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Abstract

Delayed differential equation plays a vital role in revealing the
dynamics of chemical reaction law. In this work, we propose a novel
fractional-order Lengyel-Epstein model owing time delay. By re-
garding the delay as parameter and investigating the distribution
of roots of the associated characteristic equation of the formulated
fractional-order delayed Lengyel-Epstein model, we set up a new
delay-dependent criterion on stability and bifurcation of the in-
volved fractional-order delayed Lengyel-Epstein model. Making use
of nonlinear delayed feedback controller, we can effectually control
the stability domain and the time of bifurcation phenomenon of the
formulated fractional-order delayed Lengyel-Epstein model. Taking
advantage of hybrid controller, we are able to adjust the stability
domain and the time of bifurcation phenomenon of the established
fractional-order delayed Lengyel-Epstein model. The study shows
that delay is a vital factor which affects the stability and bifurcation
behavior of the addressed fractional-order delayed Lengyel-Epstein
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model. In order to illustrate the rationality of the acquired theo-
retical outcomes, we execute Matlab simulations to check this fact.
The gained outcomes in this work are absolutely innovative and pos-
sess enormous theoretical significance in adjusting concentrations of
different chemical substance.

1 Introduction

Nowadays delayed differential equation has been widely considered to be

a very important tool to give a description of practical chemical reaction.

Through the construction of chemical reaction model by using delay dif-

ferential equation, we can effectively reveal the inherent law of different

chemical reaction substances. During the past decades, a great deal of

scholars pay great attention to dynamical behavior of various chemical

reaction systems and lots of valuable fruits on many chemical reaction dy-

namical models have been reported. For example, Din et al. [1] explored

the stability, Hopf bifurcation and control of chaos for a chlorine dioxide-

iodine-malonic acid reaction model; Sekerci and Petrovskii [2] dealt with

the dynamical behavior of a plankton-oxygen models under the the chang-

ing climate conditions; In 2022, Mondal and Samanta [3] discussed the

stability and bifurcation phenomenon of a delayed toxin producing plank-

ton model owing time delays and variable search rate of zooplankton; In

the work of Gökçe et al. [4], the authors investigated the Hopf bifurcation

and stability of spatial patterns of a diffusive oxygen–plankton system

concerning delays; In 2015, Xu and Wu [5] carried out a detailed analy-

sis on Hopf bifurcation and chaos control for a chemical reaction model;

Wang and Jia [6] focused on stability and Hopf bifurcation in a Gray-Scott

chemical reaction system. For more related contents, one can see [7–12].

In 1991 and 1992, Lengyel and Epstein [13, 14] established the follow-

ing chemical reaction model(i.e., Lengyel-Epstein model) to describe the
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reaction process of two chemical reactants:

∂x1
∂t

= △x1 + α− x1 −
4x1x2
1 + x21

, t > 0, y ∈ Ω,

∂x2
∂t

= γ

[
c△x2 + β

(
x1 −

x1x2
1 + x21

)]
, t > 0, y ∈ Ω,

∂x1
∂n

=
∂x2
∂n

= 0, t > 0, y ∈ ∂Ω,

x1(y, 0) = x10(y) ≥ 0, x2(y, 0) = x20(y) ≥ 0, y ∈ Ω,

(1)

where x1(y, t) and x2(y, t) stand for the concentrations of both chemical

reactants, respectively, α > 0 and β > 0 are real constants that represent

the quantities affiliated with the feed concentrations, c and γ > 0 stand for

the ratio of diffusion coefficients and the rescaling parameter, respectively;

Ω denotes a bounded open domain in R with smooth boundary ∂Ω, and △
dentes the Laplace operator. In details, one can see [13,14]. Model (1) has

been widely investigated by numerous researchers. Yi et al. [15] studied

the global asymptotical stability of model (1); Yi et al. [16] handled the

diffusion-driven instability and Hopf bifurcation of model (1); Ni and Tang

[17] discussed the Turing patterns of model (1); Jin et al. [18] analyzed the

bifurcation issue of patterned solutions of model (1).

As we know that the development of things depends on both current

time and past history. Thus in many cases, delay often exist in ordinary

differential systems. If we ignore the delay, then some errors will occur.

Generally speaking, delay will result in the loss of stability of system.

Based on this viewpoint, Celik et al. [19] set up the following delayed

Lengyel-Epstein model:
dx1(t)

dt
= α− x1(t)−

4x1(t)x2(t− θ)

1 + x21(t)
,

dx2(t)

dt
= γβ

[
x1(t)−

x1(t)x2(t− θ)

1 + x21(t)

]
,

(2)

where θ stands for a delay. Applying the stability and bifurcation theory of

integer-order delayed differential equation, Çelik and Merdan [19] explored

the Hopf bifurcation problem of system (2). In 2015 and 2016, Merdan

and Kayan [20,21] proposed and carried out the Hopf bifurcation analysis
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of the following two delayed Lengyel-Epstein models:
dx1(t)

dt
= α− x1(t)−

4x1(t− θ)x2(t)

1 + x21(t)
,

dx2(t)

dt
= γβ

[
x1(t)−

x1(t− θ)x2(t)

1 + x21(t)

]
,

(3)

and 
dx1(t)

dt
= α− x1(t− θ)− 4x1(t− θ)x2(t)

1 + x21(t)
,

dx2(t)

dt
= γβ

[
x1(t− θ)− x1(t− θ)x2(t)

1 + x21(t)

]
.

(4)

In 2020, Zhang and He [22] proposed the following delayed Lengyel-Epstein

model: 
dx1(t)

dt
= α− x1(t− θ)− 4x1(t)x2(t)

1 + x21(t)
,

dx2(t)

dt
= γβ

[
x1(t)−

x1(t)x2(t)

1 + x21(t)

]
.

(5)

By choosing the delay as parameter, Zhang and He explored the multiple

stability switches and delay-induced Hopf bifurcations of system (5).

Considering that there are different feedback delays in the development

of the concentrations of both chemical reactants, Li and Zhang [23] built

the following delayed Lengyel-Epstein model:
dx1(t)

dt
= α− x1(t− θ1)−

4x1(t− θ1)x2(t− θ2)

1 + x21(t− θ1)
,

dx2(t)

dt
= γβ

[
x1(t− θ2)−

x1(t− θ2)x2(t− θ1)

1 + x21(t− θ2)

]
,

(6)

where θ1 and θ2 stand for two different delays.

It is worth mentioning that all the considered works above on Lengyel-

Epstein model (see [1–22]) only focus on the integer-order chemical reac-

tion models. Recently, a great deal of works show that fractional-order

dynamical equation can be thought as a more effective tool to portray the

real natural law in the natural world than the classical integer-order coun-

terparts. The suty shows that fractional dynamical equation has been

widely applied numerous fields such as neural networks, financial engi-

neering, artificial intelligence, various physical waves, elastic mechanics,
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capacitor principle, biomedical technique, automation, cryptology and so

on [24–29]. All these applications are derived from the great memory pe-

culiarity and hereditary function for all kinds of materials and change pro-

cess [30, 31]. At the present time, fractional-order dynamical models have

aroused much interest from lots of scholar and enormous accomplishments

have been gained. For example, Lin et al. [32] carried out the output

synchronization exploration and PD control issue of coupled fractional

delayed neural networks; Popa [33] explored the Mittag–Leffler stability

behavior and synchronization problem of neutral-type fractional neural

networks owing mixed delays and leakage delay; Yousef et al. [34] revealed

the impact of fear for a fractional prey-predator model owing predator

density-dependent prey mortality; Rihan and Rajivganthi [35] dealt with

the stability and bifurcation of a fractional-order delayed predator-prey

model concerning Holling-type III function. For more related works, one

can see [36–40].

Noticing that the fractional-order delayed Lengyel-Epstein model can

better reflect the memory trait and hereditary superiority of the concen-

trations of both chemical reactants and stimulated by the analysis above

and relying on model (6), in this article, we are going to build the following

fractional-order delayed Lengyel-Epstein model:
dρx1(t)

dtρ
= α− x1(t− θ1)−

4x1(t− θ1)x2(t− θ2)

1 + x21(t− θ1)
,

dρx2(t)

dtρ
= γβ

[
x1(t− θ2)−

x1(t− θ2)x2(t− θ1)

1 + x21(t− θ2)

]
,

(7)

where ρ ∈ (0, 1]. All other coefficients admit the same implication as those

in model (6). For simplicity, we let θ1 = θ2 = θ, then model (7) reads as
dρx1(t)

dtρ
= α− x1(t− θ)− 4x1(t− θ)x2(t− θ)

1 + x21(t− θ)
,

dρx2(t)

dtρ
= γβ

[
x1(t− θ)− x1(t− θ)x2(t− θ)

1 + x21(t− θ)

]
.

(8)

In this work, we are to deal with the following three aspects: (i) explore the

stability trait and the onset of Hopf bifurcation of model (8). (ii) control

the stability domain and the time of generation of bifurcation for model



442

(8) via nonlinear delayed feedback controller. (iii) control the stability

domain and the time of generation of bifurcation for model (8) via hybrid

controller.

The basic framework of this work is given as follows. Some elementary

knowledge on fractional-order dynamical system is prepared in Part 2.

Part 3 explores the stability and Hopf bifurcation for system (8) and a

novel delay-independent criterion on stability and bifurcation of system

(8) is gained. Part 4 dealt with the control of stability domain and Hopf

bifurcation of model (8) by virtue of nonlinear delayed feedback controller.

Part 5 focuses on the control of stability domain and Hopf bifurcation of

model (8) via hybrid controller. Part 6 executes Mathlab experiments to

verify the efficiency of the acquired outcomes. Part 7 draws a concise

conclusion to finish the work.

2 Elementary theory

In this segment, some essential basic theories about fractional-order dif-

ferential equation are presented.

Definition 2.1. [41] Define the fractional integral of order ρ of the func-

tion g(ε) as follows:

Iρg(ε) = 1

Γ(ρ)

∫ ε

ε0

(ε− u)ρ−1g(u)du,

where ε > ε0, ρ > 0,Γ(u) =
∫∞
0
su−1e−sds represents the Gamma func-

tion.

Definition 2.2. [42] The Caputo fractional-order derivative of order ρ

of the function g(ε) ∈ ([ε0,∞), R) is defined as follows:

Dρg(ε) =
1

Γ(ι− ρ)

∫ ε

ε0

g(m)(s)

(ε− s)ρ−m+1
ds,

where ε ≥ ε0 and m represents a positive integer (m − 1 ≤ ρ < m). In
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particular, if ρ ∈ (0, 1), then

Dρg(ε) =
1

Γ(1− ρ)

∫ ε

ε0

g
′
(s)

(ε− s)ρ
ds.

Lemma 2.1. [43] For the fractional system: Dρx = Ax, x(0) = x0 where

ρ ∈ (0, 1), x ∈ Rm,A ∈ Rm×m. Let uk(k = 1, 2, · · · ,m) be the root of the

characteristic equation of Dρx = Ax, then we say that system Dρx = Ax
is locally asymptotically stable ⇔ |arg(uk)| > ρπ

2 (k = 1, 2, · · · ,m). The

system is stable ⇔ |arg(uk)| > ρπ
2 (k = 1, 2, · · · ,m) and all critical eigen-

values obeying |arg(uk)| = ρπ
2 (k = 1, 2, · · · ,m) own geometric multiplicity

one.

3 Bifurcation analysis

Clearly, one can obtain that model (8) admits the following unique positive

equilibrium point E(x1∗, x2∗), where x1∗ =
α

5
,

x2∗ = 1 +
α2

25
.

(9)

The linear system of model (8) at E(x1∗, x2∗) has the following expression:

Dρx(t) = Ax(t− θ), (10)

where

x(t) =

[
x1(t)

x2(t)

]
, A =

[
a1 a2

a3 a4

]
, (11)

where 

a1 =
8x21∗x2∗ − 4x2∗

1 + x21∗
− 1,

a2 = − 4x1∗
1 + x21∗

,

a3 =
2x21∗x2∗ − x2∗

1 + x21∗
+ 1,

a4 = − x1∗
1 + x21∗

.

(12)
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The characteristic equation of system (10) reads as

det

[
sρ − a1e

−sθ −a2e−sθ

−a3e−sθ sρ − a4e
−sθ

]
= 0, (13)

which generates

s2ρ + b1s
ρe−sθ + b2e

−2sθ = 0, (14)

where {
b1 = −(a1 + a4),

b2 = a1a4 − a2a3.
(15)

When θ = 0, then Eq.(14) has the following form:

λ2 + b1λ+ b2 = 0, (16)

If

(S1) b1 > 0, b2 > 0

holds true, then the both roots λ1, λ2 of Eq. (16) satisfies |arg(λ1)| >
ρπ
2 , |arg(λ2)| >

ρπ
2 . According to Lemma 2.1, one gains that the positive

equilibrium point E(x1∗, x2∗) of model (8) under the delay θ = 0 remains

locally asymptotically stability.

By (3.6), we have

s2ρesθ + b1s
ρ + b2e

−sθ = 0. (17)

Suppose that s = iϕ = ϕ
(
cos π2 + i sin π

2

)
is the root of Eq. (17). Then it

follows from Eq.(17) that

ϕ2ρ(cos ρπ + i sin ρπ)(cosϕθ + i sinϕθ)

+b1ϕ
ρ
(
cos

ρπ

2
+ i sin

ρπ

2

)
+ b2(cosϕθ − i sinϕθ) = 0. (18)

Then
(
ϕ2ρ cos ρπ + b2

)
cosϕθ − ϕ2ρ sin ρπ sinϕθ = −b1ϕρ cos

ρπ

2
,

ϕ2ρ sin ρπ cosϕθ +
(
ϕ2ρ cos ρπ − b2

)
sinϕθ = −b1ϕρ sin

ρπ

2
.

(19)
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By (19), we have
cosϕθ =

−b1ϕ3ρ
(
cos ρπ2 cos ρπ + sin ρπ

2 sin ρπ
)
+ b1b2ϕ

ρ cos ρπ2
ϕ4ρ − b22

,

sinϕθ =
−b1ϕ3ρ

(
sin ρπ

2 cos ρπ − cos ρπ2 sin ρπ
)
− b1b2ϕ

ρ sin ρπ
2

ϕ4ρ − b22
.

(20)

In view of cos2 ϕθ + sin2 ϕθ = 1, it follows from (20) that[
b1ϕ

3ρ
(
cos

ρπ

2
cos ρπ + sin

ρπ

2
sin ρπ

)
− b1b2ϕ

ρ cos
ρπ

2

]2
+
[
b1ϕ

3ρ
(
sin

ρπ

2
cos ρπ − cos

ρπ

2
sin ρπ

)
+ b1b2ϕ

ρ sin
ρπ

2

]2
=

(
ϕ4ρ − b22

)2
, (21)

which results in

ϕ8ρ + d1ϕ
6ρ + d2ϕ

4ρ + d3ϕ
2ρ + d4 = 0, (22)

where

d1 = 2b21,

d2 = 2b21b
2
2 cos

ρπ

2

(
cos

ρπ

2
cos ρπ + sin

ρπ

2
sin ρπ

)
−2b21b

2
2 sin

ρπ

2

(
sin

ρπ

2
cos ρπ − cos

ρπ

2
sin ρπ

)
− 2b22,

d3 = b21b
2
2,

d4 = b24.

(23)

Denote

Q1(ϕ) = ϕ8ρ + d1ϕ
6ρ + d2ϕ

4ρ + d3ϕ
2ρ + d4 (24)

and

Q2(ϕ) = ϕ8 + d1ϕ
6 + d2ϕ

4 + d3ϕ
2 + d4. (25)

Lemma 3.1 (i) If di > 0(i = 1, 2, 3), then Eq. (14) admits no root

possessing zero real part. (ii) If there exists a constant µ0 > 0 satisfying

Q2(µ0) < 0, then Eq. (14) admits at least two couples of purely imaginary

roots.
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Proof (i) Applying (14), one gains

dQ1(ϕ)

dϕ
= 8ρϕ8ρ−1 + 6ρd1ϕ

6ρ−1 + 4ρd2ϕ
4ρ−1 + 2ρd3ϕ

2ρ−1. (26)

Notice that dl > 0(l = 1, 2, 3), one gets dQ1(ϕ)
dϕ > 0,∀ ϕ > 0. Besides

Q1(0) = d4 > 0, we understand that Eq.(22) possesses no positive real

root. By the assumption (S1), we understand that s = 0 is not the root of

(14). The proof of (i) ends.

(ii) Obviously, Q2(0) = d4 > 0, Q2(µ0) < 0(µ0 > 0) and limϕ→+∞
Q2(ϕ)
dϕ =

+∞, then there exist µ1 ∈ (0, µ0) and µ2 ∈ (µ0,+∞) satisfying Q2(µ1) =

Q2(µ2) = 0, then Eq.(22) possesses at least two positive real roots. So

(14) possesses at least two couples of purely imaginary roots. The proof

of (ii) ends. ■

Assume that Eq.(22) owns eight positive real roots ϕl(l = 1, 2, · · · , 8).
According to (20), one gains

θjl =
1

ϕl
[arccosT + 2jπ] , (27)

where

T =
−b1ϕ3ρl

(
cos ρπ2 cos ρπ + sin ρπ

2 sin ρπ
)
+ b1b2ϕ

ρ
l cos

ρπ
2

ϕ4ρl − b22

and j = 0, 1, 2, · · · , l = 1, 2, · · · , 8. Let

θ0 = min
l=1,2,··· ,8

{θ0l }, ϕ0 = ϕ|θ=θ0 . (28)

Now we give the following condition:

(S2) A1RA2R +A1IA2I > 0,
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where

A1R = 2ρϕ2ρ−1
0 cos

(2ρ− 1)π

2
+ b1ρϕ

ρ−1
0 cos

(ρ− 1)π

2
cosϕ0θ0

+b1ρϕ
ρ−1
0 sin

(ρ− 1)π

2
sinϕ0θ0,

A1I = 2ρϕ2ρ−1
0 sin

(2ρ− 1)π

2
− b1ρϕ

ρ−1
0 cos

(ρ− 1)π

2
sinϕ0θ0

+b1ρϕ
ρ−1
0 sin

(ρ− 1)π

2
cosϕ0θ0,

A2R = b1ϕ
ρ+1
0

[
cos

(ρ+ 1)π

2
cosϕ0θ0 + sin

(ρ+ 1)π

2
sinϕ0θ0

]
+2b2ϕ0 sin 2ϕ0θ0,

A2I = −b1ϕρ+1
0

[
cos

(ρ+ 1)π

2
sinϕ0θ0 − sin

(ρ+ 1)π

2
cosϕ0θ0

]
+2b2ϕ0 cos 2ϕ0θ0.

(29)

Lemma 3.2. Let s(θ) = ζ1(θ)+ iζ2(θ) be the root of Eq. (14) near θ = θ0

satisfying ζ1(θ0) = 0, ζ2(θ0) = ϕ0, then Re
(
ds
dθ

) ∣∣∣
θ=θ0,ϕ=ϕ0

> 0.

Proof By Eq.(14), we gain

2ρs2ρ−1 ds

dθ
+ b1ρs

ρ−1e−sθ
ds

dθ
− b1s

ρe−sθ
(
ds

dθ
θ + s

)
−2b2e

−2sθ

(
ds

dθ
θ + s

)
= 0, (30)

which implies (
ds

dθ

)−1

=
A1(s)

A2(s)
− θ

s
, (31)

where {
A1(s) = 2ρs2ρ−1 + b1ρs

ρ−1e−sθ,

A2(s) = b1s
ρ+1e−sθ + 2b2se

−2sθ.
(32)

Then

Re

[(
ds

dθ

)−1
]
θ=θ0,ϕ=ϕ0

= Re

[
A1(s)

A2(s)

]
θ=θ0,ϕ=ϕ0

=
A1RA2R +A1IA2I

A2
2R +A2

2I

.

(33)
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By (S2), one gains

Re

[(
ds

dθ

)−1
]
θ=θ0,ϕ=ϕ0

> 0, (34)

which ends the proof. ■

Using Lemma 2.1, the following outcome is established.

Theorem 3.1. If (S1) and (S2) hold, then E(x1∗, x2∗) of model (8) re-

mains locally asymptotically stability if θ ∈ [0, θ0) and a Hopf bifurcation

of model (8) arises around E(x1∗, x2∗) when θ = θ0.

4 Bifurcation control via nonlinear delayed

feedback controller

In this part, we will make use of an appropriate nonlinear delayed feedback

controller to control the stability and Hopf bifurcation for model (8). Fol-

lowing the way in [45], we design the nonlinear delayed feedback controller

as follows:

ν(t) = ϱ1[x1(t− θ)− x1∗] + ϱ2[x1(t− θ)− x1∗]
2, (35)

where ϱ1, ϱ2 represent feedback gain parameters. Adding the nonlinear

delayed feedback controller ν(t) to the first equation of model (8), we gain

the following fractional-order controlled Lengyel-Epstein model owing time

delay: 
dρx1(t)

dtρ
= α− x1(t− θ)− 4x1(t− θ)x2(t− θ)

1 + x21(t− θ)

+ϱ1[x1(t− θ)− x1∗] + ϱ2[x1(t− θ)− x1∗]
2,

dρx2(t)

dtρ
= γβ

[
x1(t− θ)− x1(t− θ)x2(t− θ)

1 + x21(t− θ)

]
.

(36)

Clearly, model (36)and model (8) admit the same positive equilibrium

point E(x1∗, x2∗). The linear system of model (36) at E(x1∗, x2∗) has the
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following expression:

Dρx(t) = Bx(t− θ), (37)

where

x(t) =

[
x1(t)

x2(t)

]
, B =

[
e1 e2

e3 e4

]
, (38)

where 

e1 =
8x21∗x2∗ − 4x2∗

1 + x21∗
− 1 + ϱ1 − 2ϱ2x1∗,

e2 = − 4x1∗
1 + x21∗

,

e3 =
2x21∗x2∗ − x2∗

1 + x21∗
+ 1,

e4 = − x1∗
1 + x21∗

.

(39)

The characteristic equation of system (37) reads as

det

[
sρ − e1e

−sθ −e2e−sθ

−e3e−sθ sρ − e4e
−sθ

]
= 0, (40)

which generates

s2ρ + f1s
ρe−sθ + f2e

−2sθ = 0, (41)

where {
f1 = −(e1 + e4),

f2 = e1e4 − e2e3.
(42)

When θ = 0, then Eq.(41) has the following form:

λ2 + f1λ+ f2 = 0, (43)

If

(S3) f1 > 0, f2 > 0

holds true, then the both roots λ1, λ2 of Eq. (43) satisfies |arg(λ1)| >
ρπ
2 , |arg(λ2)| >

ρπ
2 . According to Lemma 2.1, one gains that the positive

equilibrium point E(x1∗, x2∗) of model (36) under the delay θ = 0 remains

locally asymptotically stability.
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By (41), we have

s2ρesθ + f1s
ρ + f2e

−sθ = 0. (44)

Suppose that s = iφ = φ
(
cos π2 + i sin π

2

)
is the root of Eq. (44). Then it

follows from Eq.(44) that

φ2ρ(cos ρπ + i sin ρπ)(cosφθ + i sinφθ)

+f1φ
ρ
(
cos

ρπ

2
+ i sin

ρπ

2

)
+ f2(cosφθ − i sinφθ) = 0. (45)

Then
(
ϕ2ρ cos ρπ + f2

)
cosφθ − φ2ρ sin ρπ sinφθ = −f1φρ cos

ρπ

2
,

φ2ρ sin ρπ cosφθ +
(
φ2ρ cos ρπ − f2

)
sinφθ = −f1φρ sin

ρπ

2
.

(46)

By (46), we have
cosφθ =

−f1ϕ3ρ
(
cos ρπ2 cos ρπ + sin ρπ

2 sin ρπ
)
+ f1f2φ

ρ cos ρπ2
φ4ρ − f22

,

sinφθ =
−f1φ3ρ

(
sin ρπ

2 cos ρπ − cos ρπ2 sin ρπ
)
− f1f2φ

ρ sin ρπ
2

φ4ρ − f22
.

(47)

In view of cos2 φθ + sin2 φθ = 1, it follows from (47) that[
f1φ

3ρ
(
cos

ρπ

2
cos ρπ + sin

ρπ

2
sin ρπ

)
− f1f2φ

ρ cos
ρπ

2

]2
+
[
f1φ

3ρ
(
sin

ρπ

2
cos ρπ − cos

ρπ

2
sin ρπ

)
+ f1f2φ

ρ sin
ρπ

2

]2
=

(
φ4ρ − f22

)2
, (48)

which results in

φ8ρ + g1φ
6ρ + g2φ

4ρ + g3φ
2ρ + g4 = 0, (49)
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where

g1 = 2f21 ,

g2 = 2f21 f
2
2 cos

ρπ

2

(
cos

ρπ

2
cos ρπ + sin

ρπ

2
sin ρπ

)
−2f21 f

2
2 sin

ρπ

2

(
sin

ρπ

2
cos ρπ − cos

ρπ

2
sin ρπ

)
− 2f22 ,

g3 = f21 f
2
2 ,

g4 = f24 .

(50)

Denote

P1(φ) = φ8ρ + g1φ
6ρ + g2φ

4ρ + g3φ
2ρ + g4 (51)

and

P2(φ) = φ8 + g1φ
6 + g2φ

4 + g3φ
2 + g4. (52)

Lemma 4.1 (i) If fi > 0(i = 1, 2, 3), then Eq. (41) admits no root

possessing zero real part. (ii) If there exists a constant v0 > 0 satisfying

P2(v0) < 0, then Eq. (41) admits at least two couples of purely imaginary

roots.

Proof (i) Applying (41), one gains

dP1(φ)

dφ
= 8ρφ8ρ−1 + 6ρf1φ

6ρ−1 + 4ρf2φ
4ρ−1 + 2ρf3φ

2ρ−1. (53)

Notice that fl > 0(l = 1, 2, 3), one gets dP1(φ)
dφ > 0,∀ φ > 0. Besides

P1(0) = f4 > 0, we understand that Eq.(49) possesses no positive real

root. By the assumption (S3), we understand that s = 0 is not the root of

(41). The proof of (i) ends.

(ii) Obviously, P2(0) = f4 > 0, P2(v0) < 0(v0 > 0) and limφ→+∞
P2(φ)
dφ =

+∞, then there exist v1 ∈ (0, v0) and v2 ∈ (v0,+∞) satisfying P2(v1) =

P2(v2) = 0, then Eq.(49) possesses at least two positive real roots. So (41)

possesses at least two couples of purely imaginary roots. The proof of (ii)

ends. ■

Assume that Eq.(49) owns eight positive real roots φl(l = 1, 2, · · · , 8).
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According to (47), one gains

θim =
1

φm
[arccosV + 2iπ] , (54)

where

V =
−f1φ3ρ

m

(
cos ρπ2 cos ρπ + sin ρπ

2 sin ρπ
)
+ f1f2φ

ρ
m cos ρπ2

φ4ρ
m − f22

and i = 0, 1, 2, · · · ,m = 1, 2, · · · , 8. Let

θ∗ = min
m=1,2,··· ,8

{θ0m}, φ0 = φ|θ=θ∗ . (55)

Next we give the following condition:

(S4) B1RB2R +B1IB2I > 0,

where

B1R = 2ρφ2ρ−1
0 cos

(2ρ− 1)π

2
+ f1ρφ

ρ−1
0 cos

(ρ− 1)π

2
cosφ0θ∗

+f1ρφ
ρ−1
0 sin

(ρ− 1)π

2
sinφ0θ∗,

B1I = 2ρφ2ρ−1
0 sin

(2ρ− 1)π

2
− f1ρφ

ρ−1
0 cos

(ρ− 1)π

2
sinφ0θ∗

+f1ρφ
ρ−1
0 sin

(ρ− 1)π

2
cosφ0θ∗,

B2R = f1φ
ρ+1
0

[
cos

(ρ+ 1)π

2
cosφ0θ∗ + sin

(ρ+ 1)π

2
sinφ0θ∗

]
+2f2φ0 sin 2φ0θ∗,

B2I = −f1φρ+1
0

[
cos

(ρ+ 1)π

2
sinφ0θ∗ − sin

(ρ+ 1)π

2
cosφ0θ∗

]
+2f2φ0 cos 2φ0θ∗.

(56)

Lemma 3.2. Let s(θ) = ξ1(θ)+ iξ2(θ) be the root of Eq. (41) near θ = θ∗

satisfying ξ1(θ∗) = 0, ξ2(θ∗) = φ0, then Re
(
ds
dθ

) ∣∣∣
θ=θ∗,φ=φ0

> 0.
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Proof By Eq.(41), we gain

2ρs2ρ−1 ds

dθ
+ f1ρs

ρ−1e−sθ
ds

dθ
− f1s

ρe−sθ
(
ds

dθ
θ + s

)
−2f2e

−2sθ

(
ds

dθ
θ + s

)
= 0, (57)

which implies (
ds

dθ

)−1

=
B1(s)

B2(s)
− θ

s
, (58)

where {
B1(s) = 2ρs2ρ−1 + f1ρs

ρ−1e−sθ,

B2(s) = f1s
ρ+1e−sθ + 2f2se

−2sθ.
(59)

Then

Re

[(
ds

dθ

)−1
]
θ=θ∗,φ=φ0

= Re

[
B1(s)

B2(s)

]
θ=θ∗,φ=φ0

=
B1RB2R +B1IB2I

B2
2R +B2

2I

.

(60)

By (S4), one gains

Re

[(
ds

dθ

)−1
]
θ=θ∗,φ=φ0

> 0, (61)

which ends the proof. ■

Using Lemma 2.1, the following outcome is established.

Theorem 4.1. If (S3) and (S4) hold, then E(x1∗, x2∗) of model (36)

remains locally asymptotically stability if θ ∈ [0, θ∗) and a Hopf bifurcation

of model (36) arises around E(x1∗, x2∗) when θ = θ∗.

5 Bifurcation control via hybrid control

In this section, we are to design a proper hybrid controller consisting of

state feedback and parameter perturbation to control the stability and

Hopf bifurcation of model (8). Following the idea of [46, 47], we get the

following fractional-order controlled Lengyel-Epstein model owing time de-
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lay: 

dρx1(t)

dtρ
= σ1

[
α− x1(t− θ)− 4x1(t− θ)x2(t− θ)

1 + x21(t− θ)

]
+σ2[x1(t− θ)− x1∗],

dρx2(t)

dtρ
= σ1

{
γβ

[
x1(t− θ)− x1(t− θ)x2(t− θ)

1 + x21(t− θ)

]}
+σ2[x2(t− θ)− x2∗],

(62)

where σ1, σ2 stands for feedback gain parameters. Model (62) and model

(8) own the same positive equilibrium point E(x1∗, x2∗). The linear system

of model (62) around E(x1∗, x2∗) takes the form:

Dρx(t) = Dx(t− θ), (63)

where

x(t) =

[
x1(t)

x2(t)

]
, D =

[
k1 k2

k3 k4

]
, (64)

where 

k1 = σ1

(
8x21∗x2∗ − 4x2∗

1 + x21∗
− 1

)
+ σ2,

k2 = − 4x1∗σ1
1 + x21∗

,

k3 = σ1

(
2x21∗x2∗ − x2∗

1 + x21∗
+ 1

)
,

k4 = − x1∗σ1
1 + x21∗

+ σ2.

(65)

The characteristic equation of system (63) reads as

det

[
sρ − k1e

−sθ −k2e−sθ

−k3e−sθ sρ − k4e
−sθ

]
= 0, (66)

which generates

s2ρ + l1s
ρe−sθ + l2e

−2sθ = 0, (67)

where {
l1 = −(k1 + k4),

l2 = k1k4 − k2k3.
(68)
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When θ = 0, then Eq.(67) has the following form:

λ2 + l1λ+ l2 = 0, (69)

If

(S5) l1 > 0, l2 > 0

holds true, then the both roots λ1, λ2 of Eq. (69) satisfies |arg(λ1)| >
ρπ
2 , |arg(λ2)| >

ρπ
2 . According to Lemma 2.1, one gains that the positive

equilibrium point E(x1∗, x2∗) of model (62) under the delay θ = 0 remains

locally asymptotically stability.

By (5.6), we have

s2ρesθ + l1s
ρ + l2e

−sθ = 0. (70)

Suppose that s = iψ = ψ
(
cos π2 + i sin π

2

)
is the root of Eq. (70). Then it

follows from Eq.(70) that

ψ2ρ(cos ρπ + i sin ρπ)(cosϕθ + i sinϕθ)

+l1ψ
ρ
(
cos

ρπ

2
+ i sin

ρπ

2

)
+ l2(cosψθ − i sinψθ) = 0. (71)

Then
(
ψ2ρ cos ρπ + l2

)
cosψθ − ψ2ρ sin ρπ sinψθ = −l1ψρ cos

ρπ

2
,

ψ2ρ sin ρπ cosψθ +
(
ψ2ρ cos ρπ − l2

)
sinψθ = −l1ψρ sin

ρπ

2
.

(72)

By (72), we have
cosψθ =

−l1ψ3ρ
(
cos ρπ2 cos ρπ + sin ρπ

2 sin ρπ
)
+ l1l2ψ

ρ cos ρπ2
ψ4ρ − l22

,

sinψθ =
−l1ϕ3ρ

(
sin ρπ

2 cos ρπ − cos ρπ2 sin ρπ
)
− l1l2ψ

ρ sin ρπ
2

ψ4ρ − l22
.

(73)
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In view of cos2 ψθ + sin2 ψθ = 1, it follows from (73) that[
l1ψ

3ρ
(
cos

ρπ

2
cos ρπ + sin

ρπ

2
sin ρπ

)
− l1l2ψ

ρ cos
ρπ

2

]2
+
[
l1ψ

3ρ
(
sin

ρπ

2
cos ρπ − cos

ρπ

2
sin ρπ

)
+ l1l2ψ

ρ sin
ρπ

2

]2
=

(
ψ4ρ − l22

)2
, (74)

which results in

ψ8ρ + τ1ψ
6ρ + τ2ψ

4ρ + τ3ψ
2ρ + τ4 = 0, (75)

where

τ1 = 2l21,

τ2 = 2l21l
2
2 cos

ρπ

2

(
cos

ρπ

2
cos ρπ + sin

ρπ

2
sin ρπ

)
−2l21l

2
2 sin

ρπ

2

(
sin

ρπ

2
cos ρπ − cos

ρπ

2
sin ρπ

)
− 2l22,

τ3 = l21l
2
2,

τ4 = l24.

(76)

Denote

T1(ψ) = ψ8ρ + τ1ψ
6ρ + τ2ψ

4ρ + τ3ψ
2ρ + τ4 (77)

and

T2(ψ) = ψ8 + τ1ψ
6 + τ2ψ

4 + τ3ψ
2 + τ4. (78)

Lemma 5.1 (i) If τi > 0(i = 1, 2, 3), then Eq. (67) admits no root

possessing zero real part. (ii) If there exists a constant u0 > 0 satisfying

T2(u0) < 0, then Eq. (67) admits at least two couples of purely imaginary

roots.

Proof (i) Applying (67), one gains

dT1(ψ)

dψ
= 8ρψ8ρ−1 + 6ρl1ψ

6ρ−1 + 4ρl2ψ
4ρ−1 + 2ρl3ψ

2ρ−1. (79)

Notice that τl > 0(l = 1, 2, 3), one gets dT1(ψ)
dψ > 0,∀ ψ > 0. Besides

T1(0) = τ4 > 0, we understand that Eq.(75) possesses no positive real
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root. By the assumption (S5), we understand that s = 0 is not the root of

(67). The proof of (i) ends.

(ii) Obviously, T2(0) = τ4 > 0, T2(u0) < 0(u0 > 0) and limψ→+∞
T2(ψ)
dψ =

+∞, then there exist u1 ∈ (0, u0) and u2 ∈ (u0,+∞) satisfying T2(u1) =

T2(u2) = 0, then Eq.(75) possesses at least two positive real roots. So (67)

possesses at least two couples of purely imaginary roots. The proof of (ii)

ends. ■

Assume that Eq.(75) owns eight positive real roots ψl(l = 1, 2, · · · , 8).
According to (5.12), one gains

θnι =
1

ψι
[arccosS + 2nπ] , (80)

where

S =
−l1ψ3ρ

ι

(
cos ρπ2 cos ρπ + sin ρπ

2 sin ρπ
)
+ l1l2ψ

ρ
ι cos

ρπ
2

ψ4ρ
ι − l22

and n = 0, 1, 2, · · · , ι = 1, 2, · · · , 8. Let

θ⋄ = min
ι=1,2,··· ,8

{θ0ι }, ψ0 = ψ|θ=θ⋄ . (81)

Now we present the following assumption:

(S6) C1RC2R + C1IC2I > 0,
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where

C1R = 2ρψ2ρ−1
0 cos

(2ρ− 1)π

2
+ l1ρψ

ρ−1
0 cos

(ρ− 1)π

2
cosψ0θ⋄

+l1ρψ
ρ−1
0 sin

(ρ− 1)π

2
sinψ0θ⋄,

C1I = 2ρψ2ρ−1
0 sin

(2ρ− 1)π

2
− l1ρψ

ρ−1
0 cos

(ρ− 1)π

2
sinψ0θ⋄

+l1ρψ
ρ−1
0 sin

(ρ− 1)π

2
cosψ0θ⋄,

C2R = l1ψ
ρ+1
0

[
cos

(ρ+ 1)π

2
cosψ0θ0 + sin

(ρ+ 1)π

2
sinψ0θ⋄

]
+2l2ψ0 sin 2ϕ0θ⋄,

C2I = −l1ψρ+1
0

[
cos

(ρ+ 1)π

2
sinψ0θ0 − sin

(ρ+ 1)π

2
cosψ0θ⋄

]
+2l2ψ0 cos 2ψ0θ⋄.

(82)

Lemma 5.2. Let s(θ) = η1(θ)+ iη2(θ) be the root of Eq. (67) near θ = θ⋄

satisfying η1(θ⋄) = 0, η2(θ⋄) = ψ0, then Re
(
ds
dθ

) ∣∣∣
θ=θ⋄,ψ=ψ0

> 0.

Proof By Eq.(67), we gain

2ρs2ρ−1 ds

dθ
+ l1ρs

ρ−1e−sθ
ds

dθ
− l1s

ρe−sθ
(
ds

dθ
θ + s

)
−2l2e

−2sθ

(
ds

dθ
θ + s

)
= 0, (83)

which implies (
ds

dθ

)−1

=
C1(s)

C2(s)
− θ

s
, (84)

where {
C1(s) = 2ρs2ρ−1 + l1ρs

ρ−1e−sθ,

C2(s) = l1s
ρ+1e−sθ + 2l2se

−2sθ.
(85)

Then

Re

[(
ds

dθ

)−1
]
θ=θ⋄,ψ=ψ0

= Re

[
C1(s)

C2(s)

]
θ=θ⋄,ψ=ψ0

=
C1RC2R + C1IC2I

C2
2R + C2

2I

.

(86)
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By (S2), one gains

Re

[(
ds

dθ

)−1
]
θ=θ⋄,ψ=ψ0

> 0, (87)

which ends the proof. ■

Using Lemma 2.1, the following outcome is established.

Theorem 5.1. If (S5) and (S6) hold, then E(x1∗, x2∗) of model (62)

remains locally asymptotically stability if θ ∈ [0, θ⋄) and a Hopf bifurcation

of model (62) arises around E(x1∗, x2∗) when θ = θ⋄.

6 Matlab experiments

Example 6.1. Consider the following fractional-order Lengyel-Epstein

model owing time delay:
d0.93x1(t)

dt0.93
= 5− x1(t− θ)− 4x1(t− θ)x2(t− θ)

1 + x21(t− θ)
,

d0.93x2(t)

dt0.93
= 1× 3

[
x1(t− θ)− x1(t− θ)x2(t− θ)

1 + x21(t− θ)

]
.

(88)

One can lightly gain that model (88) admits the unique positive equi-

librium point E(x1∗, x2∗) = E(1, 2). The two hypotheses (S1) and (S2)

of Theorem 3.1 are met. By exploiting Matlab software, we can acquire

ϕ0 = 7.0913, θ0 = 0.2. To verify the rationality of the chief outcomes of

Theorem 4.1, we select both delay numbers. Firstly, let θ = 0.16 which im-

plies that θ < θ0 = 0.2, e.g., θ lies in the domain [0, θ0). For this situation,

the Matlab experiment outcomes are presented in Figures 1-4. Clearly,

Figures 1-4 show that the concentration of the first chemical reactant x1

will tend to 1 and the concentration of the second chemical reactant x2

will tend to 2 with the increase of time t. Secondly, let θ = 0.22 which

implies that θ > θ0 = 0.2, e.g., θ crosses the threshold value θ0. For this

situation, the Matlab experiment outcomes are presented in Figures 5-8.

Clearly, Figures 5-8 show that the concentration of the first chemical re-

actant x1 will keep a vibration level near 1 and the concentration of the
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second chemical reactant x2 will keep a vibration level near 2. In other

words, model (88) will generate a Hopf bifurcation (e.g., a limit cycle)

around the positive equilibrium point E(1, 2). Moreover, we also draw the

bifurcation diagrams to display the bifurcation value θ0 = 0.2(see Figures

9-10).

Example 6.2. Consider the following fractional-order controlled Lengyel-

Epstein model owing time delay:
d0.93x1(t)

dt0.93
= 5− x1(t− θ)− 4x1(t− θ)x2(t− θ)

1 + x21(t− θ)

+ϱ1[x1(t− θ)− x1∗] + ϱ2[x1(t− θ)− x1∗]
2,

d0.93x2(t)

dt0.93
= 1× 3

[
x1(t− θ)− x1(t− θ)x2(t− θ)

1 + x21(t− θ)

]
.

(89)

One can lightly gain that model (89) admits the unique positive equi-

librium point E(x1∗, x2∗) = E(1, 2). Let ϱ1 = −0.2, ϱ2 = 0.7. The two

hypotheses (S3) and (S4) of Theorem 4.1 are met. By exploiting Matlab

software, we can acquire φ0 = 5.4322, θ∗ = 0.27. To verify the rational-

ity of the chief outcomes of Theorem 4.1, we select both delay numbers.

Firstly, let θ = 0.2 which implies that θ < θ∗ = 0.27, e.g., θ lies in the

domain [0, θ∗). For this situation, the Matlab experiment outcomes are

presented in Figures 11-14. Clearly, Figures 11-14 show that the concen-

tration of the first chemical reactant x1 will tend to 1 and the concentration

of the second chemical reactant x2 will tend to 2 with the increase of time

t. Secondly, let θ = 0.32 which implies that θ > θ0 = 0.27, e.g., θ crosses

the threshold value θ∗. For this situation, the Matlab experiment out-

comes are presented in Figures 15-18. Clearly, Figures 15-18 show that

the concentration of the first chemical reactant x1 will keep a vibration

level near 1 and the concentration of the second chemical reactant x2 will

keep a vibration level near 2. In other words, model (89) will generate a

Hopf bifurcation (e.g., a limit cycle) around the positive equilibrium point

E(1, 2). Moreover, we also draw the bifurcation diagrams to display the

bifurcation value θ∗ = 0.27(see Figures 19-20).

Example 6.3. Consider the following fractional-order controlled Lengyel-
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Epstein model owing time delay:

d0.93x1(t)

dtρ
= σ1

[
3− x1(t− θ)− 4x1(t− θ)x2(t− θ)

1 + x21(t− θ)

]
+σ2[x1(t− θ)− x1∗],

d0.93x2(t)

dtρ
= σ1

{
1× 3

[
x1(t− θ)− x1(t− θ)x2(t− θ)

1 + x21(t− θ)

]}
+σ2[x2(t− θ)− x2∗].

(90)

One can lightly gain that model (90) admits the unique positive equi-

librium point E(x1∗, x2∗) = E(1, 2). Let σ1 = 1.2, σ2 = 0.8. The two

hypotheses (S5) and (S6) of Theorem 5.1 are met. By exploiting Matlab

software, we can acquire ψ0 = 6.0093, θ∗ = 0.141. To verify the rational-

ity of the chief outcomes of Theorem 5.1, we select both delay numbers.

Firstly, let θ = 0.135 which implies that θ < θ⋄ = 0.141, e.g., θ lies in the

domain [0, θ⋄). For this situation, the Matlab experiment outcomes are

presented in Figures 21-24. Clearly, Figures 21-24 show that the concen-

tration of the first chemical reactant x1 will tend to 1 and the concentration

of the second chemical reactant x2 will tend to 2 with the increase of time

t. Secondly, let θ = 0.146 which implies that θ > θ⋄ = 0.141, e.g., θ

crosses the threshold value θ⋄. For this situation, the Matlab experiment

outcomes are presented in Figures 25-28. Clearly, Figures 25-28 show that

the concentration of the first chemical reactant x1 will keep a vibration

level near 1 and the concentration of the second chemical reactant x2 will

keep a vibration level near 2. In other words, model (90) will generate a

Hopf bifurcation (e.g., a limit cycle) around the positive equilibrium point

E(1, 2). Moreover, we also draw the bifurcation diagrams to display the

bifurcation value θ⋄ = 0.141(see Figures 29-30).
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Figure 1. Matlab experiment outcomes of model (88) under the delay
θ = 0.16 < θ0 = 0.2. The positive equilibrium point E(1, 2)
keeps locally asymptotically stability. The x-axis represents
the time t and the y-axis represents the variable x1(t).
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Figure 2. Matlab experiment outcomes of model (88) under the delay
θ = 0.16 < θ0 = 0.2. The positive equilibrium point E(1, 2)
keeps locally asymptotically stability. The x-axis represents
the time t and the y-axis represents the variable x2(t).
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Figure 3. Matlab experiment outcomes of model (88) under the delay
θ = 0.16 < θ0 = 0.2. The positive equilibrium point E(1, 2)
keeps locally asymptotically stability. The x-axis represents
the time x1(t) and the y-axis represents the variable x2(t).
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Figure 4. Matlab experiment outcomes of model (88) under the delay
θ = 0.16 < θ0 = 0.2. The positive equilibrium point E(1, 2)
keeps locally asymptotically stability. The x-axis represents
the time t, the y-axis represents the variable x1(t) and the
z-axis represents the variable x2(t).
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Figure 5. Matlab experiment outcomes of model (88) under the delay
θ = 0.22 > θ0 = 0.2. Hopf bifurcation takes placer around
the positive equilibrium point E(1, 2). The x-axis represents
the time t and the y-axis represents the variable x1(t).
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Figure 6. Matlab experiment outcomes of model (88) under the delay
θ = 0.22 > θ0 = 0.2. Hopf bifurcation takes placer around
the positive equilibrium point E(1, 2). The x-axis represents
the time t and the y-axis represents the variable x2(t).
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Figure 7. Matlab experiment outcomes of model (6.1) under the delay
θ = 0.22 > θ0 = 0.2. Hopf bifurcation takes placer around
the positive equilibrium point E(1, 2). The x-axis represents
the time x1(t) and the y-axis represents the variable x2(t).
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Figure 8. Matlab experiment outcomes of model (88) under the delay
θ = 0.22 > θ0 = 0.2. Hopf bifurcation takes placer around
the positive equilibrium point E(1, 2). The x-axis represents
the time t, the y-axis represents the variable x1(t) and the
z-axis represents the variable x2(t).
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Figure 9. Bifurcation diagram of model (88): the relationship of t and
x1. The bifurcation value of model (88) is about 0.2.
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Figure 10. Bifurcation diagram of model (88): the relationship of t
and x2. The bifurcation value of model (88) is about 0.2.
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Figure 11. Matlab experiment outcomes of model (89) under the de-
lay θ = 0.2 < θ∗ = 0.27. The positive equilibrium point
E(1, 2) keeps locally asymptotically stability. The x-axis
represents the time t and the y-axis represents the variable
x1(t).
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Figure 12. Matlab experiment outcomes of model (89) under the de-
lay θ = 0.2 < θ∗ = 0.27. The positive equilibrium point
E(1, 2) keeps locally asymptotically stability. The x-axis
represents the time t and the y-axis represents the variable
x2(t).
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Figure 13. Matlab experiment outcomes of model (89) under the de-
lay θ = 0.2 < θ∗ = 0.27. The positive equilibrium point
E(1, 2) keeps locally asymptotically stability. The x-axis
represents the time x1(t) and the y-axis represents the vari-
able x2(t).
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Figure 14. Matlab experiment outcomes of model (89) under the de-
lay θ = 0.2 < θ∗ = 0.27. The positive equilibrium point
E(1, 2) keeps locally asymptotically stability. The x-axis
represents the time t, the y-axis represents the variable
x1(t) and the z-axis represents the variable x2(t).
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Figure 15. Matlab experiment outcomes of model (89) under the de-
lay θ = 0.32 > θ∗ = 0.27. Hopf bifurcation takes placer
around the positive equilibrium point E(1, 2). The x-axis
represents the time t and the y-axis represents the variable
x1(t).
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Figure 16. Matlab experiment outcomes of model (89) under the de-
lay θ = 0.32 > θ∗ = 0.27. Hopf bifurcation takes placer
around the positive equilibrium point E(1, 2). The x-axis
represents the time t and the y-axis represents the variable
x2(t).
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Figure 17. Matlab experiment outcomes of model (89) under the delay
θ = 0.32 > θ∗ = 0.27. Hopf bifurcation takes placer around
the positive equilibrium point E(1, 2). The x-axis repre-
sents the time x1(t) and the y-axis represents the variable
x2(t).
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Figure 18. Matlab experiment outcomes of model (89) under the delay
θ = 0.32 > θ∗ = 0.27. Hopf bifurcation takes placer around
the positive equilibrium point E(1, 2). The x-axis repre-
sents the time t, the y-axis represents the variable x1(t)
and the z-axis represents the variable x2(t).
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Figure 19. Bifurcation diagram of model (89): the relationship of t
and x1. The bifurcation value of model (89) is about 0.27.
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Figure 20. Bifurcation diagram of model (89): the relationship of t
and x2. The bifurcation value of model (89) is about 0.27.
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Figure 21. Matlab experiment outcomes of model (90) under the delay
θ = 0.135 < θ⋄ = 0.141. The positive equilibrium point
E(1, 2) keeps locally asymptotically stability. The x-axis
represents the time t and the y-axis represents the variable
x1(t).
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Figure 22. Matlab experiment outcomes of model (90) under the delay
θ = 0.135 < θ⋄ = 0.141. The positive equilibrium point
E(1, 2) keeps locally asymptotically stability. The x-axis
represents the time t and the y-axis represents the variable
x2(t).
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Figure 23. Matlab experiment outcomes of model (90) under the de-
lay θ = 0.135 < θ⋄ = 0.141. The positive equilibrium point
E(1, 2) keeps locally asymptotically stability. The x-axis
represents the time x1(t) and the y-axis represents the vari-
able x2(t).
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Figure 24. Matlab experiment outcomes of model (90) under the delay
θ = 0.135 < θ⋄ = 0.141. The positive equilibrium point
E(1, 2) keeps locally asymptotically stability. The x-axis
represents the time t, the y-axis represents the variable
x1(t) and the z-axis represents the variable x2(t).



474

0 20 40 60 80 100

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

t

 x
1
(t

) 

Figure 25. Matlab experiment outcomes of model (90) under the delay
θ = 0.146 > θ⋄ = 0.141. Hopf bifurcation takes placer
around the positive equilibrium point E(1, 2). The x-axis
represents the time t and the y-axis represents the variable
x1(t).
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Figure 26. Matlab experiment outcomes of model (90) under the delay
θ = 0.146 > θ⋄ = 0.141. Hopf bifurcation takes placer
around the positive equilibrium point E(1, 2). The x-axis
represents the time t and the y-axis represents the variable
x2(t).
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Figure 27. Matlab experiment outcomes of model (90) under the de-
lay θ = 0.146 > θ⋄ = 0.141. Hopf bifurcation takes placer
around the positive equilibrium point E(1, 2). The x-axis
represents the time x1(t) and the y-axis represents the vari-
able x2(t).
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Figure 28. Matlab experiment outcomes of model (90) under the delay
θ = 0.146 > θ⋄ = 0.141. Hopf bifurcation takes placer
around the positive equilibrium point E(1, 2). The x-axis
represents the time t, the y-axis represents the variable
x1(t) and the z-axis represents the variable x2(t).
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Figure 29. Bifurcation diagram of model (90): the relationship of t and
x1. The bifurcation value of model (90) is about 0.141.

0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

θ

x
2

Figure 30. Bifurcation diagram of model (90): the relationship of t and
x2. The bifurcation value of model (90) is about 0.141.

Remark 6.1.Through numerical simulation outcomes of Example 6.1-

Example 6.3, one can enlarge the stability domain and delay the time of

generation of Hopf bifurcation of model (88) via nonlinear delayed feedback

controller. In addition, one can narrow the stability domain and advance

the time of generation of Hopf bifurcation of model (88) via hybrid con-

troller.
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7 Conclusions

Nowadays delayed dynamical models have been widely applied in describ-

ing the inherent interaction law among different chemical substances. Rely-

ing on the earlier publications, we formulate a new fractional-order delayed

Lengyel-Epstein model. Whit the aid of stability and bifurcation theory of

fractional-order differential equation, we have explored the stability trait

and Hopf bifurcation phenomenon of the addressed fractional-order de-

layed Lengyel-Epstein model. The sufficient condition on stability and

bifurcation for the formulated fractional-order delayed Lengyel-Epstein

model are established. By applying two suitable controllers (nonlinear

delayed feedback controller and hybrid controller), we have successfully

dominated the stability region and the time of Hopf bifurcation periodic so-

lutions for the formulated fractional-order delayed Lengyel-Epstein model.

The role of delay in stabilizing Lengyel-Epstein system and adjusting the

concentrations of different chemical substances is fully revealed. In order

to check the correctness of the gained outcomes, we present the computer

simulations. The gained fruits own important significance in controlling

and balancing the concentrations of different chemical substances. The

exploration way is also able to deal with the control issue in numerous

fractional-order dynamical models.
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