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Abstract

The idea of eigen-solution ”persistence” from a suitable subgraph
into a parent (molecular) graph G are formalized, in different ways
for different cases. Most of it is based on the identification of suit-
ably separated subgraphs sharing common eigenvalues, such that the
subgraphs are all isomorphic. We recall Hall’s embedding method to
identify adjacency-matrix eigen-solutions of a graph G as persistent
from suitable disjoint subgraphs. General rigorous results are ob-
tained for special embeddings, including cases where the subgraphs
need not be isomorphic, but rather only share common eigenvalues.
The question of accidental degeneracies is addressed, as well as the
role of some sort of ”local symmetries”. Especially the mode of in-
terconnection amongst a suitable family of subgraphs is addressed.

1 Preview & framework

Graph eigen-solutions have been a long-considered topic [1–3]– with some

early attention to isospectral pairs of graphs. Indeed there has been much

study of isospectrality (e.g. [4–16] and many more), though there are sev-

eral other interesting regularities. Some attention has been directed to

the occurrence of excessive (eigenvalue) degeneracies [17–23], sometimes

https://doi.org/10.46793/match.92-2.339K


340

viewed as manifestations of ”local” structures [24–32]. Since degeneracies

arose early on in the context of symmetry (and group theory), there has

been a natural effort [33–39] to investigate excessive degeneracies in terms

of symmetries, most simply in terms of a graph’s automorphism group,

which generally goes beyond standard point-group symmetries. The much

studied [40–45] eigen-solution to the ”Bethe tree” manifests high degen-

eracies. The more general related class of dendrimers also has been much

studied, both experimentally [46–51] & theoretically [52–57] - with the

theory revealing high degeneracies for the associated adjacency matrices,

though often the associated high degeneracies are not noted. Another

special topic concerns eigen-features of a subgraph ”persisting” up to the

parent graph (containing the subgraph), such work appearing (seemingly

first) with George Hall [58–60] (and others [61–63]), framing his ideas in

terms of ”local” reflection symmetries. Many of these special topics relate

back further to an earlier topic of null-eigenvalue eigenstates of a graph,

as addressed with C. H. Longuet-Higgins (simple) [65] ”0 sum rule”. This

& a host of other early works are discussed in [1–3].

The ideas of degeneracy & symmetry are in fact very fundamental to

quantum theory in general. From the very first, degeneracy was noted

for the H atom, manifesting an SO(4) accidental symmetry [65] (beyond

O(3) ) and accounting for the degeneracy of the different angular momenta

l = 0 → n found in the quantum solutions [66, 67] similar ideas apply [68]

for the harmonic oscillator. And there is the von Neumann-Wigner non-

crossing rule [69, 70], somewhat generally forbidding accidental degenera-

cies - and being useful far beyond the original case of diatomic potential-

energy curves, say to the Woodward-Hoffmann [71] orbital-symmetry con-

servation rules. Overall such ideas are relevant to correlation diagrams,

indicating symmetry relations - see, e.g., [72, 73]. Here we address ques-

tions of degeneracy & symmetry in the special context of simple graphs.

Inter-relations amongst different eigen-persistences are addressed here,

most all concerning special (finitistic) modes of interconnection amongst

subgraphs in a parent graph. Attention is directed to eigen-features of

subgraphs persisting to the parent graph. The present results seek to unify

disparate earlier results, especially on persistence & excessive degeneracy.
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We use graph-theoretic notation, with a graph G specified by its set

V (G) of vertices and a set E(G) of edges connecting pairs of vertices.

Then G is labelled by the members of V (H), and each edge is labelled by

an unordered pair of distinct vertices. A graph H is a subgraph of G if

V (H) ⊆ V (G) and E(H) ⊆ E(G). Such a subgraph is induced if every

edge of G between two vertices of H is also an edge in H. Two graphs

H&K are isomorphic if there is a one-to-one (bijective) correspondence ϕ :

V (H) ↔ V (K) which also gives a bijection between E(H)&E(K). There

is a space spanned by a basis of (orthonormal) vectors, each identified to

a vertex x ∈ V (G), and denoted |x⟩. A graph G then has an adjacency

operator AG which acts on each |x⟩ to give a simple sum over |y⟩ for y

adjacent to x (that is, for y with {x, y} ∈ E(G) ). The operator AG (or

associated matrix) has eigen-solutions

AG|λ,Gi⟩ = λ|λ,Gi⟩ (1)

With eigenvalues λ, for which there is a positive integer number g(λ,G)

of independent eigenvectors |λ,Gi⟩, with i distinguishing any independent

(& orthonormal) solutions. The multi-set of eigenvalues (for independent

eigenvectors) is called the eigen-spectrum to G.

A recollection of Hall’s work is nice preparation. His fragmentive ap-

proach (to eigen-persistence) uses ”reflective” embeddings within the par-

ent graph. For instance, for the benzene 6-cycle G = C6 there is a vertical

reflection along the central dashed line as in figure 1. This inter-changes 2

-vertex ethylene units A&B, for each of which there are two eigen-states

|±, A⟩&|±, B⟩ with eigenvalues ±1. Choosing the upper vertex of each

ethylene to have a + amplitude in each of these eigenfunctions, one may

verify that |+, A⟩ − |+ .B⟩ ≡ |+, AB⟩ has an amplitude = 0 at the bridge

sites between the ethylene subunits, so that there results a benzene eigen-

state with eigen-value +1 and |−, A⟩ − |−, B⟩ ≡ |−, AB⟩ is an eigen-

state of benzene with eigen-value -1 . Thus the ethylene eigenspectrum

is embedded in the benzene eigen-spectrum. Such is usually viewed as a

consequence of G = C6 symmetry diagonalization for a D6 group symme-

try. Hall’s argument extends to pentacene as in the second part of figure
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1, where the ”local” reflections certainly do not represent (global) auto-

morphisms. Here if |λ,A⟩, |λ,B⟩, |λ,C⟩ eigenvectors (of eigenvalue λ) are

reflected into one another by the local reflections, then the combinations

|λ,A⟩− |λ,B⟩+ |λ,C⟩ survive as eigenfunctions of pentacene. Notably the

local symmetry operations should not be local inversions, as in the third

case in figure 1. (There the sites of A & B neighboring a site in the center

ring are not symmetry equivalent, and so should not have correspondent

amplitudes.)

Figure 1. First a C6 benzene graph, with a vertical dashed line indi-
cating the location of a reflection interchanging the two bold-
face ”ethylene” subgraphs. Second a pentacene graph with
three bold-face benzenes, with dashed lines locating ”local”
reflections, of just the two near bold-face benzenes. Third, a
graph with a center of inversion between two benzyl-radical
fragments (but without eigen-persistence).

2 Subgraphs & connectors

Focus is on divisions of a parent graph into suitable disjoint fragment

subgraphs, with some additional sites inter-connecting between fragments.

Our eigen-persistence results involve some further ideas. A graph G

is bipartite (or alternant) iff its vertices can be partitioned into two sets

V∗(G)&V◦(G) such that every edge of G has one vertex in V∗(G) & the

other in V◦(G). Also a subset W ⊆ V (G) has an (open) neighborhood

n(W ) ≡ {v ∈ V (G) : v /∈ W,w ∈ W,&{v, w} ∈ E(G)}. A subgraph H is

induced iff every pair of vertices in V (H) which form an edge G also form

an edge in H.

Now a set F of subgraphs is said to be well-separated iff:

• (1) Every F ∈ F is induced and has no intersection with any other

F ′ ∈ F ;
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• (2) Every site of F ∈ F occurs in n (F ′) for some F ′ ∈ F ;

• (3) For every pair {F, F ′} ⊆ F , either n(F ) = n (F ′) or n(F ) ∩
n (F ′) = ∅.

Moreover, given such a well-separated F for a graph G, we say n(F )

an m-site q-connector iff first m = n(F ) and second q is the number of

distinct F ′ ∈ F for which n (F ′) = m. An example graph G is given in

figure 2, where the four bold-face benzenes (or hexagons) make-up F =

{F1, F2, F3, F4}, numbered from left to right, and the set {u, v} ≡ C12

is a 2-site 2-connector, while {w} ≡ C234 is a 1-site 3-connector. For

this example, the eigen-spectrum (−2,−1,−1,+1,+1,+2) of the bold-face

(benzene) hexagons turns out (via later theorems) to persist in G. In

this graph each of the members of F are isomorphic subgraphs, but our

definition does not demand this, though some or our theorems do. For

such a well-separated F of G there is a set C of distinct connectors, and

an associated derived graph GFC with vertex set V (GFC ) = F ∪ C and

edge set E (GFC ) = {F,C} : F ∈ F , C ∈ C , n(F ) = C}. From the G in

the first part of figure 2, one then obtains the derived graph in the second

part of figure 2. Another example is given in figure 3 showing a graph G

Figure 2. First a graph G with benzene fragments of F in bold-face.
Second, the reduced derived graph, with full dots for ben-
zenes & open dots for connectors.

with a fragment set F made up of three bold-face benzenes with a 2-site

3-connector. Its derived graph is also shown, but note that the fourth

benzene ring at the top of G is not part of either F nor C , and does

not register in the derived graph. Still our theorems (to come) indicates
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that the benzene eigen-spectrum occurs twice, and that with the ethylene

eigen-spectrum (twice in each benzene spectrum) manages to occur 5 times

in G – a 5-fold degeneracy.

Figure 3. Another graph, with three bold face benzenes giving F , and
its derived graph.

In general, the members of F are the fragment graphs whose eigen-

states & eigenvalues are to persist inG. For eigenvalue persistence we mean

that the identical eigenvalues emerge in the larger ”parent” graph, while

for eigen-vector persistence we mean that parent-graph eigenvectors relate

to that of the subgraph in a ”simple way”, by taking appropriate combina-

tions of different local subgraph eigenvectors. Generally we seek to choose

linear combinations of the eigen-vectors for each fragment Fa ∈ F such

that the combination turns out to be an eigenvector to G. The connection

conditions are in terms of a precise characterization of the isomorphisms

amongst the Fa ∈ F and how their ”neighborhoods” intersect.

3 The Hall case

Hall’s illustrative approach entailed isomorphic fragments, with a spe-

cial ”local” relation amongst them - so let’s specialize to m-site q = 2-

connectors. In dealing with isomorphism we introduce a separate base

graph F0, with (bijective) isomorphisms ϕa : V (F0) → V (Fa) for each

Fa ∈ F . We say that F is ϕa− Hall-2-connected in G iff:
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• first, all connectors q = 2, so can be viewed as edges between their

connected fragments of F viewed as the vertex set of a reduced

derived graph GFC↓ which is connected and bipartite;

• second, for each edge {Fa, Fb} of GFC↓ and u ∈ V (F0) the G-edges

from w ∈ n (Fa) ∩ n (Fb) to Fa or Fb satisfy {w, ϕa(u)} ∈ E(G) ⇔
{w, ϕb(u)} ∈ E(G).

Then we have:

Theorem (Hall Theorem 0). Let F be a ϕa-Hall-2-connected in G, with

base subgraph F0 and isomorphism ϕa : F0 → Fa, for each Fa ∈ F . Let λ

be an eigenvalue of F0, with i th eigen-vector |λi, F0⟩ ≡
∑ϵV (F0)

u Cu,λi|u⟩,
and for Fa ∈ F eigen-states are |λi, Fa⟩ ≡

∑ϵV (F0)
u Cu,λi |ϕa(u)⟩ where

|ϕa(u)⟩ is the unit vector for vertex ϕa(u) of Fa. Then corresponding

eigen-solutions to G persist as

∈V∗(GF↓↓∑
Fa

|λi, Fa⟩ −
∈V0(GF↓↓)∑

Fb

|λi, Fb⟩ ≡ |λi ↑ G⟩. (2)

Proof. A linear combination of the eigenvectors for each Fa ∈ F is sought

such that cancellation of amplitudes transferred to the bridge sites of E(F )

occurs when the adjacency matrix ofG is applied to the linear combination.

To see that this occurs for our prospective eigenvector |λi ↑ G⟩, we resolve
the adjacency matrix A for G as

A =

∈F∑
Fa

Aa +

∈E(GF↓)∑
{Fa,Fb}

Aab +A∅ (3)

whereAa is the adjacency operator for Fa,Aab is the part ofA connect-

ing between n (Fa)∩ n (Fb) & V (Fa)∪ V (Fb), while A∅ is any remaining

part of the adjacency operator (say connecting between n (Fa) ∩ n (Fb)

or any parts of G other than Fa&Fb. Evidently A∅|λi ↑ G⟩ ≡ 0, and

moreover,
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∈F∑
Fa

Aa|λi ↑ G⟩ =
∈F∑
Fa

±Aa |λi, Fa⟩ =
F∑
Fa

±λ |λi, Fa⟩ = λ|λi ↑ G⟩ (4)

Next we identify the set Ea→b of G-edges between a connector Cab and

V (Fa), thusly Ea→b ≡ {{ϕa(u), w} ∈ E(G) : w ∈ n (Fa) ∩ n (Fb)}. Then

for Fa ∈ V∗ (FG)

Aab |λi, Fa⟩ =
∈V (Fa)∑

u

Cu,λiAab |ϕa(u)⟩ =
∈V (Fa)∑

u

∈Ea→b∑
{ϕa(u),w}

Cu,λi|w⟩ (5)

and a similar result occurs on application of Aab to |λi, Fb⟩

Aab |λi, Fb⟩ =
∈V (Fa)∑

u

Cu,λiAab |ϕb(u)⟩ =
∈V (Fb)∑

u

∈Eb→a∑
{ϕb(u),w}

Cu,λi|w⟩ (6)

But because of the 3rd condition in the definition of Hall-2-connecte-

dness these results for Aab |λi, Fa⟩ &Aab |λi, Fb⟩ are the same (when

{Fa, Fb} ∈ E (FG) ). Thus Aab applied to the difference between these

two vectors gives 0 (on these w ∈ n (Fa)∩n (Fb)– and overall A|λi ↑ G⟩ =
λ|λi ↑ G⟩. Indeed for different the |λi ↑ G⟩ are linearly independent when

the |λi, F0⟩ are.

Note that the definition of Hall-2-connection does not allow the top

benzene of figure 3 to be included in F . Nor does 3rd condition in the

definition for Hall-2-connection allow the last graph of figure 1. Most of

Hall’s examples entailed cases where the derived graphs are trees, whence

the bipartiteness is trivial. An example where there are cycles appears in

figure 4. The graph on the left has a reduced derived graph GFC↓ which

is a 10-cycle C10 while that on the right corresponds to a nonbipartite

9-cycle C9. As such the fulvene eigen-spectrum persists for the case on the

left, while it does not on the case on right, at least in full completeness.

Amusingly the fulvene eigen-solutions for fulvene eigen states which are
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odd under the reflection symmetry of a single fulvene fragment survive.

The argument uses these 9 odd-symmetry fulvene eigenstates all oriented

in the same direction around the 9-cycle, the argument using the simple

sum of these 9 odd-symmetry fulvene eigen-states with cancellations oc-

curring in a way like that in the proof above. Thus some further extensions

of Hall’s ideas are at least partially further extendable.

Figure 4. Two cyclic graphs involving pentagon-containing fulvene
fragments.

4 ”Local” symmetries?

Hall’s approach surely seems to use a ”local” symmetry, and indeed in

our associated theorem & proof (and examples) it seems that some sort of

symmetries are important. But is this really clear in general? An approach

to try to garner understanding in this regard concerns consideration of a

reverse problem: given an eigen-state for a parent graph, might there be

induced subgraphs from which it could persist?

Theorem 1. Let G be a connected graph with an eigenvalue λ and eigen-

vector |λ,G⟩. Moreover, suppose that the graph left after deletion of all the

sites x ∈ V (G) where |λ,G⟩ has amplitude = 0 is disconnected. Then the

remaining connected subgraphs each have the eigenvalue λ, and eigenvec-
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tors which are the projections of |λ,G⟩ onto the sets of sites for each such

subgraph.

Proof. Let A be such a connected subgraph, and let B be the rest of

the remaining subgraphic part of G. Then |λ,G⟩ can be written as a

sum of |λ,A⟩&|λ,B⟩ separately on V (A)&V (B). For projection oper-

ators OX ≡
∑ϵV (X)

x |x⟩⟨x|, X ∈ {A,B, 0} we have |λ,A⟩ = OA|λ,G⟩,
|λ,B⟩ = OB |λ,B⟩, and O0|λ,G⟩ = 0. Moreover, the adjacency operator

may be written as AG = AA + AB + A0, where AA&AB are the adja-

cency operators for A&B, while A0 has parts connecting internally within

V (0) = {x ∈ V (G) : ⟨x | λ,G⟩ = 0} but also parts between V (0)&V (A) as

well as between V (0)&V (B) (but no connections between V (A)&V (B) ).

Then the eigen-relation for |λ,G⟩ appears as

(AA +AB +A0) (|λ,A⟩+ |λ,B⟩) = λ(|λ,A⟩+ |λ,B⟩) (7)

or upon projection with OA this leads to

(OAAA + 0 +OAA0) |λ,A⟩+ (OAAA + 0 +OAA0) |λ,B⟩ = λ|λ,B⟩+ 0.

(8)

But OAA0|λ,A⟩ = 0 and OAA0|λ,B⟩ = 0, so that OAAA|λ,A⟩ =

λ|λ,A⟩. Equivalently AA|λ,A⟩ = λ|λ,A⟩, so that |λ,A⟩ is an eigenvector

(with eigenvalue λ ). If B is connected the theorem is proved. If B is

disconnected we repeat the argument of the proof till each of the connected

pieces of B into which G has broken under application of AG are identified

to correspond to eigen-solutions.

Notably this theorem and its proof implicate fragment eigenstates

which persist into the parent graph G, under a general condition of nodal

vertices cutting the parent graph apart. The present point is that there

is no hint of a requirement of ”local” (or global) symmetry. Thence one

further wonders whether local symmetries generally have anything to do

with eigen-persistence?
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5 Simplest connectors: Preparation

To address persistence, one might look at a very simple type of connector,

namely a 1-site q connector. And of these the simplest type might have

fragment subgraphs just having a single edge to the connector. Before

our main results we first consider a simple sort of graph which could be

a fragment connected by a single edge to the rest of the parent graph G,

perhaps thru a connector.

To this end consider a general (parent) connected graph H which is

to be a prospective fragment piece in a larger graph G. Let have H a

distinguished (root) vertex x, and an eigenvalue λ with degeneracy g(λ,H)

(this being the dimension of the associated eigenspace). Let g(λ(x)H) be

the maximum number of linearly independent λ-eigenvectors which have

amplitude = 0 at the root site x. Also let g(λxH) be the minimum number

of linearly independent λ-eigenvectors in an eigenbasis such that they have

amplitude ̸= 0 at the root site x. Now g(λ,H) = g(λxH)+ g(λ(x)H), but

an interesting point is:

Lemma 2. Let H be a graph with a distinguished (root) vertex x and an

eigenvalue λ. Then g(λxH) is either = 0 or = 1.

Proof. The result is trivially true if g(λ,H) = 1, so let us proceed to higher

values. Consider an orthonormal basis {|λi,H⟩ : i ∈ {1, . . . , g(λ,H)}} ≡
Bλ for the g(λ,H)-dimensional eigen-space of λ. If there is no pair with

non-zero amplitude at site x, then our desired result is again trivially true

(with g(λxH) = 0 ). So let us imagine that there is a pair of distinct basis

vectors |λi,H⟩&|λj,H⟩, with amplitudes ⟨x | λi,H⟩ ≡ zi&⟨x | λj,H⟩ ≡ zj

each of which are ̸= 0, and consider two new eigenvectors

|λij,−⟩ ≡ zj |λi,H⟩ − zi|λj,H⟩ & |λij,+⟩ ≡ zi|λi,H⟩ − zj |λj,H⟩ (9)

Clearly these two new eigenvectors are non-zero but have an inner

product
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⟨λij,− | λij,+⟩ ≡ zj⟨x | λi,H⟩ − zi⟨x | λj,H⟩ = 0 (10)

so that they are orthogonal. Upon normalization of each new eigen-

vector we now have a new orthonormal basis B′
λ where |λi,H⟩ has been

replaced by (a normalized) |λij,−⟩, while |λj,H⟩ has been replaced by (a

normalized) |λij,+⟩. But this new basis B′
λ has 1 more basis vector with

amplitude = 0 at x, and 1 fewer basis vectors with ̸= 0 amplitude at x.

If B′
λ has another pair of basis vectors with amplitude ̸= 0, repeat the

procedure till finally after a suitable number of repetitions we are left with

a basis with but a single eigenvector with non-zero amplitude at x, whence

g(λxH) = 1.

The graph of our lemma might be denoted as one of two initial graphs

( A&B ) as in figure 5 below, which also shows two different ways to com-

bine these two graphs. The degeneracy notations for its two rooted sub-

graphs A&B parallel that used for the first case of our preceding lemma.

That is, when A has a root a and an eigenvalue α, we have degener-

acy notations g(α,A), g(α(a)A), g(αaA). Similarly for B, we would have

g(β,B), g(β(b)B), g(βbB).

Our overall approach seeks to deduce degeneracies in various combined

graphs (as in figure 5, but also in other ways, via a 1-site connector, as in

the following section). The resultant degeneracies of the combined graphs

are implied by theorems, and others not so dictated are here termed ac-

cidental. Some of the equalities here will depend on such accidental de-

generacies not occurring and will be identified with a funny equal sign ≈.

That is, when this sign ≈ appears, it means that there is equality under the

assumption of no such accidental degeneracies for the combination graph.

Corollary 3. Let G be a graph as one of the two final composite ones in

figure 5, where subgraphs A&B share an eigenvalue λ. Then G, also has

an eigenvalue λ with degeneracy g(λ,G) ≈ g(λ(a)A) + g(λ(b)B).

Proof. This is fairly straight-forward, since the eigenvectors of A&B with

0 - amplitude at a&b are themselves also eigenvectors of G.
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Figure 5. Two ways of combining two graphs A with (root site) a ∈
V (A) and B with (root-site) b ∈ V (B).

6 1-site 2-connectors

We continue with the consideration of eigen-persistence, as arise from sim-

ple 1-site 2-connectors, each fragment subgraph connected by but a single

edge to the rest of the parent graph. Another 1-site connector to 3 graphs

is indicated in the second part of figure 6, though in this section we only

consider the first situation where the fragments are edge connected via a

single edge, we return to the 3-connector case in the next section.

Figure 6. Patterns to generate from two ( A&B ) a new graph via one
2-connector, or from three (A,B,C) graphs a new graph via
a single-site 3-connector.

Theorem 4. Let G be as in figure 6. where subgraphs A&B share an

eigenvalue λ. Then G has an eigenvalue λ, with degeneracy g(λ,G) ≈
g(λ(a)A) + g(λ(b)B) + g(λaA)g(λbB).

Proof. From the observation that the eigenvectors of A&B with 0 ampli-

tude are themselves also eigenvectors of G, one sees that there is always

a g(λ(a)A) + g(λ(b)B) contribution. But for the very limited choices for

g(λaA)&g(λbB), there but few different cases to consider, as is convenient

to do in terms of a tabulation, to identify the different possible total de-
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generacies g(λ,G). This tabulation with g(λaA)&g(λaA) abbreviated to

α&β, then appears as in table 1. Here beyond the contribution from sub-

g(λaA) g(λbB) g(λ(a)A) g(λ(b)B) g(λ,G)
1 1 α − 1 β − 1 (α − 1) + (β − 1) + 1 = α + β − 1
0 1 α β − 1 (α − 1) + (β) = α + β − 1
1 0 α − 1 β (α) + (β − 1) = α + β − 1
0 0 α β α + β = α + β

Table 1. Degeneracies in proof of theorem 4.

graph eigenstates with 0 amplitude at the root sites a&b, one can also

obtain a further (single) eigenvector if both A&B have an eigenvector

counted by g(λaA) · g(λbB) = 1 · 1 = 1. That is, if |λi,A⟩&|λj,B⟩ have

non-aero amplitudes ⟨x | λi,A⟩ ≡ zi & ⟨x | λj,BG⟩ ≡ zj , then we can

define |λijG⟩ ≡ zj |λi,A⟩ − zj |λj,B⟩, which turns out to have 0 amplitude

at the central cut-vertex x. Thus each of the lines of the table are justified,

and we obtain the result of the theorem.

This result enables a simple consequence for the possibility of high

degeneracies. To see this consider a collection F of potential subgraphs

each sharing a common eigenvalue λ, and introduce the idea of a single

site 2-connection between pairs of graphs A&B from F , to be connected

up via the single-site 2-connection of lemma 2. We can further define a

sequence S(F ) of graphs G1, G2, G3, . . . built up from the graphs of F step

by step: starting with G1 as copies of two subgraphs from F combined

in a single-stie 2-connection as indicated in figure 7, then the sequences

continues with S(F ) combined with another copy of some graph from F

to give Gn+1

Proposition 5. Given a collection of potential subgraphs F each with

a degeneracy g0 for eigenvalue λ , there one can combine them to form

a sequence S(F ) of graphs where the degeneracy of the nth graph Gn is

gn ≥ n · (g0 − 1) + 1.

Proof. We use the hypothesis that each copy from F has the same degen-

eracy g0 (for eigenvalue λ ). From theorem 3 , it is seen that g1 for the first

graph G1 of the sequence S(F ) gives a degeneracy g1 ≡ g (λ,G1) ≥ 2g0−1.
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Figure 7. The manner of iteration to build up a sequence
G1, G2, G3, G4, . . . of polymer graphs of increasing sizes.

Now for the general induction step, we presume that gm ≥ m · (g0 − 1)+1

for m < n, and see what happens for m = n. At this stage we have Gn−1

combining with some F ∈ F via a single-site 2-connection to give Gn

which via theorem 3 has degeneracy

gn ≡ g (λ,Gn) ≥ g (λ,Gn−1) + g0 − 1

≥ [(n− 1) (g0 − 1) + 1] + g0 − 1 = n (g0 − 1) + 1 (11)

and the proof is completed.

As a consequence, it is seen that at least 1 eigen-solution persists (even

if g0 = 1 ). But more generally arbitrarily high degeneracies may be built

up, if one starts with an eigenvalue which has a degeneracy g0 ≥ 2. And

moreover this can be done with a multiplicity of different sequences S(F )

depending on not only which members of F are selected, but also on how

the single-site 2-connections are made. If one builds up sequences by intro-

ducing sets G n made from the different possible single-site 2 connections

of graphs in G n−1 starting from G 0 ≡ F , then the build up in degeneracy

is exponentially fast.

7 1-site 3-connectors

Single-site 3-connection indicated in the second part of figure 6, are of

interest too. Indeed such connections were early on recognized in ”free
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radicals”, first identified by Gomberg over a century ago, and reviewed in

[74], though many more similarly connected radicaloid, or poly-radicaloid,

species [49–51, 75–78]. Their potential for high degeneracies has more

recently been emphasized [57] (in the context of ”local symmetries”). In

fact, the simplest so connected case has been much studied in the case of

the so-called Bethe tree [43–45,79], (often dealing with the Ising model or

lattice gas model, rather than the Hückel model) and also a more general

class of dendrimers [57]. In our next theorem concerning such connectors,

it is useful for a given set of numerical parameters {x1, x2, . . . , , xn} to

introduce a ”multi-parameter delta function” δ (x1, x2, . . . xn) = 1 if all xi

are equal and which δ (x1, x2, . . . xn) = 0 otherwise.

Theorem 6. Let G be a graph where as in figure 8. where subgraphs

A,B,&C each share an eigenvalue λ. Then G, also has an eigenvalue λ

with degeneracy

g(λ,G) ≈ g(λ(a)A) + g(λ(b)B) + g(λ(c)C) + δ(g(λaA), g(λbB), g(λcC), 0).

(12)

Proof. The proof somewhat parallels that of theorem 4, using table 2 now

respectively abbreviating g(λaA), g(λaA),&g(λcC) to α, β,&γ. Note that

there is nothing in these various theorems about isomorphisms between

different subgraphs. Here there is a contraction of our previous graphic

g(λaA) g(λbB) g(λcC) g(λ(a)A) g(λ(b)B) g(λ(c)C)
1 1 1 α − 1 β − 1 γ − 1
0 1 1 α β − 1 γ − 1
0 0 1 α β γ − 1
0 0 0 α β γ

g(λ,G)
(α − 1) + (β − 1) + (γ − 1) + 2
(α) + (β − 1) + (γ − 1) + 1

(α) + (β) + (γ − 1)
(α) + (β) + (γ)

Table 2. Degeneracies in proof of theorem 6.

consideration, with the understanding that the net result (in the last col-

umn) must be of the same form regardless of which members of the sets
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of g(λaA), g(λaA), g(λcC) have the value 0 is independent so long as the

number of members = 0 is the same. For the results in the last column,

the parenthesied results are for those λ-eigen-solutions comprised from

component eigen-vectors with 0 - amplitude on the root sites. As such

these last column results are clear for the last two rows. For the next

column up, there are just 2 component eigensolutions with 0-amplitude on

the root sites, so that what happens is very similar to the 2-component

situation in lemma 2 - that is, that there is just a single system λ-eigen-

solution involving non-zero amplitudes on the root sites of the so noted 2

components. The case that deserves a little attention is that where there

are 3 component-eigen-solutions with a non-zero amplitude on compo-

nent root sites. Suppose these amplitudes are Ca, Cb, Cc, so that with

the aim to obtain 0 at the central 3-way connection site we need we

need the component eigen-states combined with 3 values Za, Zb, Zc so

that zaCa + zbCb + zcCc = 0. That is, the two 3-vectors designated by

z⃗ ≡ (za, zb, zc)&C⃗ ≡ (Ca, Cb, Cc) are orthogonal so that acceptable (lin-

early independent) Z⃗ span only a 2-dimensional space, and a nonparen-

thesized value of +2 occurs for the case with all the (with and since the

re to be orthogonal, there are just 2 independent ones.

Now from this theorem we can consider again a sequence S(F ) of

polymeric graphs built up via 1-site 2-connectors.

Proposition 7. Given a collection of potential subgraphs F each with

a degeneracy g0 for eigenvalue λ, one can combine them via a 1-site 3-

copnnector to form a sequence S(F ) of graphs where the degeneracy of the

nth graph Gn is gn ≥ 3n · (g0 − 1/2) + 1/2.

Proof. We use the hypothesis that each copy from F has the same degen-

eracy g0 (for eigenvalue λ ). From theorem 5 , it is seen that the first graph

G1 of the sequence S(F ) gives a degeneracy g1 ≡ g (λ,G1) ≥ 3g0−1. Now

for the general induction step, we presume that gm ≥ 3m · (g0 − 1/2)+1/2

for m < n, and see what happens at m = n. At this stage we have Gn−1

combining with some F ∈ F via a single-site 2 -connection to give Gn

which via lemma 2 has degeneracy
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gn ≡ g (λ,Gn) ≥ g (λ,Gn−1) + 3g0 − 1

≥ [3(n− 1) (g0 − 1/2)] + 3g0 − 1 = 3(n+ 1) (g0 − 1/2) + 1/2

(13)

and the proof is completed.

This result means that even starting with graphs with no degeneracy

(g0 = 1) such a polymer ends up with a macro-degeneracy (scaling with the

number of connector nodes, and polymer length. For instance, the polymer

in figure 8 below should have degeneracies associated with the persisting

eigenvalues of benzene: of size gn ∼ 3
2n for the (initially nondegenerate)

±2 eigenvalues of benzene & of size gn ∼ 3n for the (initially doubly

degenerate) ±1 eigenvalues). Moreover, the benzenes with two external

connections could have their bonds disposed of in different ways around

these benzenes to yield a huge multiplicity of non-regular polymers (with

sequences showing identical chemical compositions, but different isomers

thereof.

Figure 8. Example a (regular) polymer with macro-degeneracies. And
as it turns out there are many graphs with eigenvalues of
λ = ±2 or λ = ±1 so that there is an immense host of pos-
sibilities for such sequences S(F ) involving different graphs
from F . For instance, anthracene (of figure 9) has the ben-
zene eigenvalues (with the same degeneracies (via the Hall
theorem) so that inclusion of anthracene in F yields many
possibilities, with 3 different symmetry inequivalent (chem-
ically plausible) choices of connection-sites on anthracene
available (as indicated by little arrows in figure 9).
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Figure 9. Anthracene with 3 marked vertices.

8 Further extensions

The techniques used for proposition 7 fairly readily carry over to a general

1-site q connector:

Theorem 8. Let G be a graph q-connected via a single edge to a root site

ai of subgraph Ai, i ∈ {1, . . . , q}, each subgraph sharing an eigenvalue λ.

Then G, also has an eigenvalue λ with degeneracy

g(λ,G) ≈
∈{1,...,q}∑

i

g (λ (ai)Ai) + δ (g (λa1A1) , . . . , g (λaqAq) , 0) . (14)

We say that 2 sites a & b of a graph A are automorphically equivalent if

there is an automorphism of A which carries a to b. In other nomenclature

a&b are in the same orbit of A (under automorphisms of A ).

Theorem 9. Let G be a graph q-connected via ci edges to a set of ci

root sites of subgraphs Ai, i ∈ {1, . . . , q}, such that each root site of Ai

is automorphically equivalent within Ai. Suppose each subgraph shares an

eigenvalue λ, with degeneracy gi Then G, also has an eigenvalue λ with

degeneracy

g(λ,G) ≥
ϵ{1,...,q}∑

i

(gi − ci + 1) (15)

This again is straightforward to prove. But next we look at a few very
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special cases.

9 Miscellaneous commentary

Though we have established more than has previously been set down in a

rigorous fashion, there is much which seems not fully developed. The case

with many q-connectors introducing a bipartite derived graph as in our

Hall theorem is not fully explored. Also, problems with linear dependences

amongst identified degenerate eigenvectors is not yet well illuminated.

9.1 Linear dependence problems

The problems with linear independences amongst different associated eig-

envectors for different Hall embeddings is conveniently illustrated for ben-

zene. Indeed there are 3 possible reflective cuts for a Hall embedding of

ethylenes, as shown in figure 10. Thus there are 3 similar sets of persistent

eigenstates - though of the 3 combinations only 2 are linearly independent.

(In particular one finds

|AB, σ⟩ + |BC, σ⟩ + |CA, σ⟩ is the 0 -vector, for σ ∈ {+,−}, though
also any two of the three like-eigenvalued eigenstates |XY, σ⟩ are inde-

pendent.) The result is that we expect 2 copies of the ethylene eigen-

spectrum in benzene. From this it is seen that eigenvalue degeneracies are

implicated - and in some cases it might happen that degeneracies beyond

that of standard point-group degeneracies (or graph automorphism-group

degeneracies) arise - as in the benzenoid of figures 4 & 5.

Figure 10. The benzene graph with 3 Hall-embeddings of ethylene.
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9.2 Cycloacenes illustrate linear dependence

problems

There in fact are numerous cases of partial results, for multiple embeddings

of the same subgraph. Cyclic poly-acenes turn out to illustrate this in

interesting ways - say when there are so many different embeddings that

one might wonder just how high degeneracies run. Here ”poly-acenes”

consist of sequence of hexagons fused together along a ”straight” row,

with N hexagons realizing an N -acene, and if the two ends are fused

together in the same fashion one has a cyclo- N -acene. If N = 2M + 2,

then one may imagine a deletion of the two opposite (outer) sites in two

opposite hexagon rings (say rings M + 1&2M + 2 ), whence there remain

two (non-cyclic) M -acenes. We denote energy- ε eigenvectors for these two

M -acenes as |1 → M, ε⟩&|2M + 1 → M + 2, ε⟩ with an orientation such

that the ends at the beginnings correspond and the ends at the termini

are also correspondent. Then the combination

1√
2
{|1 → M, ε⟩ − |2M + 1 → M + 2, ε⟩} ≡ |(0,M + 1)ε⟩ (16)

is phase consistent. Since there are 4M + 2 sites in an M -acene, there

are 4M+2 choices for the energy ε (possibly with an additional degeneracy

label). But instead of deleting rings 2M + 2 (equivalent to 0 ) & M + 1,

we could delete rings 1&M + 2, or 2&M + 3, or . . ., or M − 1 & 2M + 1–

and each of these would give phase-consistent choices for eigen-vectors for

the cyclo2M+2-acene. That is we have M+1 choices for each ε, and thus

overall we have (M + 1)(4M + 2) prospective eigen-vectors for the cyclo-

(2M+2)-acene, though in fact there are just 4(2M+2) linearly independent

sets of eigenvectors. Thus there must be a lot of linear dependence amongst

these (M + 1)(4M + 2) phase-consistent eigenstates, at least when M

is large. There might be ”accidental degeneracies”, and one might even

obtain all the eigen-vectors of the cyclo- (2M +2)-acene. As the M -acene

eigen-solutions are known analytically this can be analytically answered.

One could take wave-vector combinations of the different phase-consistent

combinations
∑M

m=1 e
ikm|(m,m+M)ε⟩, and check to see how many non-



360

zero norms result. Notably no two such non-zero vectors for different wave-

vector values k can be linearly dependent, as they associate to different

irreducible representations of the (M + 1)-fold cyclic group.

This preceding paragraph applies to cyclo- N -acenes with N even. But

what about N odd? For a cyclo- N -acene (with N either odd or even),

consider deleting the two opposite (outer) sites of one of its rings, say ring

m. Then one is left with a non-cyclic (N − 1) - acene, with eigen-vectors

|m, ε⟩. And of these eigenvectors some number (say N−) of them will be

antisymmetric with respect to a reflection interchanging the two ends (at

rings m− 1&m+1. Moreover, each of these is phaseconsistent with itself,

so that the eigenvalues associated to such antisymmetric eigen-vectors of

(N−1) - acenes persist into the cyclo- N -acene. And as there are N choices

for the ring to be left out, we find N such persistent eigen-solutions, for

each ε associated to an antisymmetric (N − 1) - acene. Clearly (since

N−scales with N , and indeed N− ≈ 2N ) there must generally be a degree

of linear dependence which occurs amongst these N ·N− persistences.

In general one may consider a cyclo- L(M +1)-cycloacene and delete L

rings to leave L noncyclic M -acenes. If L is even, then the ideas of the first

paragraph in this section are operative, and if L is odd, then the ideas of

the second paragraph here (involving anti-symmetry on the M -acene frag-

ments) are operative. Overall there seems a degree of degeneracy between

cyclo-polyacenes and different sized (quasi-linear) polyacenes. But clearly

there are complications with linear dependences.

9.3 More examples including beyond 2-connectors

Further examples are given in figure 11, involving Hall-embeddings of an-

thracene. In the first case, the persistent eigen-solutions identified have

a null value on all the sites with no incident bold-face edge. Since an-

thracene itself Hall-embeds benzene (with manifest double degeneracies

for the ethylene eigenvalues), this means that these Hall-embeddings im-

ply that the ethylene eigenvalues occur at least twice in each - in the first

diagram the ethylene eigenvalues manifest themselves 3 times due to the

extra benzene at the far left, so that triple degeneracies occur.

An example with 4 pentagonal fragment graphs is shown in the first
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Figure 11. Hall embeddings of the 3-ring anthracene graph.

part of figure 12, leading to a pentagon eigen-state & eigen-spectrum being

embedded in the is parent graph - with two double degeneracies (inher-

ited from the pentagon. But perhaps double degeneracies do not seem so

surprising since the first graph G has C4v with 2-dim irreducible repre-

sentations. However, for the second graph there is just a Cσ reflection

symmetry (with this group only having 1-dim irreducible representations)

and the last graph has just C1. Still the formal conditions for 2-connected

FG still apply, even though in the third case every 2-connection looks

different, though the eigen-spectrum (& eigen-solutions) of the pentagon

(with 2 double degeneracies) still persist.

Figure 12. More 2-connected graphs, still with eigen-persistence, but
increasing less symmetry.

Next something covered better in the stuff on 1-site 3-connectors. There

are numerous other things which can occur. For instance, an interesting

example is found in figure 13. Here one has a 3-fold cyclic symmetry for 3

fragments, A,B,C and first condition for 2 -connectedness of F fails. But

now one can combine wave-functions of a common eigenvalue (ε) thusly

|A, ε⟩ + η|B, ε⟩ + η2|C, ε⟩ with η ≡ e±i2π/3, to obtain two (degenerate)
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wave-functions (one for each choice of η ) for the full graph. This indicates

the allyl eigen-spectrum embeds twice into the eigen-spectrum of the over-

all parent graph - with the result apparently associated to the non-identity

irreducible representations of the symmetry with which the parent graph

embeds the fragment graphs.

Figure 13. A 3-fold symmetric graph.

This 3-fold-symmetric molecule can also be approached using just

pairs of allyl subgraphs, whence the 2-connectedness condition for Hall’s

theorem holds and gives persistences, for 3 different choices of the allyl

pairs. The thing which such an approach via Hall’s theorem does not

reveal is that although the 3 choices lead to 3 choices of persistent eigen-

solutions, the triple of eigen-solutions are not independent. The suggested

route via a 3-connection seems to lead to linearly independent pairs of per-

sistent eigen-solutions. This triallyl case bears similarity to the biethylene

case of benzene as earlier

One might imagine a definition of 3-connectedness somewhat parallel-

ing that of 2connectedness, still with the connecting intermediate sites ad-

jacent of corresponding sites of the isomorphic (induced) fragment graphs.

Indeed, one can imagine even 4-, or general m-connectedness, whence one

gets eigen-spectrum copies corresponding to the non-identity irreducible

representations of the symmetric group Sm. But at the same time the con-

ditions for persistence seem to become more ”incomplete” - even though

we have strengthened the idea of ”accidental eigenvalue-degeneracy” to

”eigen-persistence” (including characteristics of associated to both eigen-

values & eigenvectors). Perhaps there is a simpler general formulation?
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10 Conclusions

The general notion of eigen-persistence is emphasized, illustrated, and the-

orematically investigated. A mathematically precise framing of Hall’s em-

bedding theorem for the persistence of eigen-spectra of a smaller graph

within that of a suitable larger graph is proved. A derived graph plays a

crucial role as regards its alternancy. In addition to eigenvalue persistence,

we emphasize a type of eigen-vector persistence. But much more has been

achieved as regards both persistence and excessive degeneracies. Espe-

cially the case of a 1-site q-connector is dealt with rather generally, where

little need of ”local” symmetries matters. If there are multiple connectors,

there is a derived graph which needs attention. It seems that the weaker

the connection between the fully separated fragments, the less the role

of local symmetry matters. With more complicated connectors, the more

local symmetry helps - at least when supplemented with the presumption

of alternancy for the derived graphs. If the members of a family of (eigen-

persisting) subgraphs is much relaxed - ”restrictive” interconnections seem

to contribute to eigen-persistence.

Still many questions remain to do with linear dependences, whence

there seem to be multiple (oft linearly dependent) arrangements for sub-

graphs from which to identify persistences. The general question of eigen-

persistence is noticeably strengthened here - but there remains much which

is not yet fully clear from a formal general stand-point, as seen in section

on ”miscellaneous commentary”. It seems that with the degree of simplic-

ity in graphs, there arises much ”freedom” in the choice of eigenspectra

(mediated by the eigen-spaces).
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