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Abstract

In the chemical and pharmaceutical industries, many procedures
are based on the principle that compounds with similar structures
tend to exhibit similar activities. Therefore, the development of
computational methods for decision support in similarity assessment
is of utmost importance. In this proof-of-concept study, we intro-
duce a computational framework for quantitative computation of
agreement between structural and physiological similarity of com-
pounds. As model molecules, we use bridged heterometallic com-
plexes. To derive physiological binary vectors we use rate constants
for the first substitution reaction between our compounds and some
biomolecules. It is believed that such treatment of metal complexes
allows a better understanding of the structure-activity relationship
and can serve as a guide for new synthetic targets.

1 Introduction

In recent years the development of heterometallic complexes gained signif-

icant importance. While the underlying properties of monometallic com-

plexes are relatively well-explored, complexes containing more than one

∗Corresponding author.

https://doi.org/10.46793/match.92-2.317R


318

metal atom often exhibit unexpected and potentially valuable properties.

For example, they have been quite helpful in bimetallic catalytic processes,

whereas a two-metal catalyst can perform two or more mechanistically dis-

tinct transformations [1, 2]. Also, their significantly increased antitumor

activity, compared to cisplatin, makes them potential drug candidates [3].

Generally, incorporating different metal ions that differ in Lewis acidity has

a synergic effect [4]. The compounds of two metal ions with distinct coor-

dination geometry and kinetic properties will have distinguishable affinity

and reactivity towards biologically relevant nucleophiles [3–5]. The ability

to coordinate into diverse geometries depending on the specific arrange-

ment of donor atoms in biomolecules increases the cytotoxicity of these

molecules [3, 6]. All of this has caused the flourishing of the chemistry of

the heterometallic complexes.

Quite recently, four novel complexes [{cis-PtCl(NH3)(µ-4,4’-bipyridyl)ZnCl

(terpy)}](ClO4)2 (C1), [{trans-PtCl(NH3)(µ-4,4’-bipyridyl)ZnCl(terpy)}]
(ClO4)2 (C2), [{cis-PtCl(NH3)(µ-pyrazine)ZnCl(terpy)}](ClO4)2 (C3), and

[{trans-PtCl(NH3)(µ-pyrazine)ZnCl(terpy)}](ClO4)2 (C4) (where terpy =

2,2’:6’,2”-terpyridine) have been synthesized [6]. The structures of C1-C4

have been depicted in Figure 1.

It has been shown that the trans-Pt-L-Zn complexes are more reactive

than the cis-Pt-L-Zn complexes. Namely, the antiproliferative effect of the

complexes, such as the expression of apoptosis mRNA and repair-related

genes after cancer cell treatment, indicates that the newly synthesized C2

exhibits highly selective cytotoxicity against HCT116 colon cancer cells [6].

In general, drug design relies on optimizing activity and selectivity for

the target biomolecule by structural tuning of a drug [7]. For this rea-

son, molecular similarity plays an important role both in drug design

and cheminformatics [8, 9]. It is one of the most heavily exploited con-

cepts, resulting in many computational approaches developed for this pur-

pose [10, 11]. The most recent computational methods include network

analysis of molecular clusters obtained by calculating Euclidean distance

or by utilizing similarity of physicochemical features [12, 13]. Molecular

similarity techniques have been applied to diverse problems, some of them

include toxicology screening [14], design of novel zeolite materials [15],
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Figure 1. Heterometallic bridged Pt(II)-Zn(II) complexes.

computer-assisted retrosynthesis [16], and the prediction of the crystal

structure of a molecule [17]. These applications highlight the broad scope

and potential impact of molecular similarity in diverse fields. At the core

of molecular similarity lies the principle of structural similarity leading to

similar activity [18]. This fundamental concept underpins the aforemen-

tioned applications and serves as a guiding principle for understanding

the relationships between molecular structure and function. By recog-

nizing the structural similarities between molecules, researchers can make

informed predictions about their properties and behaviors. However, the
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relationship between a structural feature and the related molecular activ-

ity is complicated and not always clear-cut. As a result, there are some

obstacles in this concept, including activity cliffs [19–22].

Quantification of the molecular structure is a prerequisite for calculat-

ing the similarity of two molecules. Various methods of encoding structural

information have been suggested. There is currently a plethora of molecu-

lar descriptors accessible, and this number is growing. Descriptors come in

a variety of forms, from straightforward ones like counting descriptors to

intricate quantum-chemical molecular descriptors [23–26]. Typically, the

molecular descriptors are categorized based on the dimensionality of the

molecular representation required to compute a descriptor. As a result,

descriptors in one, two, three, and higher dimensions exist. Therefore, the

selection of an appropriate descriptor that effectively captures and encodes

essential molecular information, enabling robust and meaningful compar-

isons between molecules is an essential step. Structural fingerprints have

a special significance in similarity-related calculations [27, 28]. In their

simplest form, these are numerical strings made up of zeros and ones.

Another important step in similarity calculation is choosing an ade-

quate similarity metric. The wide recognition of the impact of selecting

different similarity metrics on the variability of similarity assessment re-

sults is accompanied by a multitude of coefficients proposed in the scientific

literature. These coefficients quantify the similarity of structural molecu-

lar descriptors [29–31]. They effectively capture the resemblance between

two objects and play a crucial role in constructing a similarity matrix that

represents pairwise resemblances. Such a matrix serves as valuable input

for multivariate data analysis methods, including multidimensional scaling

and cluster analysis. The Tanimoto (Jaccard-Tanimoto) index stands out

as one of the most popular similarity metrics [32–34].

Since most of the similarity studies and methodologies have been de-

voted to and deal with similarities related to solely organic molecules,

this study aims to provide new applications of similarity techniques by

performing this proof-of-concept study. Namely, we show how newly in-

troduced similarity approaches may be applied to the chemistry of metal

complexes in order to distinguish and evaluate their structural and physi-
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ological similarities. Such a treatment of metal complexes allows a better

understanding of the structure-activity relationship and can serve as a

guide for new synthetic targets.

2 Methodology details

2.1 Molecular structure descriptors

In order to quantify molecular structure in this work we have used three

types of the most popular and frequently used structure descriptors. The

extended-connectivity fingerprint [35], also known as Morgan circular fin-

gerprint, with radius 2, has been employed. This descriptor has been

converted into an analogous binary vector with a length of 1024 bits. The

other two descriptors are RDKit fingerprints [36] and 166 MACCS struc-

tural keys [37]. Also, these two descriptors have been converted into binary

vectors to calculate the structural similarity of our molecules. It is note-

worthy to say that perchlorate ions were excluded from the construction

of the fingerprints. These occur in all four complexes and their exclusion

does not affect the complex part of the compound, thus does not affect the

structural fingerprint and structural similarity between molecules.

2.2 Physiological binary vectors

In our recent paper [13], we have presented a novel methodology for

evaluating the chemical similarity of molecules. This approach requires

the physicochemical properties of compounds and the calculation of bi-

nary fingerprints from them by applying an algorithm based on a binary-

coded decimal system. In this way, the physicochemical description of

molecules are encoded into binary vectors, which then may be evaluated

and compared by applying similarity measures. Here, we adopt this ap-

proach to compute the physiological similarities between our compounds.

For this purpose, we have used experimental rate constants (Table 1) of

the first substitution reaction between C1-C4 complexes and guanosine-5’-

monophosphate (5’-GMP), inosine-5’-monophosphate (5’-IMP), and glu-

tathione (GSH) biomolecules presented in [6]. These values simulate the
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behavior of our molecules in a living organism, and, therefore, are good

descriptors of physiological activity.

Table 1. Experimental rate constants for the first substitution reaction
between C1-C4 complexes and 5’-GMP, 5’-IMP, and GSH in
M−1 · s−1.

5’-GMP 5’-IMP GSH
C1 13.87 · 102 10.62 · 102 7.25 · 102
C2 165.73 · 102 86.07 · 102 8.12 · 102
C3 109.11 · 102 70.01 · 102 19.83 · 102
C4 184.13 · 102 135.65 · 102 28.75 · 102

As one may see, all rate constants in Table 1 include 102 factor, so

this constant value was expelled during the construction of a physiological

fingerprint without affecting it. A physiological fingerprint for each com-

plex was constructed using the procedure presented in [13], resulting in a

binary vector of length 60 bits.

2.3 Similarity indices

Numerous similarity indices have been proposed to deal with binary struc-

ture descriptors [38, 39]. Generally, they can all be described as follows.

Let x and y be binary vectors that both include variables with a value

of 1 or 0. The similarity indices may be then calculated from parameters

presented in Table 2,

Table 2. Parameters for describing different events while simultane-
ously looping over two binary vectors.

yi = 1 yi = 0
xi = 1 a+ = 1 b+ = 1 a+ b
xi = 0 c+ = 1 d+ = 1 c+ d

a+ c b+ d p

where a, b, c, and d are the frequencies of the events (xi = yi = 1),

(xi = 1; yi = 0), (xi = 0; yi = 1), and (xi = yi = 0), respectively. Finally,

the p (= a+ b+ c+ d) is the total number of variables, i.e., the length of

each binary vector.

In this work, we have used the following similarity indices:
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RR =
a

p
(1)

SM =
a+ d

p
(2)

Ja =
3a

3a+ b+ c
(3)

JT =
a

a+ b+ c
(4)

RT =
a+ d

p+ b+ c
(5)

Gle =
2a

2a+ b+ c
(6)

SS1 =
a

a+ 2b+ 2c
(7)

CT3 =
log(1 + a)

log(1 + p)
(8)

CT4 =
log(1 + a)

log(1 + a+ b+ c)
(9)

Sor =
a2

(a+ b)(a+ c)
(10)

where RR, SM , Ja, JT , RT , Gle, SS1, CT3, CT4, and Sor stand for

Russell-Rao [40], Sokal-Michener [41], Jaccard [42], Jaccard-Tanimoto [43],

Rogers-Tanimoto [43], Gleason [44], Sokal-Sneath [45], Consonni-Todeschi-

ni 3 [46], Consonni-Todeschini 4 [46], and Sorgenfrei index [47], respec-

tively. As can be seen from their definitions, these indices differ in the

weight they place on different parts of the vector. For example, Ja and

Gle highlight the structural details shared by both vectors, while SS1 high-

lights the parts where they differ. Such a selection of similarity measures

enables a comprehensive comparison of molecules. For all these computa-
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tions, as well as the calculation of molecular descriptors, a Python code

with an implemented RDKit package has been devised [36].

2.4 Sum of ranking differences (SRD) statistical pro-

cedure

SRD is a relatively new general-purpose statistical procedure introduced

by K. Héberger [48]. This is an evaluation technique in methods, proce-

dures, models, etc comparisons. It has been proven to be quite useful in

different scenarios, like for the correct splitting of data in QSAR modeling,

for the appropriate column selection in chromatography, and for experi-

mental data analysis [49–51]. Also, the quality of the similarity index was

assessed using the SRD procedure [32]. This statistical tool is available as

an MS Office Excel macro at http://aki.ttk.hu/srd/. Input data should be

arranged as a matrix. The results are ranked for each method according

to the ranking of experimental (if available) or reference values. If the

standard value is not available, like in our case, then the mean value for

all methods may be used. In the paper [52] the full description of SRD

computation and validation may be found. Generally, the closer the SRD

value is to zero (i.e., the closer is the ranking to the golden standard), the

better the method. The similarity of the evaluated methods is determined

by the proximity of SRD values: the closer the values, the more similar

the methods.

3 Results and Discussion

In this section, we present the results of the structural and physiological

similarity of molecules depicted in Figure 1. Table 3 presents the per-

centages of structural similarities between our compounds. These values

are calculated by using Morgan circular fingerprints as molecular structure

descriptors. As one may see, similarity indices yielded values in different

ranges. In Table 1S in Supporting Information correlation coefficients be-

tween similarity values are presented. The coefficients show that all values

are highly correlated. This indicates that all similarity indices show the
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same trends. The lowest similarity values are obtained by the RR in-

dex, and the highest by the SM measure. Also, the RR shows the lowest

standard deviation, while the SS1 index yields highly dispersed values.

Table 3. The percentage of structural similarity of complexes C1-C4
calculated using Morgan circular fingerprints. The s denotes
the standard deviation of data.

RR SM Ja JT RT Gle SS1 CT3 CT4 Sor

C1-C2 4.49 99.41 95.83 88.46 98.83 93.88 79.31 55.54 96.97 88.13
C1-C3 3.61 97.75 82.84 61.67 95.61 76.29 44.58 52.47 88.49 58.21
C1-C4 3.42 97.36 79.55 56.45 94.86 72.16 39.33 51.69 86.49 52.08
C2-C3 3.42 97.36 79.55 56.45 94.86 72.16 39.33 51.69 86.49 52.08
C2-C4 3.61 97.75 82.84 61.67 95.61 76.29 44.58 52.47 88.49 58.21
C3-C4 4.39 99.41 95.74 88.24 98.83 93.75 78.95 55.23 96.9 87.89

s 0.44 0.89 7.01 13.97 1.72 9.39 17.66 1.59 4.53 15.69

The C1-C2 and C3-C4 pairs of molecules have been found to have

the highest similarity values by all similarity measures, which is expected

considering that C1 and C2, and C3 and C4 differ only on the geometry

around Pt ion. Also, data presented in Table 3 shows that the similarity

of C1 and C3 complexes is comparable to the similarity of C2 and C4

complexes. This is also the case with similarities between C1-C4 and C2-

C3 compounds. Namely, the data shows that C1-C4 and C2-C3 similarity

values are the lowest. This is due to the structural differences in the bridge

between two metal atoms and the cis− trans geometry around the Pt ion.

Finally, these results show that Morgan circular fingerprints are capable

of encoding small structural differences like cis− trans geometry.

In Tables 4 and 5 structural similarity values of our compounds are

presented, which are calculated using RDKit fingerprints and MACCS

keys as molecular structure descriptors. Also, Tables 2S and 3S show

correlation coefficients between similarity results. It is evident that the

similarity results obtained by these two descriptors are highly correlated.

Namely, the correlation coefficient in most cases is 1. However, Tables

4 and 5 reveal an important finding. Namely, RDKit fingerprints and

MACCS keys were unable to distinguish between cis − trans isomers.

Namely, these descriptors yielded 100% similarity for C1-C2 and C3-C4

pairs. For this reason, results obtained by RDKit fingerprints and MACCS
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keys will not be further used and discussed. We focus on the structural

similarity results calculated by the Morgan circular fingerprints.

Table 4. The percentage of structural similarity of complexes C1-C4
calculated using RDKit fingerprints. The s denotes the stan-
dard deviation of data.

RR SM Ja JT RT Gle SS1 CT3 CT4 Sor

C1-C2 71 100 100 100 100 100 100 95.51 100 100
C1-C3 66.5 87.06 93.91 83.71 77.09 91.13 71.99 94.65 97.6 83.12
C1-C4 66.5 87.06 93.91 83.71 77.09 91.13 71.99 94.65 97.6 83.12
C2-C3 66.5 87.06 93.91 83.71 77.09 91.13 71.99 94.65 97.6 83.12
C2-C4 66.5 87.06 93.91 83.71 77.09 91.13 71.99 94.65 97.6 83.12
C3-C4 74.95 100 100 100 100 100 100 96.22 100 100

s 3.26 6.10 2.87 7.68 10.80 4.18 13.20 0.61 1.13 7.96

Table 5. The percentage of structural similarity of complexes C1-C4
calculated using MACCS keys. The s denotes the standard
deviation of data.

RR SM Ja JT RT Gle SS1 CT3 CT4 Sor

C1-C2 28.14 100 100 100 100 100 100 75.55 100 100
C1-C3 27.54 97.01 96.5 90.2 94.19 94.85 82.14 75.14 97.44 90.04
C1-C4 27.54 97.01 96.5 90.2 94.19 94.85 82.14 75.14 97.44 90.04
C2-C3 27.54 97.01 96.5 90.2 94.19 94.85 82.14 75.14 97.44 90.04
C2-C4 27.54 97.01 96.5 90.2 94.19 94.85 82.14 75.14 97.44 90.04
C3-C4 29.94 100 100 100 100 100 100 76.73 100 100

s 0.88 1.41 1.65 4.62 2.74 2.43 8.42 0.58 1.21 4.70

By using physiological binary vectors and the novel methodology in-

troduced in [13], we have calculated the physiological similarity of our

compounds. The results are presented in Table 6. At first glance, one

may see that the percentages of physiological similarity obtained by ten

similarity measures are lower compared to values of structural similar-

ity computed from Morgan circular fingerprints. For example, the JT

index shows that C1-C2 are almost 89% structurally similar, while the

same index yields only 12.5% of physiological similarity for the same pair

of molecules. Such discrepancy may be attributed to the employment of

different methodologies of molecular information embedding for similar-

ity calculation. Namely, the physiological binary vectors are much shorter

(only 60 bits long) and denser compared to long (1024 bits) sparse Morgan
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circular fingerprints. Also, the standard deviation of physiological similar-

ity results is smaller in comparison to the deviation of structural similarity

values. Moreover, the correlation coefficients from Table 4S in Supporting

Information show that all similarity indices yielded highly correlated data.

Table 6. The percentage of physiological similarity of complexes C1-C4
calculated using physiological fingerprints derived from the
rate constants of the reactions between heterometallic com-
plexes and biomolecules. The s denotes the standard devia-
tion of data.

RR SM Ja JT RT Gle SS1 CT3 CT4 Sor

C1-C2 6.67 53.33 30 12.5 36.36 22.22 6.67 39.15 46.03 4.95
C1-C3 8.33 63.33 40.54 18.52 46.34 31.25 10.2 43.59 53.77 9.8
C1-C4 13.33 61.67 51.06 25.81 44.58 41.03 14.81 53.45 63.4 17.11
C2-C3 11.67 66.67 51.22 25.93 50 41.18 14.89 50.58 62.4 17.19
C2-C4 16.67 65 58.82 32.26 48.15 48.78 19.23 58.33 69.19 23.92
C3-C4 13.33 65 53.33 27.59 48.15 43.24 16 53.45 64.6 19.39

s 3.33 4.38 9.52 6.46 4.46 8.73 4.09 6.48 7.71 6.26
SRD 2 6 0 0 6 0 0 2 2 0

Data for all similarity indices show that C2 and C4 molecules are physi-

ologically the most similar complexes. Also, C3 and C4 exhibit high phys-

iological similarity. However, the results show that C1 and C2 are the

least similar molecules. This is interesting since C1 and C2 structurally

differ only on cis− trans geometry, which is the case also for C3 and C4,

however, physiologically they are very different.

To evaluate physiological similarity results we have performed the SRD

analysis. As already mentioned, this statistical procedure enables us to

compare similarity results computed by different coefficients. To rank

indices the average value for all ten similarity measures has been used

as an “ideal” standard for each compound since the reference value is not

available. In Table 6 are given SRD values for all ten similarity indices. For

the Ja, JT , Gle, SS1, and Sor indices the SRD is 0. This shows that these

measures give statistically valuable results in comparing two physiological

binary vectors since their SRD value is practically equal to the golden

standard. Moreover, this finding reveals that these indices operate with

very similar performance. Another group of similar indices are RR, CT3,

and CT4 measures. Their calculated SRD value is 2. This is very close to
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0, which shows that these indices are very good in physiological similarity

estimation, i.e., in comparing two physiological binary vectors. Slightly less

favorable results are those obtained by SM and RT . For these indices,

the SRD value is 6.

To validate the SRD procedure and its conclusions, another statistical

technique has been carried out. Namely, the comparison of ranks with

random numbers (CRRN) analysis has been employed. The CRRN is a

randomization test that gives a distribution of the SRD values with ran-

domized ranks. If the coefficient is statistically not distinguishable from

randomly assigned ranks, it will overlap with random numbers. Another

more favorable scenario is when the coefficient is statistically distinguish-

able from randomly assigned ranks and does not overlap with the distri-

bution of random numbers. To perform CRNN analysis, the SRD values

should be scaled, i.e., put on the same scale as random numbers. The

results of CRRN for our similarity indices are depicted in Figure 2.

As one may see, similarity indices are grouped into three groups. The

red and the blue groups of similarity indices are far from randomly as-

signed ranks, and practically there is no overlap with their distribution.

This result confirms the SRD analysis for these indices and their use in

physiological similarity assessment. Namely, it can be concluded that the

probability that these variables are random is negligible. However, for

the third group of indices (green), i.e., for the SM and RT , there is a

slight overlap with the random SRD distribution. For this reason, results

obtained by these indices should be taken with caution. Finally, we can

conclude that the physiological similarity results obtained by most of the

indices are statistically valuable, and the performance of Ja, JT , Gle, SS1,

and Sor indices is of very high quality since their SRD value is 0 and their

results may be used for further similarity analysis.

Since structural and physiological similarities are obtained by employ-

ing different molecular information embedding techniques, to enable mu-

tual comparison of these results, values should be scaled. To obtain rela-

tive similarity values, we have used equation 11. In this way, each value is

positioned relatively compared to the maximum value within the set.
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Figure 2. The Comparison of Ranks with Random Numbers (CRRN)
analysis of physiological similarity results. X and left Y axes:
The percentage of the scaled SRD for similarity coefficients
(scaled between 0 and 100, i.e., put on the same scale as the
random numbers). The scaled SRD for Ja, JT , Gle, SS1,
and Sor values is practically 0 (red), for RR, CT3, and CT4

data is 11.11% (blue), and for SM and RT is 33.33% (green).
Right Y axis: The frequencies of random SRD are plotted
(the black curve corresponds to random SRD distribution).

x′ =
x

max(x)
(11)

Now, we can compare the structural and physiological similarities and

quantitatively determine the agreement of these two aspects of molecu-

lar similarity. In Table 7 are presented the results of the coherence be-

tween structural and physiological similarities of the corresponding pair

of molecules for all ten similarity measures. The ideal coherence between

structural and physiological similarity is 100%, which was not obtained

for any pair of molecules. This finding is actually in accordance with the

experimental observations, where structurally similar molecules show de-

viations in their activities. For example, all indices have found that for

the C1-C2 pair of molecules, there is the highest disagreement between

structural and physiological similarity. Namely, they are structurally very
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similar but differ in physiological response. The JT for this pair of com-

pounds shows agreement between structural and physiological aspects of

approximately 39%. On the other hand, the C2-C4 pair of molecules shows

lower structural similarity compared to their high physiological similarity.

Table 7. The percentage of coherence between relative physiological
and relative structural (obtained from Morgan fingerprints)
similarity of our compounds.

RR SM Ja JT RT Gle SS1 CT3 CT4 Sor

C1-C2 40.0 80.0 51.0 38.7 72.7 45.6 34.7 67.1 66.5 20.7
C1-C3 69.6 96.7 82.5 87.7 95.9 82.8 96.8 80.3 86.5 74.9
C1-C4 96.2 94.6 96.2 83.8 93.2 92.8 72.6 98.6 97.6 87.6
C2-C3 93.8 97.9 95.9 83.4 96.0 92.4 72.2 93.6 99.0 87.2
C2-C4 80.4 99.2 86.4 69.7 99.6 81.3 56.2 94.5 91.3 66.1
C3-C4 82.2 97.5 90.8 85.8 96.3 88.8 83.7 92.2 93.4 81.3

To get better insight into these results, values obtained by the JT

index are depicted in Figure 3. As can be seen, the highest coherence

is observed for C1-C3 and C3-C4 pairs of molecules. It is interesting to

note that C1-C4, C2-C3, and C2-C4 sets of molecules show that they are

physiologically more similar than structurally. Such results indicate that

the bridge, i.e., its structure and length, which connects two metal ions

is not of high importance in expressing the physiological activity of these

molecules. In Figure 4 are depicted density plots of relative structural

similarity values and relative physiological similarity values both calculated

by the JT index. As one may see, structural similarity values vary in a

narrower range compared to physiological similarity values. Generally,

there is a high percentage of overlap between these two distributions.
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Figure 3. The coherence between relative physiological (obtained from
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tained from Morgan fingerprints) similarity of our com-
pounds calculated by JT index.
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4 Conclusion

In this work, four bridged heterometallic complexes (C1-C4) have been

investigated. Namely, their structural and physiological similarities have

been examined by using structural fingerprints and physiological binary

vectors, respectively. It has been found that the Morgan circular finger-

prints are convenient for similarity calculations in the chemistry of metal

complexes. However, RDKit fingerprints and MACCS keys are not suit-

able since they do not recognize cis− trans isomerism. The physiological

similarity of our compounds has been assessed by binary vectors derived

from rate constants. This approach enabled us to quantitatively deter-

mine physiological similarity. The obtained results have been validated by

the SRD analysis. Moreover, the coherence between structural and phys-

iological similarity has been quantitatively determined. Namely, it has

been found that the C1-C2 pair of molecules has the highest discrepancy

between these two aspects of molecular similarity, while the highest agree-

ment is observed for C1-C3 and C3-C4 pairs. Also, it has been found that

the bridge connecting two metals has a low influence on the physiological

activity of our compounds.
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tial consistency analysis: which similarity measures can be applied in
drug discovery?, Mol. Inf. 40 (2021) #2060017.
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