Relations between Energy and Sombor Index

Saieed Akbari ${ }^{a}$, Mohammad Habibi ${ }^{b, *}$, Samane Rabizadeh ${ }^{b}$
${ }^{a}$ Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.
${ }^{b}$ Department of Mathematics, Tafresh University, Tafresh, 39518-79611, Iran.
s_akbari@sharif.edu, mhabibi@tafreshu.ac.ir, samane.rabizadeh@tafreshu.ac.ir

(Received March 10, 2024)

Abstract

Let G be an arbitrary simple graph. The energy of G is defined as the sum of absolute values of all eigenvalues of its adjacency matrix and denoted by $\mathcal{E}(G)$. Also, the Sombor index of G is defined as $S O(G)=\sum_{x y \in E(G)} \sqrt{d_{x}^{2}+d_{y}^{2}}$, where d_{x} and d_{y} are the degree of vertices x and y in G, respectively. In this paper, we provide the upper and lower bounds for the Sombor index of G in terms of its energy. For every bipartite graph G, it was proved that $\mathcal{E}(G) \leq \sqrt{2 / \delta^{3}(G)} S O(G)$, where δ is a minimum degree of G. We show that this result holds for any arbitrary graph. Also, we prove $\mathcal{E}(G) \leq S O(G) /(\sqrt{2} \delta(G))$, if $\delta(G) \geq 4$. Moreover, we show that $\sqrt{\mathcal{E}(G)} \geq S O(G) / \sqrt{m \Delta^{3}(G)}$, where Δ and m are maximum degree and size of G, respectively. Furthermore, we improve some of the stated inequalities between energy and degree based indices of graphs, like the first Zagreb index and the forgotten index, in the existing literature.

[^0]
1 Introduction

Let $G=(V(G), E(G))$ be a simple graph, where $V(G)$ and $E(G)$ the vertex set and the edge set of G, respectively. By the order (size) of G, we mean the number of its vertices (edges). The maximum and minimum degrees of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The adjacency matrix of G, denoted by $A(G)$, is an $n \times n$ matrix whose (i, j)-entry is 1 if v_{i} and v_{j} are adjacent and 0 otherwise. In this paper, the energy of a graph G, is shown by $\mathcal{E}(G)$ and is defined as the sum of the absolute values of its adjacency eigenvalues (see [11]). The Sombor index, the first Zagreb index and the forgotten index of G, are defined as follows, respectively:

$$
\begin{gathered}
S O(G)=\sum_{x y \in E(G)} \sqrt{d_{x}^{2}+d_{y}^{2}} ; \\
M_{1}(G)=\sum_{x y \in E(G)}\left(d_{x}+d_{y}\right) ; \\
F(G)=\sum_{x y \in E(G)}\left(d_{x}^{2}+d_{y}^{2}\right),
\end{gathered}
$$

where d_{x} is the degree of vertex x. Some results for the mentioned indices can be found in [1], [3], [6], [7], [10], [12], [13], [14] and the references therein.

By [5], the energy of the vertex v_{i} of a graph G is given by

$$
\mathcal{E}\left(v_{i}\right)=\sum_{i=1}^{n}|A(G)|_{i i} \quad \text { for } i=1, \ldots, n,
$$

where $|A|=\left(A A^{*}\right)^{1 / 2}$ and A is the adjacency matrix of G. In [20], the authors for an edge $e=x y \in E(G)$ defined $\mathcal{E}(e)=\frac{\mathcal{E}(x)}{d_{x}}+\frac{\mathcal{E}(y)}{d_{y}}$ and obtained the following:

$$
\mathcal{E}(G)=\sum_{e \in E(G)} \mathcal{E}(e)=\sum_{x y \in E(G)}\left(\frac{\mathcal{E}(x)}{d_{x}}+\frac{\mathcal{E}(y)}{d_{y}}\right) .
$$

2 Preliminaries

We start this section by stating the following upper and lower bounds for the energy of a vertex which will be useful in proving the results of the article

Theorem 1. [4, Pro. 3.2] For a graph G and a vertex $x \in V(G)$, we have $\mathcal{E}_{G}(x) \leq \sqrt{d_{x}}$ with equality if and only if the connected component containing v_{x} is isomorphic to the star graph $K_{1, n-1}$ and x is its center.

Theorem 2. [4, Pro. 3.3] Let G be a connected graph with at least one edge. Then $\mathcal{E}_{G}(x) \geq \frac{d_{x}}{\Delta(G)}$, for all $x \in V(G)$. Equality holds if and only if G is isomorphic to complete bipartite graph $K_{d, d}$.

Theorem 3. [4, Thm. 3.6] Let G be a graph with at least one edge. Then $\mathcal{E}_{G}\left(v_{i}\right) \geq \sqrt{\frac{d_{i}}{\Delta(G)}}$, for all $v_{i} \in V(G)$.

The following lower bound for the energy of regular graphs, in terms of the order and the degree of regularity of graph, was stated in [9].

Theorem 4. [9, Cor. 4] If G is a regular triangle and quadrangle-free graph of order n, then $\mathcal{E}(G) \geq \frac{n \Delta}{\sqrt{2 \Delta-1}}$.

Now, we prove the above result for quadrangle-free graphs.
Theorem 5. Let G be a quadrangle-free graph of size m. Then

$$
\mathcal{E}(G) \geq \frac{2 m}{\sqrt{2 \Delta-1}}
$$

Proof. We have $\mathcal{E}(G) \geq \frac{4 m^{2}}{\sqrt{\left(2 M_{1}(G)-2 m\right) 2 m}}$, by [16, Page 2] and [15, Pro. 4]. Also $M_{1}(G) \leq 2 m \Delta$. Thus

$$
\mathcal{E}(G) \geq \frac{4 m^{2}}{\sqrt{(4 m \Delta-2 m) 2 m}}=\frac{4 m^{2}}{2 m \sqrt{2 \Delta-1}}=\frac{2 m}{\sqrt{2 \Delta-1}}
$$

and the result follows.

As a final result of this section, we state the following lemma which is used in the sequel.

Lemma 1. Let $x, y \geq 4$ be two real numbers. Then $\sqrt{x^{2}+y^{2}} \geq \sqrt{2 x}+$ $\sqrt{2 y}$.

Proof. Clearly, both $x(x-4)$ and $y(y-4)$ are non-negative. So $x^{2}-2 x \geq 2 x$ and $y^{2}-2 y \geq 2 y$. Thus $x^{2}+y^{2}-2 x-2 y \geq 2 x+2 y \geq 2 \sqrt{4 x y}$ and
consequently, $x^{2}+y^{2} \geq 2 x+2 y+2 \sqrt{4 x y}=(\sqrt{2 x}+\sqrt{2 y})^{2}$. This implies that $\sqrt{x^{2}+y^{2}} \geq \sqrt{2 x}+\sqrt{2 y}$ and we are done.

3 Main results

The following upper bound for energy of an arbitrary graph G with $\delta(G) \geq$ 2 was introduced in terms of the Sombor index of G.

Theorem 6. [18, Pro. 3.4] Let G be a graph with $\delta(G) \geq 2$. Then we have $\mathcal{E}(G) \leq S O(G)$.

Next, the authors in [19] prove the following result that gives an inequality between energy and Sombor index of a graph.

Theorem 7. [19, Thm. 3.1] Let G be a connected graph with n vertices. If $n \geq 3$, then $\mathcal{E}(G)<S O(G)$.

Later, in Theorem 3 of [2] this bound was improved as follows:
Theorem 8. If G is a connected graph of order n which is not $P_{n}(n \leq 8)$, then $\mathcal{E}(G) \leq \frac{S O(G)}{2}$.

As a first result, we provide the following upper bound for the energy of graphs in terms of Sombor index and minimum degree.
Theorem 9. Let G be a graph and $\delta(G) \geq 4$. Then $\mathcal{E}(G) \leq \frac{S O(G)}{\sqrt{2} \delta(G)}$.
Proof. Note that:

$$
\begin{aligned}
\mathcal{E}(G) & =\sum_{x y \in E(G)}\left(\frac{\mathcal{E}(x)}{d_{x}}+\frac{\mathcal{E}(y)}{d_{y}}\right) \leq \sum_{x y \in E(G)}\left(\frac{\sqrt{d_{x}}}{d_{x}}+\frac{\sqrt{d_{y}}}{d_{y}}\right) \\
& =\sum_{x y \in E(G)}\left(\frac{1}{\sqrt{d_{x}}}+\frac{1}{\sqrt{d_{y}}}\right)=\sum_{x y \in E(G)}\left(\frac{\sqrt{d_{x}}+\sqrt{d_{y}}}{\sqrt{d_{x}} \sqrt{d_{y}}}\right) \\
& \leq \frac{1}{\sqrt{2} \delta(G)} \sum_{x y \in E(G)}\left(\sqrt{2 d_{x}}+\sqrt{2 d_{y}}\right)
\end{aligned}
$$

Now, by Lemma 1 we have,

$$
\mathcal{E}(G) \leq \frac{1}{\sqrt{2} \delta(G)} \sum_{x y \in E(G)} \sqrt{d_{x}^{2}+d_{y}^{2}}
$$

Therefore, $\mathcal{E}(G) \leq \frac{S O(G)}{\sqrt{2} \delta(G)}$ and the result follows.
In [8] the authors proved the following result for bipartite graphs.
Theorem 10. [8, Thm. 4] Let G be a bipartite graph. Then $\mathcal{E}(G) \leq$ $\sqrt{\frac{2}{\delta^{3}(G)}} S O(G)$.

Now, in the following theorem, we prove this bound for an arbitrary graph.

Theorem 11. Let G be graph. Then $\mathcal{E}(G) \leq \sqrt{\frac{2}{\delta^{3}(G)}} S O(G)$. Moreover, the equality holds if and only if each connected component of G is isomorphic to K_{2}.

Proof. By the inequality $\sqrt{a}+\sqrt{b} \leq \sqrt{2} \sqrt{a+b}$, we have:

$$
\begin{aligned}
\mathcal{E}(G) & \leq \sum_{x y \in E(G)} \frac{\sqrt{d_{x}}+\sqrt{d_{y}}}{\sqrt{d_{x} d_{y}}} \\
& \leq \sqrt{2} \sum_{x y \in E(G)} \frac{\sqrt{d_{x}+d_{y}}}{\sqrt{d_{x} d_{y}}} \\
& \leq \frac{\sqrt{2}}{\delta(G)} \sum_{x y \in E(G)} \sqrt{\frac{d_{x}^{2}}{d_{x}}+\frac{d_{y}^{2}}{d_{y}}} \\
& \leq \frac{\sqrt{2}}{\delta(G) \sqrt{\delta(G)}} \sum_{x y \in E(G)} \sqrt{d_{x}^{2}+d_{y}^{2}} \\
& =\sqrt{\frac{2}{\delta^{3}(G)}} S O(G)
\end{aligned}
$$

Also, if the equality holds, then clearly G is regular and consequently $S O(G)=\frac{n r^{2}}{\sqrt{2}}$, where r is the degree of regularity of graph G and $n=$ $|V(G)|$. Thus, we have $\mathcal{E}(G)=\frac{\sqrt{2}}{r \sqrt{r}} \cdot \frac{n r^{2}}{\sqrt{2}}=n \sqrt{r}$. By Theorem 1, this implies that every connected component of G is isomorphic to K_{2}, and the proof is complete.

In [18] the following result was proved for regular graphs.
Theorem 12. [18, Thm. 3.2] Let G be a regular graph. Then $S O(G) \leq$ $\mathcal{E}(G) \Delta^{2}(G)$.

Here, we improve the bounds of Theorem 12 for an arbitrary graph.

Theorem 13. Let G be a graph of size m. Then

$$
S O(G) \leq \mathcal{E}(G) \Delta^{2}(G)-\frac{m \sqrt{\Delta(G)}}{2}
$$

Proof. By Theorem 3 and considering the fact that $\sqrt{x}+\sqrt{y} \geq \sqrt{x+y}+\frac{1}{2}$ for $x, y \geq 1$, we have:

$$
\begin{aligned}
\mathcal{E}(G) & =\sum_{x y \in E(G)}\left(\frac{\mathcal{E}(x)}{d_{x}}+\frac{\mathcal{E}(y)}{d_{y}}\right) \\
& \geq \frac{1}{\sqrt{\Delta(G)}} \sum_{x y \in E(G)}\left(\frac{1}{\sqrt{d_{x}}}+\frac{1}{\sqrt{d_{y}}}\right) \\
& \geq \frac{1}{\sqrt{\Delta(G)}} \sum_{x y \in E(G)} \frac{\sqrt{d_{x}}+\sqrt{d_{y}}}{\sqrt{d_{x} d_{y}}} \\
& \geq \frac{1}{\Delta(G) \sqrt{\Delta(G)}} \sum_{x y \in E(G)}\left(\sqrt{d_{x}+d_{y}}+\frac{1}{2}\right) \\
& \geq \frac{1}{\Delta(G) \sqrt{\Delta(G)}} \sum_{x y \in E(G)} \sqrt{\frac{d_{x}^{2}}{d_{x}}+\frac{d_{y}^{2}}{d_{y}}}+\frac{m}{2 \Delta(G) \sqrt{\Delta(G)}} \\
& \geq \frac{1}{\Delta^{2}(G)} S O(G)+\frac{m}{2 \Delta(G) \sqrt{\Delta(G)}}
\end{aligned}
$$

Therefore,

$$
S O(G) \leq \mathcal{E}(G) \Delta^{2}(G)-\frac{m \sqrt{\Delta(G)}}{2}
$$

and we are done.
In [17] another upper bound for the Sombor index of regular graph was proven as follows:

Theorem 14. [17, Thm. 10] Let G be a regular graph. Then $S O(G) \leq$ $\frac{\Delta^{2}(G) \mathcal{E}(G)}{\sqrt{2}}$.

In the following, we prove the bound of Theorem 14 for an arbitrary quadrangle-free graph.

Theorem 15. Let G be an arbitrary quadrangle-free graph. Then

$$
S O(G) \leq \frac{\Delta(G) \sqrt{2 \Delta(G)-1}}{\sqrt{2}} \mathcal{E}(G)
$$

Proof. The proof is straightforward by applying $m \geq \frac{1}{\sqrt{2} \Delta} S O(G)$ to the inequality of Theorem 5.

In Theorems 2.1 and 2.2 of [20] the following result was proved.
Theorem 16. Let G be a graph. Then

$$
\begin{aligned}
& \sqrt{\frac{\delta(G)}{\Delta^{5}(G)}} M_{1}(G) \leq \mathcal{E}(G) \leq \frac{\sqrt{\Delta(G)}}{\delta^{2}(G)} M_{1}(G) \\
& \sqrt{\frac{\delta^{3}(G)}{\Delta^{9}(G)}} F(G) \leq \mathcal{E}(G) \leq \frac{\sqrt{\Delta^{3}(G)}}{\delta^{4}(G)} F(G)
\end{aligned}
$$

Now, in the following two theorems we improve these bounds as follows:
Theorem 17. Let G be a graph. Then

$$
\frac{M_{1}(G)}{\Delta^{2}(G)} \leq \mathcal{E}(G) \leq \frac{M_{1}(G)}{\delta(G) \sqrt{\delta(G)}}
$$

These inequalities become equalities for $G \cong t K_{2}$ and $G \cong t K_{\Delta, \Delta}$, respectively.

Proof. Note that

$$
\begin{aligned}
M_{1}(G) & =\sum_{x \in V(G)} d_{x}^{2}=\sum_{x \in V(G)} d_{x} \sqrt{d_{x}} \sqrt{d_{x}} \\
& \geq \delta(G) \sqrt{\delta(G)} \sum_{x \in V(G)} \sqrt{d_{x}} \\
& \geq \delta(G) \sqrt{\delta(G)} \mathcal{E}(G) .
\end{aligned}
$$

So, we get

$$
\mathcal{E}(G) \leq \frac{M_{1}(G)}{\delta(G) \sqrt{\delta(G)}}
$$

Also, according to the above inequalities and considering the fact that $\mathcal{E}\left(v_{x}\right)=\sqrt{d_{x}}$ if and only if $G \cong K_{1, n}$, equality holds if and only if $G \cong t K_{2}$, for some positive integer t.
On the other hand,

$$
\begin{aligned}
M_{1}(G) & =\sum_{x \in V(G)} d_{x}^{2}=\sum_{x \in V(G)} \Delta(G) d_{x} \frac{d_{x}}{\Delta(G)} \\
& \leq \Delta^{2}(G) \sum_{x \in V(G)} \frac{d_{x}}{\Delta(G)} \\
& \leq \Delta^{2}(G) \mathcal{E}(G) .
\end{aligned}
$$

Thus we obtain that

$$
\mathcal{E}(G) \geq \frac{M_{1}(G)}{\Delta^{2}(G)}
$$

Finally, according to the above inequalities and considering the fact that $\mathcal{E}\left(v_{x}\right)=\frac{d_{x}}{\Delta(G)}$ if and only if $G \cong K_{d, d}$, equality holds if and only if $G \cong t K_{\Delta, \Delta}$, for some positive integer t and the proof is complete.

Theorem 18. Let G be a graph. Then

$$
\frac{F(G)}{\Delta^{3}(G)} \leq \mathcal{E}(G) \leq \frac{F(G)}{\delta^{2}(G) \sqrt{\delta(G)}}
$$

These inequalities become equalities for $G \cong t K_{2}$ and $G \cong t K_{\Delta, \Delta}$, respectively.

Proof. We have

$$
\begin{aligned}
F(G) & =\sum_{x y \in E(G)}\left(d_{x}^{2}+d_{y}^{2}\right)=\sum_{x \in V(G)} d_{x}^{3} \\
& =\sum_{x \in V(G)} d_{x}^{2} \sqrt{d_{x}} \sqrt{d_{x}} \geq \delta^{2}(G) \sqrt{\delta(G)} \sum_{x \in V(G)} \sqrt{d_{x}} \\
& \geq \delta^{2}(G) \sqrt{\delta(G)} \mathcal{E}(G) .
\end{aligned}
$$

Therefore,

$$
\mathcal{E}(G) \leq \frac{F(G)}{\delta^{2}(G) \sqrt{\delta(G)}}
$$

Also, according to the above inequalities and considering the fact that $\mathcal{E}\left(v_{x}\right)=\sqrt{d_{x}}$ if and only if $G \cong K_{1, n}$, equality holds if and only if $G \cong t K_{2}$, for some positive integer t.
On the other hand,

$$
\begin{aligned}
F(G) & =\sum_{x y \in E(G)}\left(d_{x}^{2}+d_{y}^{2}\right)=\sum_{x \in V(G)} d_{x}^{3} \\
& =\sum_{x \in V(G)} \Delta(G) d_{x}^{2} \frac{d_{x}}{\Delta(G)} \leq \Delta^{3}(G) \sum_{x \in V(G)} \frac{d_{x}}{\Delta(G)} \\
& \leq \Delta^{3}(G) \mathcal{E}(G) .
\end{aligned}
$$

So, we have,

$$
\mathcal{E}(G) \geq \frac{F(G)}{\Delta^{3}(G)} .
$$

Moreover, according to the above inequalities and considering the fact that $\mathcal{E}\left(v_{x}\right)=\frac{d_{x}}{\Delta(G)}$ if and only if $G \cong K_{d, d}$, equality holds if and only if $G \cong t K_{\Delta, \Delta}$ and the we are done.

Now, we improve the stated upper bound for $M_{1}(G)$ in Theorem 17 for quadrangle-free graphs.

Theorem 19. Let G be a quadrangle-free graph. Then

$$
M_{1}(G) \leq \Delta(G) \sqrt{2 \Delta(G)-1} \mathcal{E}(G)
$$

Proof. The proof is straightforward by applying $m \geq \frac{1}{2 \Delta} M_{1}(G)$ to the inequality of Theorem 5 .

Theorem 20. Let G be a graph of size m. Then

$$
\sqrt{\mathcal{E}(G)} \geq \frac{S O(G)}{\sqrt{m \Delta^{3}(G)}}
$$

Proof. By Cauchy-Schwartz's Inequality, we have

$$
\begin{aligned}
S O(G) & =\sum_{x y \in E(G)} \sqrt{d_{x}^{2}+d_{y}^{2}} \leq \sqrt{m \sum_{x y \in E(G)}\left(d_{x}^{2}+d_{y}^{2}\right)} \\
& \leq \sqrt{m \sum_{x \in V(G)} d_{x}^{3}}=\sqrt{m \sum_{x \in V(G)} \Delta(G) d_{x}^{2} \frac{d_{x}}{\Delta(G)}} \\
& \leq \sqrt{m \Delta^{3}(G) \mathcal{E}(G)}
\end{aligned}
$$

So, we have

$$
\sqrt{\mathcal{E}(G)} \geq \frac{S O(G)}{\sqrt{m \Delta^{3}(G)}}
$$

and the result follows.

Theorem 21. Let G be a graph of order n. Then

$$
\sqrt{\mathcal{E}(G)} \geq \frac{M_{1}(G)}{\sqrt{n} \Delta^{2}(G)}
$$

Proof. By Cauchy-Schwartz's Inequality, we have

$$
\begin{aligned}
M_{1}(G) & =\sum_{x \in V(G)} d_{x}^{2} \\
& \leq \sqrt{n \sum_{x \in V(G)} d_{x}^{4}} \\
& =\sqrt{n \sum_{x \in V(G)} \Delta(G) d_{x}^{3} \frac{d_{x}}{\Delta(G)}} \\
& \leq \sqrt{n \Delta^{4}(G) \mathcal{E}(G)} .
\end{aligned}
$$

Thus, we have

$$
\sqrt{\mathcal{E}(G)} \geq \frac{M_{1}(G)}{\sqrt{n} \Delta^{2}(G)}
$$

and the proof is complete.

References

[1] A. Aashtab, S. Akbari, S. Madadinia, M. Noei, F. Salehi, On the graphs with minimum Sombor index, MATCH Commun. Math. Comput. Chem. 88 (2022) 553-559.
[2] S. Akbari, M. Habibi, S. Rouhani, A note on an inequality between energy and Sombor index of a graph, MATCH Commun. Math. Comput. Chem. 90 (2023) 765-771.
[3] A. Alidadi, A. Parsian, H. Arianpoor, The minimum Sombor index for unicyclic graphs with fixed diameter, MATCH Commun. Math. Comput. Chem. 88 (2022) 561-572.
[4] O. Arizmendi, J. F. Hidalgo, O. Juarez-Romero, Energy of a vertex, Lin. Algebra Appl. 557 (2018) 464-495.
[5] O. Arizmendi, O. Juarez-Romero, On bounds for the energy of graphs and digraphs, Contemp. Math. 709 (2018) 1-20.
[6] A. Asok, J. V. Kureethara, Characterization of the Forgotten topological index and the hyper-Zagreb index for the unicyclic graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 739-751.
[7] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.
[8] I. Gutman, N. K. Gürsoy, A. Gürsoy, A. Ülker, New bounds on Sombor index, Commun. Comb. Optim. 8(2) (2023) 305-311.
[9] I. Gutman, S. Zare Firoozabadi, J. A. de la Peña, J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 435-442.
[10] B. Horoldagva, C. Xu, On Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 86 (2021) 703-713.
[11] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[12] H. Liu, I. Gutman, L. You, Y. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem. 60 (2022) 771-798.
[13] J. B. Liu, M. M. Matejić, E. I. Milovanović, I. Z. Milovanović, Some new inequalities for the Forgotten topological index and coindex of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 719738.
[14] H. Lin, J. Qian, Bounding the first Zagreb index of a tree in term of its repetition number, MATCH Commun. Math. Comput. Chem. $\mathbf{8 9}$ (2023) 723-731.
[15] V. Nikiforov, The energy of C_{4}-free graphs of bounded degree, Lin. Algebra Appl. 428 (2008) 2569-2573.
[16] J. A. de la Peña, L. Mendoza, J. Rada, Comparing momenta and π-electron energy of benzenoid molecules, Discr. Math. 302 (2005) 77-84.
[17] M. S. Reja, S. Abu. Nayeem, On Sombor index and graph energy, MATCH Commun. Math. Comput. Chem., 89 (2023) 451-466.
[18] A. Ülker, A. Gürsoy, N. K. Gürsoy, The energy and Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 51-58.
[19] A. Ülker, A. Gürsoy, N. K. Gürsoy, I. Gutman, Relating graph energy and Sombor index, Discr. Math. Lett. 8 (2022) 6-9.
[20] Z. Yan, X. Zheng, J. Li, Some degree-based topological indices and (normalized Laplacian) energy of graphs, Discr. Math. Lett. 11 (2023) 19-26.

[^0]: *Corresponding author.

