. Thus, phantom edges do not contribute

to the ODEs of the system. The dummy rate constants associated with

these edges are considered free parameters and form a vector which we

denote by σ. Furthermore, we denote by k∗ the vector of rate constants

associated with the effective edges.

We need one more concept to state the theorem of parametrization

of positive steady states [17]. This concept is the V ⋆-directed networks.

Here, we form equivalence classes such that each class contains the vertices

with identical stoichiometric complex. A representative is then chosen for

each class. In a V ⋆-directed network, each effective edge i → j enters at

a representative vertex. In other words, the product node j is associated

with a representative vertex. In addition, a phantom edge starts from a

representative vertex and then enters another vertex within the class. The

reader can check [17] for more details.

Example 4. Consider the following CRN endowed with mass-action ki-

netics [8]:

A+ E AE B + E B 0 A

Let us denote this network by N . It consists of two linkage classes.

The first linkage class is the underlying network of a reversible Michaelis-

Menten system for enzyme kinetics, where the species A, E, and B denote

a substrate, an enzyme, and a product, respectively. The second linkage

class takes into account the depletion of product B and replenishment of

substrate A.

By adding E to each complex in the second linkage class, we get B +

E → E → A + E where the reaction vectors are unchanged. Hence, the

two resulting complexes (B + E and A+ E) coincide with the complexes

in the first linkage class, and we obtain the following network, which we

denote by N ′
S :
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A+ E AE B + E

E

Since the new reaction B+E → E was obtained from the original reaction

B → 0, we transfer the original source complex (B) as the kinetic complex

that we associate with the stoichiometric complex B + E. The original

source complex B dictates the rate function of the reaction so that the

original and the new systems are dynamically equivalent. Furthermore,

the unchanged reaction B + E → AE and the new reaction B + E → E

share the same stoichiometric complexes, but have different associated

kinetic complexes because the original source nodes for B + E → AE

and B + E → E are B + E and B, respectively. Hence, we split the

stoichiometric complex (B + E) with different kinetic complexes (B +

E and B) by introducing a phantom edge, which has no effect on the

system’s ODEs. Hence, we obtain the following translated network, which

we denote by N ′.

1

A+ E

(A+E)

2

AE

(AE)

3

B + E

(B+E)

5

E

(0)

4

B + E

(B)

k1

k2

k3

k4

σk6

k5

In the translated network N ′, the stoichiometric complexes are in-

dicated without parentheses while the kinetic complexes are indicated

with parentheses. We also label the nodes of the translated network by

1, 2, . . . , 5.
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The two structures that make up the translated network are the stoi-

chiometric network N ′
S and the kinetic-order network N ′

K . The latter can

be obtained by removing all the stoichiometric complexes and leaving all

the kinetic complexes in N ′, i.e., N ′
K is as follows:

1

A+ E

2

AE

3

B + E

5

0

4

B

k1

k2

k3

k4

σk6

k5

We choose a set of representatives V ∗ = {1, 2, 3, 5}, which is a subset of

the vertex set V = {1, 2, 3, 4, 5}, so that the translated network (N ′) is a

V ⋆-directed network, i.e., the product nodes of the effective edges (k1, k2,

. . . , k6) are representative nodes while the phantom edge (σ) starts from a

representative node (i.e., node 3) and then enter another node within the

class (i.e., node 4).

Remark. Note that a computational package called TOWARDZ (Transla-

tiOn toward WeAkly Reversible and Deficiency Zero networks) developed

using MATLAB was created [13] to facilitate network translation that

gives, in particular, weakly reversible and deficiency zero networks, if suc-

cessful.

We now introduce the following main result in the paper by Johnston

et al. [17].

Theorem 3. Consider a translated network that is weakly reversible and

V ⋆-directed. Let F be any spanning forest containing all nodes of its

kinetic-order CRN. Moreover, let M be the matrix containing all kinetic

differences as rows, where the entries per row are arranged according to the

order of the species. Furthermore, let H be a matrix such that MHM =
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M , i.e., a generalized inverse of M . Finally, define B such that im B =

kerM and kerB = {0}. Then, if both the effective deficiency and the

kinetic deficiency are zero, it follows that the set of positive steady states

of the original network is equal to:{
κ(k∗, σ)H ◦ τB

⊤
|σ ∈ RE0

>0, τ ∈ Rm−s̃
>0

}
̸= ∅

where κ(k∗, σ)H ◦ τB
⊤

is the Hadamard product with the component of

κ associated with the edge i → i′ defined as κi→i′ =
Ki′

Ki
and the tree

constant Ki defined as the sum (over all the spanning trees of the kinetic-

order CRN towards node i) of the products of the rate constants associated

with the edges of each spanning tree, and s̃ is the rank of the kinetic-order

CRN.

Remark. Theorem 3 does not work on all mass-action systems and is not

the only method available for mass-action systems.

Example 5. Consider the original network and its V ⋆-directed translated

network in Example 4. It can be easily shown that the translated network is

both weakly reversible and deficiency zero, i.e., the stoichiometric CRNN ′
S

and the kinetic-order CRN N ′
K are both weakly reversible and deficiency

zero.

We now apply Theorem 3. We consider any tree (i.e., a connected

graph without a cycle) containing all the nodes of the kinetic-order CRN.

We take a spanning tree with edges 1 → 2, 1 → 3, 1 → 4, and 1 → 5. We

then compute the kinetic difference i′−i for each edge i → i′. For example,

the associated kinetic difference with the edge 1 → 2 is AE − (A + E) =

−1A − 1E + 1AE + 0B = [−1,−1, 1, 0]⊤. We do this for all the edges.

Hence, the matrix M that contains the coefficients in the kinetic difference

of an edge per row is
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M =

A E AE B


−1 −1 1 0 1 → 2

−1 0 0 1 1 → 3

−1 −1 0 1 1 → 4

−1 −1 0 0 1 → 5

.

We then compute a generalized inverse H of M , i.e., MHM = M , and

the matrix B where imB = ker(M). We have

H =




0 0 1 0

−1 1 0 0

1 −1 0 1

−1 0 −1 −1

and B =



0

0

0

0

.

Meanwhile, we get all the spanning trees towards each of the nodes in

the kinetic-order CRN. The required spanning trees are given in Figure 6.

Figure 6. The spanning trees towards each node in Example 5.
The spanning trees towards the nodes 1, 2, . . . , 5 are enumer-
ated. The edges in the spanning trees are associated with
their corresponding rate constants.
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Next, we compute the tree constants Ki, for each vertex i, of the V ⋆-

directed GCRN given by Ki =
∑

(V,E)∈Ti

∏
i→i′∈E

ki→i′ where Ti is the col-

lection of all directed spanning trees rooted at vertex i. We then form

κi→i′ =
Ki′

Ki
for i → i′ ∈ R. The tree constants are

K1 = k5k6(k2k4 + k3σ + k2σ)

K2 = k1k5k6(k4 + σ)

K3 = k1k3k5k6

K4 = k1k3σk6

K5 = k1k3σk5.

Thus, we get κ1→2 =
k1(k4 + σ)

k2k4 + k3σ + k2σ
, κ1→3 =

k1k3
k2k4 + k3σ + k2σ

,

κ1→4 =
k1k3σ

k5(k2k4 + k3σ + k2σ)
, and κ1→5 =

k1k3σ

k6(k2k4 + k3σ + k2σ)
. There-

fore, we obtain the following steady state parametrization of the original

network:

a =

(
k1k3

k2k4 + k3σ + k2σ

)−1

·
(

k1k3σ

k5(k2k4 + k3σ + k2σ)

)1

·
(

k1k3σ

k6(k2k4 + k3σ + k2σ)

)−1

=
k6

k1k3k5
(k2k4 + k3σ + k2σ)

e =

(
k1k3

k2k4 + k3σ + k2σ

)1

·
(

k1k3σ

k5(k2k4 + k3σ + k2σ)

)−1

=
k5
σ

ae =

(
k1(k4 + σ)

k2k4 + k3σ + k2σ

)1

·
(

k1k3σ

k6(k2k4 + k3σ + k2σ)

)−1

=
k6(k4 + σ)

k3σ

b =

(
k1k3σ

k5(k2k4 + k3σ + k2σ)

)1

·
(

k1k3σ

k6(k2k4 + k3σ + k2σ)

)−1

=
k6
k5

where σ > 0.
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Appendix C Definition of variables in insulin

signaling in type 2 diabetes

The following are the variables used in the model of insulin signaling in

type 2 diabetes as presented by [19] based on [1]:

X2 = inactive receptor

X3 = insulin-bound receptor

X4 = tyrosine-phosphorylated receptor

X6 = internalized dephosphorylated receptor

X7 = tyrosine-phosphorylated and internalized receptor

X9 = inactive IRS1

X10 = tyrosine-phosphorylated IRS1

X20 = glucose transporter 4 from the cytosol

X21 = glucose transporter 4 in the plasma membrane

X22 = combined tyrosine/serine 307-phosphorylated IRS1

X23 = serine 307-phosphorylated IRS1

X24 = inactive negative feedback

X25 = active negative feedback

X26 = inactive PKB

X27 = threonine 308-phosphorylated PKB

X28 = serine 473-phosphorylated PKB

X29 = combined threonine 308/serine 473-phosphorylated PKB

X30 = mTORC1

X31 = mTORC1 involved in phosphorylation of IRS1 at serine 307

X32 = mTORC2

X33 = mTORC2 involved in phosphorylation of PKB at threonine 473

X34 = AS160

X35 = AS160 phosphorylated at threonine 642
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X36 = S6K

X37 = activated S6K; phosphorylated at threonine 389

X38 = S6

X39 = activated S6; phosphorylated at serine 235 and serine 236
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