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Abstract

Gutman defined the energy E(G) of a simple graph G with vertex
set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em} as
the sum of the absolute values of eigenvalues of the adjacency matrix
of G, which has been studied extensively in mathematical chemistry.
In this note, we consider the relation between the energies of G and
the edge-deleted subgraphs of G and prove that for any positive
integer k ≤ m− 1,(

m− 1

k

)
E(G) ≤

∑
M∈Φk(G)

E(G−M),

where Φk(G) = {M ⊂ E(G)||M | = k}. As corollary, we show that
if m ≥ 2, then

E(G) ≤
√
2m+

4− 2
√
2

m− 1
p(G; 2) = 2m− 4− 2

√
2

m− 1

n∑
i=1

(
di
2

)
,

where p(G; 2) is the number of 2-matchings of G and di is the degree
of vi in G.

1 Introduction

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G) = {e1, e2, . . . , em} and let A(G) be the adjacency matrix of G.
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Gutman [6] defined the energy of G, denoted by E(G), as the sum of the

absolute values of eigenvalues of A(G), which has been studied extensively

in mathematical chemistry (see for example the book [8] and survey [7]).

Let Ps,Ks and K1,s−1 denote the path, complete graph and star with

s vertices, respectively. Denote by p(G; i) the number of i-matchings of G.

we use G∪H to denote the vertex disjoint union of two graphs G and H.

By using the singular-value inequality found by Fan [5], Day and So [3]

proved that for any two Hermitian matrices A and B of order n, then

E(A+B) ≤ E(A) + E(B), (1)

where E(A) is the sum of the absolute values of eigenvalues of A. By (1),

they proved that for any edge e of G, then

E(G) ≤ 2 + E(G− e) (2)

with equality if and only if e is one of components of G, which results in

the following upper bound of E(G) [10]:

E(G) ≤ 2m (3)

with equality if and only if G = mK2 ∪ (n− 2m)K1, which is a previously

known upper bound of E(G) in [2]. By using repeatedly (2) to all edges of

G, except to those edges which are incident with a vertex of the maximum-

degree, then the following result can be obtained [10].

E(G) ≤ 2m− 2∆ + 2
√
∆

with equality if and only if G = K1,∆ ∪ (m−∆)K2 ∪ (n− 2m+∆− 1)K1,

where ∆ is the maximum degree of G.

If E1 is a cut set of of G, Day and So [4] proved that

E(G) ≥ E(G− E1),

where G− E1 is the graph obtained from G by deleting all edges in E1.

On the other hand, Akbari, Ghorbani and Oboudi [1] proved that for
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any complete multipartite graph Kn1,n2,...,nk
, then

E(Kn1,n2,...,nk
− e) > E(Kn1,n2,...,nk

)

for every edge e ∈ E(E(Kn1,n2,...,nk
)). They also considered the change of

graph energy after adding some edges and proved that for any graphG with

m edges and every t = 1, 2, . . . ,m−1, there exist at least

⌈(
m− 1

t− 1

)
E(G)
2t

⌉
t-subsets S of E(G) such that E(G + S) > E(G). Particularly, for any

graph G, there exist at least ⌈E(G)/2⌉ edges e such that E(G+ e) > E(G).

Further results on the energy of edge-deleted subgraphs of a graph see

for example [1, 9, 11,12].

In this short note, we consider the relation between the energies of G

and all k-edge-deleted subgraphs of G, and some new upper bounds of

E(G) are obtained.

2 Main results

In this section, we prove mainly the following result.

Theorem 1. Let G be a simple graph with edge set E(G) = {e1, e2, . . . ,
em}, and let Φk(G) be the set of all subsets M of E(G) satisfying |M | = k

for some positive integer k ≤ m− 1. Then(
m− 1

k

)
E(G) ≤

∑
M∈Φk(G)

E(G−M), (4)

with equality if each component of G is K2 or K1.

Proof. Obviously, if each component of G is K2 or K1, then the equality

holds.

Note that A(G) denotes the adjacency matrix of G. We first prove that

A(G) and {A(G−M)|M ∈ Φk(G)} satisfy the following equality:(
m− 1

k

)
A(G) =

∑
M∈Φk(G)

A(G−M). (5)
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Set

B =

(
m− 1

k

)
A(G) = (bij)n×n, C =

∑
M∈Φk(G)

A(G−M) = (cij)n×n.

It is obvious that if vivj /∈ E(G), then bij = cij = 0. If vivj ∈ E(G),

then bij =

(
m− 1

k

)
. On the other hand, there exist

(
m− 1

k − 1

)
subsets M

in Φk(G) each of which contains edge vivj and hence there exist

(
m

k

)
−(

m− 1

k − 1

)
=

(
m− 1

k

)
subgraphs G−M in G each of which contains edge

vivj . So cij =

(
m− 1

k

)
, and (5) holds.

The theorem is immediate from (5) and (1).

The following corollary is immediate from Theorem 1.

Theorem 2. Let G be a simple graph with m edges. Then for any positive

integer k ≤ m− 1, then there exists an M∗ ∈ Φk(G) such that

E(G) ≤ m

m− k
E(G−M∗).

Particularly, there exists an edge e∗ ∈ E(G) such that

E(G) ≤ m

m− 1
E(G− e∗).

Proof. If we set E(G − M∗) = max{E(G − M)|M ∈ Φk(G)}, then the

corollary is immediate.

Remark. Set k = m− 1 in Theorem 1. Then we can obtain (3).

Corollary 1. Let G be a simple graph with vertex set V (G) = {v1, v2, . . . ,
vn} and edge set E(G) = {e1, e2, . . . , em}. Then

E(G) ≤
√
2m+

4− 2
√
2

m− 1
p(G; 2), (6)
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which is equivalent to

E(G) ≤ 2m− 4− 2
√
2

m− 1

n∑
i=1

(
di
2

)
, (7)

where di is the degree of vertex vi in G.

Proof. We set k = m− 2 in Theorem 1. Then(
m− 1

m− 2

)
E(G) ≤

∑
M∈Φm−2(G)

E(G−M),

that is,

(m− 1)E(G) ≤
∑

M∈Φm−2(G)

E(G−M). (8)

For any M ∈ Φm−2(G), since |M | = m − 2, G − M has two edges. So

G − M is the vertex-disjoint union of a P3 and n − 3 isolated vertices

(n − 3)K1, i.e., G − M = P3 ∪ (n − 3)K1, or the vertex-disjoint union

2P2 of two 2-matchings of G and n − 4 isolated vertices (n − 4)K1, i.e.,

G−M = 2P2 ∪ (n− 4)K1. It is obvious that

E(P3 ∪ (n− 3)K1) = E(P3) = 2
√
2,

E(2P2 ∪ (n− 2)K1) = E(2P2) = 4.

Note that Φm−2(G) has p(G; 2) subgraphs each of which is isomorphic to

2P2∪(n−4)K1 and
(

m
m−2

)
−p(G; 2) subgraphs each of which is isomorphic

to P3 ∪ (n − 3)K1. Similarly, Φm−2(G) has
∑n

i=1

(
di

2

)
subgraphs each of

which is isomorphic to P3 ∪ (n − 3)K1 and
(

m
m−2

)
−

∑n
i=1

(
di

2

)
subgraphs

each of which is isomorphic to 2P2 ∪ (n− 4)K1. Then∑
M∈Φm−2(G)

E(G−M) = p(G; 2)E(2P2) +
[(

m
m−2

)
− p(G; 2)

]
E(P3)

= 4p(G; 2) + [m(m− 1)− 2p(G; 2)]
√
2

= (4− 2
√
2)p(G; 2) +m(m− 1)

√
2.

,



422 ∑
M∈Φm−2(G)

E(G−M) = E(P3)
n∑

i=1

(
di

2

)
+

[(
m

m−2

)
−

n∑
i=1

(
di

2

)]
E(2P2)

= 2
√
2

n∑
i=1

(
di

2

)
+ 4

[
1
2m(m− 1)−

n∑
i=1

(
di

2

)]
= 2m(m− 1)− (4− 2

√
2)

n∑
i=1

(
di

2

)
.

.

Then (6) and (7) are immediate from (8). The corollary has been proved.

By Corollary 1, the following result follows.

Corollary 2. Let G be a simple graph with vertex set V (G) = {v1, v2, . . . ,
vn} and edge set E(G) = {e1, e2, . . . , em}. If the minimum degree δ of G

satisfies δ ≥ 2, then

E(G) ≤ 2m− 4− 2
√
2

m− 1
n. (9)

Remark. In the theorem above, if k = 1, then

(m− 1)E(G) ≤
∑

e∈E(G)

E(G− e). (10)

Set k = m− 3 in Theorem 1. Then we can obtain the following result.

Corollary 3. Let G be a simple graph with vertex set V (G) = {v1, v2, . . . ,
vn} and edge set E(G) = {e1, e2, . . . , em}. Then

E(G) ≤
4[2a+ 3p(G; 3) +

√
5b+

√
3

n∑
i=1

(
di
3

)
+ (1 +

√
2)c]

(m− 1)(m− 2)
, (11)

where a = ΓG(K3), b = ΓG(P4) and c = ΓG(P3 ∪ P2), and ΓG(H) is the

number of subgraphs of G each of which is isomorphic to H. Particularly,

if G is a bipartite 3-regular graph, then

E(G) ≤ 4[3p(G; 3) +
√
5b+

√
3n+ (1 +

√
2)c]

(m− 1)(m− 2)
. (12)
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