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Abstract

Let G be an arbitrary simple graph. The energy of G is defined
as the sum of absolute values of all eigenvalues of its adjacency
matrix and denoted by E(G). Also, the Sombor index of G is de-
fined as SO(G) =

∑
xy∈E(G)

√
d2x + d2y, where dx and dy are the

degree of vertices x and y in G, respectively. In this paper, we
provide the upper and lower bounds for the Sombor index of G in
terms of its energy. For every bipartite graph G, it was proved that
E(G) ≤

√
2/δ3(G)SO(G), where δ is a minimum degree of G. We

show that this result holds for any arbitrary graph. Also, we prove
E(G) ≤ SO(G)/(

√
2δ(G)), if δ(G) ≥ 4. Moreover, we show that√

E(G) ≥ SO(G)/
√

m∆3(G), where ∆ and m are maximum de-
gree and size of G, respectively. Furthermore, we improve some of
the stated inequalities between energy and degree based indices of
graphs, like the first Zagreb index and the forgotten index, in the
existing literature.
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1 Introduction

Let G = (V (G), E(G)) be a simple graph, where V (G) and E(G) the

vertex set and the edge set of G, respectively. By the order (size) of G,

we mean the number of its vertices (edges). The maximum and minimum

degrees of G are denoted by ∆(G) and δ(G), respectively. The adjacency

matrix of G, denoted by A(G), is an n × n matrix whose (i, j)-entry is 1

if vi and vj are adjacent and 0 otherwise. In this paper, the energy of a

graph G, is shown by E(G) and is defined as the sum of the absolute values

of its adjacency eigenvalues (see [11]). The Sombor index, the first Zagreb

index and the forgotten index of G, are defined as follows, respectively:

SO(G) =
∑

xy∈E(G)

√
d2x + d2y;

M1(G) =
∑

xy∈E(G) (dx + dy);

F (G) =
∑

xy∈E(G)(d
2
x + d2y),

where dx is the degree of vertex x. Some results for the mentioned indices

can be found in [1], [3], [6], [7], [10], [12], [13], [14] and the references

therein.

By [5], the energy of the vertex vi of a graph G is given by

E(vi) =
n∑

i=1

|A(G)|ii for i = 1, . . . , n,

where |A| = (AA∗)1/2 and A is the adjacency matrix of G. In [20], the

authors for an edge e = xy ∈ E(G) defined E(e) =
E(x)
dx

+
E(y)
dy

and

obtained the following:

E(G) =
∑

e∈E(G) E(e) =
∑

xy∈E(G)

(
E(x)
dx

+
E(y)
dy

)
.

2 Preliminaries

We start this section by stating the following upper and lower bounds for

the energy of a vertex which will be useful in proving the results of the

article
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Theorem 1. [4, Pro. 3.2] For a graph G and a vertex x ∈ V (G), we

have EG(x) ≤
√
dx with equality if and only if the connected component

containing vx is isomorphic to the star graph K1,n−1 and x is its center.

Theorem 2. [4, Pro. 3.3] Let G be a connected graph with at least one

edge. Then EG(x) ≥
dx

∆(G)
, for all x ∈ V (G). Equality holds if and only

if G is isomorphic to complete bipartite graph Kd,d.

Theorem 3. [4, Thm. 3.6] Let G be a graph with at least one edge. Then

EG(vi) ≥
√

di
∆(G)

, for all vi ∈ V (G).

The following lower bound for the energy of regular graphs, in terms

of the order and the degree of regularity of graph, was stated in [9].

Theorem 4. [9, Cor. 4] If G is a regular triangle and quadrangle-free

graph of order n, then E(G) ≥ n∆√
2∆−1

.

Now, we prove the above result for quadrangle-free graphs.

Theorem 5. Let G be a quadrangle-free graph of size m. Then

E(G) ≥ 2m√
2∆− 1

.

Proof. We have E(G) ≥ 4m2√
(2M1(G)−2m)2m

, by [16, Page 2] and [15, Pro. 4].

Also M1(G) ≤ 2m∆. Thus

E(G) ≥ 4m2√
(4m∆− 2m)2m

=
4m2

2m
√
2∆− 1

=
2m√
2∆− 1

and the result follows.

As a final result of this section, we state the following lemma which is used

in the sequel.

Lemma 1. Let x, y ≥ 4 be two real numbers. Then
√

x2 + y2 ≥
√
2x +

√
2y.

Proof. Clearly, both x(x−4) and y(y−4) are non-negative. So x2−2x ≥ 2x

and y2 − 2y ≥ 2y. Thus x2 + y2 − 2x − 2y ≥ 2x + 2y ≥ 2
√
4xy and
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consequently, x2 + y2 ≥ 2x + 2y + 2
√
4xy = (

√
2x +

√
2y)2. This implies

that
√

x2 + y2 ≥
√
2x+

√
2y and we are done.

3 Main results

The following upper bound for energy of an arbitrary graph G with δ(G) ≥
2 was introduced in terms of the Sombor index of G.

Theorem 6. [18, Pro. 3.4] Let G be a graph with δ(G) ≥ 2. Then we

have E(G) ≤ SO(G).

Next, the authors in [19] prove the following result that gives an in-

equality between energy and Sombor index of a graph.

Theorem 7. [19, Thm. 3.1] Let G be a connected graph with n vertices.

If n ≥ 3, then E(G) < SO(G).

Later, in Theorem 3 of [2] this bound was improved as follows:

Theorem 8. If G is a connected graph of order n which is not Pn(n ≤ 8),

then E(G) ≤ SO(G)

2
.

As a first result, we provide the following upper bound for the energy

of graphs in terms of Sombor index and minimum degree.

Theorem 9. Let G be a graph and δ(G) ≥ 4. Then E(G) ≤ SO(G)√
2δ(G)

.

Proof. Note that:

E(G) =
∑

xy∈E(G)

(
E(x)
dx

+
E(y)
dy

)
≤

∑
xy∈E(G)

(√
dx
dx

+

√
dy

dy

)

=
∑

xy∈E(G)

(
1√
dx

+
1√
dy

)
=

∑
xy∈E(G)

(√
dx +

√
dy√

dx
√

dy

)
.

≤ 1√
2δ(G)

∑
xy∈E(G)

(√
2dx +

√
2dy
)
.

Now, by Lemma 1 we have,

E(G) ≤ 1√
2δ(G)

∑
xy∈E(G)

√
d2x + d2y.
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Therefore, E(G) ≤ SO(G)√
2δ(G)

and the result follows.

In [8] the authors proved the following result for bipartite graphs.

Theorem 10. [8, Thm. 4] Let G be a bipartite graph. Then E(G) ≤√
2

δ3(G)
SO(G).

Now, in the following theorem, we prove this bound for an arbitrary

graph.

Theorem 11. Let G be graph. Then E(G) ≤
√

2

δ3(G)
SO(G). More-

over, the equality holds if and only if each connected component of G is

isomorphic to K2.

Proof. By the inequality
√
a+

√
b ≤

√
2
√
a+ b, we have:

E(G) ≤
∑

xy∈E(G)

√
dx +

√
dy√

dxdy

≤
√
2

∑
xy∈E(G)

√
dx + dy√
dxdy

≤
√
2

δ(G)

∑
xy∈E(G)

√
d2x
dx

+
d2y
dy

≤
√
2

δ(G)
√

δ(G)

∑
xy∈E(G)

√
d2x + d2y

=

√
2

δ3(G)
SO(G).

Also, if the equality holds, then clearly G is regular and consequently

SO(G) =
nr2√
2
, where r is the degree of regularity of graph G and n =

|V (G)|. Thus, we have E(G) =

√
2

r
√
r
.
nr2√
2

= n
√
r. By Theorem 1, this

implies that every connected component of G is isomorphic to K2, and the

proof is complete.

In [18] the following result was proved for regular graphs.

Theorem 12. [18, Thm. 3.2] Let G be a regular graph. Then SO(G) ≤
E(G)∆2(G).

Here, we improve the bounds of Theorem 12 for an arbitrary graph.
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Theorem 13. Let G be a graph of size m. Then

SO(G) ≤ E(G)∆2(G)−
m
√
∆(G)

2
.

Proof. By Theorem 3 and considering the fact that
√
x+

√
y ≥

√
x+ y+

1

2
for x, y ≥ 1, we have:

E(G) =
∑

xy∈E(G)

(
E(x)
dx

+
E(y)
dy

)
≥ 1√

∆(G)

∑
xy∈E(G)

(
1√
dx

+
1√
dy

)

≥ 1√
∆(G)

∑
xy∈E(G)

√
dx +

√
dy√

dxdy

≥ 1

∆(G)
√
∆(G)

∑
xy∈E(G)

(√
dx + dy +

1

2

)
≥ 1

∆(G)
√
∆(G)

∑
xy∈E(G)

√
d2x
dx

+
d2y
dy

+
m

2∆(G)
√
∆(G)

.

≥ 1

∆2(G)
SO(G) +

m

2∆(G)
√
∆(G)

.

Therefore,

SO(G) ≤ E(G)∆2(G)−
m
√

∆(G)

2

and we are done.

In [17] another upper bound for the Sombor index of regular graph was

proven as follows:

Theorem 14. [17, Thm. 10] Let G be a regular graph. Then SO(G) ≤
∆2(G)E(G)√

2
.

In the following, we prove the bound of Theorem 14 for an arbitrary

quadrangle-free graph.

Theorem 15. Let G be an arbitrary quadrangle-free graph. Then

SO(G) ≤ ∆(G)
√

2∆(G)−1√
2

E(G).

Proof. The proof is straightforward by applying m ≥ 1√
2∆

SO(G) to the

inequality of Theorem 5.
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In Theorems 2.1 and 2.2 of [20] the following result was proved.

Theorem 16. Let G be a graph. Then√
δ(G)

∆5(G)
M1(G) ≤ E(G) ≤

√
∆(G)

δ2(G)
M1(G);

√
δ3(G)

∆9(G)
F (G) ≤ E(G) ≤

√
∆3(G)

δ4(G)
F (G).

Now, in the following two theorems we improve these bounds as follows:

Theorem 17. Let G be a graph. Then

M1(G)

∆2(G)
≤ E(G) ≤ M1(G)

δ(G)
√

δ(G)
.

These inequalities become equalities for G ∼= tK2 and G ∼= tK∆,∆, respec-

tively.

Proof. Note that

M1(G) =
∑

x∈V (G)

d2x =
∑

x∈V (G)

dx
√
dx

√
dx

≥ δ(G)
√
δ(G)

∑
x∈V (G)

√
dx

≥ δ(G)
√

δ(G)E(G).

So, we get

E(G) ≤ M1(G)

δ(G)
√
δ(G)

.

Also, according to the above inequalities and considering the fact that

E(vx) =
√
dx if and only if G ∼= K1,n, equality holds if and only if G ∼= tK2,

for some positive integer t.

On the other hand,

M1(G) =
∑

x∈V (G)

d2x =
∑

x∈V (G)

∆(G)dx
dx

∆(G)

≤ ∆2(G)
∑

x∈V (G)

dx
∆(G)

≤ ∆2(G)E(G).

Thus we obtain that
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E(G) ≥ M1(G)

∆2(G)
.

Finally, according to the above inequalities and considering the fact

that E(vx) =
dx

∆(G)
if and only if G ∼= Kd,d, equality holds if and only if

G ∼= tK∆,∆, for some positive integer t and the proof is complete.

Theorem 18. Let G be a graph. Then

F (G)

∆3(G)
≤ E(G) ≤ F (G)

δ2(G)
√

δ(G)
.

These inequalities become equalities for G ∼= tK2 and G ∼= tK∆,∆, respec-

tively.

Proof. We have

F (G) =
∑

xy∈E(G)

(d2x + d2y) =
∑

x∈V (G)

d3x

=
∑

x∈V (G)

d2x
√
dx

√
dx ≥ δ2(G)

√
δ(G)

∑
x∈V (G)

√
dx

≥ δ2(G)
√
δ(G)E(G).

Therefore,

E(G) ≤ F (G)

δ2(G)
√

δ(G)
.

Also, according to the above inequalities and considering the fact that

E(vx) =
√
dx if and only if G ∼= K1,n, equality holds if and only if G ∼= tK2,

for some positive integer t.

On the other hand,

F (G) =
∑

xy∈E(G)

(d2x + d2y) =
∑

x∈V (G)

d3x

=
∑

x∈V (G)

∆(G)d2x
dx

∆(G)
≤ ∆3(G)

∑
x∈V (G)

dx
∆(G)

≤ ∆3(G)E(G).

So, we have,

E(G) ≥ F (G)

∆3(G)
.

Moreover, according to the above inequalities and considering the fact

that E(vx) =
dx

∆(G)
if and only if G ∼= Kd,d, equality holds if and only if

G ∼= tK∆,∆ and the we are done.
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Now, we improve the stated upper bound for M1(G) in Theorem 17 for

quadrangle-free graphs.

Theorem 19. Let G be a quadrangle-free graph. Then

M1(G) ≤ ∆(G)
√
2∆(G)− 1E(G).

Proof. The proof is straightforward by applying m ≥ 1
2∆M1(G) to the

inequality of Theorem 5.

Theorem 20. Let G be a graph of size m. Then√
E(G) ≥ SO(G)√

m∆3(G)
.

Proof. By Cauchy-Schwartz’s Inequality, we have

SO(G) =
∑

xy∈E(G)

√
d2x + d2y ≤

√
m

∑
xy∈E(G)

(d2x + d2y)

≤
√
m

∑
x∈V (G)

d3x =

√
m

∑
x∈V (G)

∆(G)d2x
dx

∆(G)

≤
√
m∆3(G)E(G).

So, we have √
E(G) ≥ SO(G)√

m∆3(G)

and the result follows.

Theorem 21. Let G be a graph of order n. Then√
E(G) ≥ M1(G)√

n∆2(G)
.

Proof. By Cauchy-Schwartz’s Inequality, we have

M1(G) =
∑

x∈V (G)

d2x

≤
√
n

∑
x∈V (G)

d4x

=

√
n

∑
x∈V (G)

∆(G)d3x
dx

∆(G)

≤
√

n∆4(G)E(G).

Thus, we have
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E(G) ≥ M1(G)√

n∆2(G)

and the proof is complete.
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