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Abstract

The ABS (atom-bond sum-connectivity) index is a topological
index, that was introduced in 2022 by amalgamating the main ideas
of two well-examined indices. Mathematical aspects (especially, ex-
tremal results and bounds) of the ABS index have already been
studied considerably. The primary goal of this review paper is to
collect known bounds and extremal results regarding the ABS in-
dex. Several new extremal results, which follow easily from existing
general results, are also given. Moreover, a number of open problems
and conjectures, arising from the reported results, are proposed.
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1 Introduction

This paper is a survey of mathematical properties of the recently intro-

duced “atom-bond sum-connectivity index”, ABS

ABS(G) =
∑

uv∈E(G)

√
du + dv − 2

du + dv

which, at the first glance, is a minor modification of the much older, and

much more detailed studied “atom-bond connectivity index”, ABC

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

du · dv
.

Indeed, such “modified” graph invariants are often encountered in the

present-day chemical graph theory. However, in spite of their algebraic

similarity, the mathematical properties of the indices ABS and ABC are

profoundly different. This is best seen by comparing the characterization of

the trees of a fixed order n, whose ABS- and ABC-values are minimal. In

the case of ABS index, this characterization is an easy task (see Theorem

1). On the other hand, the minimum-ABC n-order tree has an extremely

complex structure, whose characterization required many years of research

(see [51]), and was achieved only recently [36, 37, 57] (see also [45] for the

case of molecular trees). Furthermore, whereas the problem of character-

izing trees with the minimum ABC index over the class of all trees having

a fixed number of pendent vertices was not easy (for example, see [10]),

this is not the case with the ABS index (see [20]).

Such great differences between the properties of ABC and ABS indices

justify the elaboration of a separate mathematical theory of the ABS

index. In the present paper, the main results obtained along these lines

are outlined, and directions for further research are indicated.

Most of the terms of graph theory and chemical graph theory that is

used in the present paper is taken from [24,26,96] and [87,92], respectively.

In chemical graph theory, numerical graph invariants are commonly re-

ferred to as topological indices. Such indices’ purpose is to predict physico-
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chemical properties of chemical compounds. The Platt index (for example,

see [9]), introduced in [79, 80], is one of the first topological indices used

in chemistry. This index is defined as

Pl(G) =
∑

uv∈E(G)

(du + dv − 2) ,

where E(G) is the edge set of G and du denotes the degree of the vertex

u ∈ V (G). Note that the “du+dv−2” is the degree of the edge uv ∈ E(G).

Thus, the Platt index of G is simply the sum of all edge degrees of G. It

holds that Pl(G) = M1(G)− 2|E(G)|, where M1 is the first Zagreb index

(for example, see [25]), which was introduced in [55] within the study of the

π-electron energy of conjugated molecules. Details about the first Zagreb

index (and hence the Platt index) can be found in review articles [11,25,53]

and the related references cited therein.

In the mid-1970s, Randić [82] introduced a topological index, which

he named “branching index”, within the study of molecular branching.

The original name is now rarely used; this index is nowadays known as the

“connectivity index” or the “Randić index” (see for example, [65]). Recent

usage of this index in chemistry can be found in [35]. The Randić index

of G is defined as

R(G) =
∑

uv∈E(G)

1√
du dv

.

The Randić index is among the most-studied and most-applied topological

indices; for example, see the books [63,64,85], review articles [49,65,83,84]

and related references listed therein.

Intense research on the Randić index induced its modifications in var-

ious ways; for example, see [73]. The atom-bond connectivity (ABC) in-

dex [40] (see also [41, 54]) and the sum-connectivity (SC) index [103] are

two well-known and well-studied modified versions of the Randić index.

These indices for a graph G are defined as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

du dv
and SC(G) =

∑
uv∈E(G)

1√
du + dv

.
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One can see that the expression “du + dv − 2” (that is, the degree of the

edge uv, used in the definition of the Platt index) has been taken into

consideration in the Randić index for defining the ABC index. (In the

original definition [40] of the ABC index, the factor “
√
2” was present,

which was later dropped [41, 54] from its definition). The SC index was

defined by replacing the product of degrees “du dv” with the addition of

degrees “du+dv” in the definition of the Randić index. We refer the reader

to the review articles [10, 37] and [19] for more details on mathematical

properties of the ABC and SC indices, respectively.

In [12], by amalgamating the main idea of the ABC and SC indices,

a new topological index was put forward, namely the atom-bond sum-

connectivity (ABS) index. This index is defined as

ABS(G) =
∑

uv∈E(G)

√
du + dv − 2

du + dv
.

Here, it should be noted that the ABS index is a special case of a gener-

alization given in [86]. The chemical applicability of the ABS index was

examined in [1,6,13,77] on several data sets, and it was concluded that the

predictive applicability of this index is comparable to those of the ABC,

SC, and Randić indices. Mathematical aspects (especially, extremal results

and bounds) of the ABS index have also been studied considerably. The

objective of this review article is to collect known bounds and extremal

results concerning this index. Several new extremal results, which follow

easily from existing general results, are also given. Moreover, a number

of open problems and conjectures, arising from the reported results, are

proposed.

The rest of this paper is organized as follows. Section 2 provides no-

tions and definitions of those concepts that will be used in the subsequent

sections. Section 3 consists of two subsections: the first one is devoted to

the extremal results regarding the minimum ABS index, while the second

one is about the maximum ABS index. Section 4 is also divided into two

subsections: the first one deals with the upper bounds of the ABS index,

while the second one is related to its lower bounds.
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2 Preliminaries

In this section, needed notions and definitions are presented.

By an n-order graph, we mean a graph of order n. The size of a graph

G is the number of edges of G. The n-order star, path, complete, and cycle

graphs are denoted by Sn, Pn, Kn, and Cn, respectively. By a molecular

graph, we mean a connected graph of the maximum degree at most 4. A

vertex of degree 0 (1, respectively) is called an isolated vertex (pendent

vertex, respectively). By an isolated edge, we mean an edge both of whose

end-vertices have degree 1. An edge of a graph whose end-vertices have

degrees i and j is referred to as an (i, j)-edge. For a vertex u of a graph

G, we denote by NG(u) (or simply by N(u) when there is no chance of

confusion about G) the set of those vertices of G that are adjacent to u. A

graph containing no cycle of length 3 is known as a triangle-free graph. By

following Anderson and Harary [22], we say that a graph is unicyclic if it

is connected and has exactly one cycle. By a connected bicyclic (tricyclic,

respectively) graph, we mean an n-order connected graph of size n + 1

(n+ 2, respectively).

For an integer ℓ greater than 1, a graph G is said to be an ℓ-partite

graph if the vertex set of G can be partitioned into ℓ sets B1, B2, · · · , Bℓ

so that for every choice u, v ∈ Bi, where i = 1, 2, · · · , ℓ, the uv ̸∈ E(G); if

G is an ℓ-partite graph, then (B1, B2, · · · , Bℓ) is known as the ℓ-partition

of G and each set Bi is known as the partite set of G. If, in addition, for

every u ∈ Bi and v ∈ Bj , with i ̸= j, we have uv ∈ E(G), then G is known

as the complete ℓ-partite graph. If G is a complete ℓ-partite graph with

the ℓ-partition (B1, B2, · · · , Bℓ) such that |Bi| = ri for i = 1, 2, · · · , ℓ then
such graph is denoted by Kr1,r1,...,rℓ . A 2-partite graph is also known as

a bipartite graph and a 2-partition of a bipartite graph is also known as a

bipartition. A bipartite graph G with the bipartition (B1, B2) is said to

be a semiregular bipartite graph if du = s for every u ∈ B1 and dv = t for

every v ∈ B2, where s ̸= t.

The union of the graphs H1, H2, · · · , Hr, with r ≥ 2, is denoted by

H1 ∪H2 · · · ∪Hr and is defined as the graph with the vertex set V (H1 ∪
H2 · · ·∪Hr) = V (H1)∪V (H2) · · ·∪V (Hr) and the edge set E(H1∪H2 · · ·∪
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Hr) = E(H1) ∪ E(H2) · · · ∪ E(Hr). The union of t copies of a graph G is

simply denoted as tG; that is,

G ∪G · · · ∪G︸ ︷︷ ︸
t−times

= tG

Two graphs H1 and H2 are said to be disjoint if their vertex sets are

disjoint. Throughout this paper, wherever we use the concept of the union,

we assume there that this operation is applied to disjoint graphs.

The complement of a graph G is denoted by G and is defined as the

graph having the vertex set V (G) = V (G), while uv ∈ E(G) if and only if

uv ̸∈ E(G).

The join of two graphs H1 and H2 is denoted as H1+H2 and is defined

as the graph with the vertex set V (H1 ∪ H2) = V (H1) ∪ V (H2) and the

edge set

E(H1 ∪H2) = E(H1) ∪ E(H2) ∪ {uv : u ∈ V (H1), v ∈ V (H2)}.

The line graph of a graph G is denoted as L(G) and is defined as the

graph with the vertex set V (L(G)) = E(G), where two vertices e1, e2 ∈
V (L(G)) are adjacent if and only if the edges e1 and e2 share a common

vertex in G.

Let S be a subset of the vertex set of a graph G. We denote by G− S

the graph obtained from G by removing the vertices of S as well as the

edges incident to them. We denote the graph G− (V (G) \S) as G[S]. Let

W be a subset of E(G). We denote by G−W the graph obtained from G

by removing the edges of W .

By a clique of a graph G, we mean a complete subgraph of G. A

maximum clique of G is a clique containing the greatest possible number

of vertices of G. The clique number of G is the order of a maximum clique

of G.

The chromatic number of a graph G is the smallest number of colors

required to color the elements of V (G) such that no two adjacent vertices

have the same color.

A dominating set of a graph G is a subset D of V (G) such that if
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u ∈ V (G) then either u has a neighbor in D or u ∈ D. A minimum

dominating set of G is a dominating set of G with the smallest possible

number of elements. The domination number of G is the cardinality of a

minimum dominating set of G.

A k-polygonal system is a connected geometric figure formed by con-

catenating congruent regular k-polygons side to side in a plane in such a

way that the figure divides the plane into one external (infinite) region

and a finite number of internal (finite) regions, provided that all internal

regions are congruent regular k-polygons. In a k-polygonal system, two

polygons sharing a common side is referred to as adjacent polygons. By the

characteristic graph of a k-polygonal system, we mean a graph CG whose

vertices represent k-polygons of the considered system and two vertices u

and v of CG are adjacent if and only if the k-polygons corresponding to u

and v are adjacent. (Such a graph is sometimes also called the inner dual of

G.) A k-polygonal chain (catacondensed k-polygonal system, respectively,)

is a k-polygonal system whose characteristic graph is the path graph (tree,

respectively). In a k-polygonal chain, a k-polygon adjacent to exactly one

(two, respectively) k-polygon(s) is referred to as external (internal, respec-

tively) k-polygon. For k = 3, 4, 5, 6, a k-polygonal system is known as a

triangular system, polyomino system, pentagonal system, hexagonal sys-

tem, respectively. A graph can be used to represent a k-polygonal system,

with the vertices representing the points where two sides of any k-polygon

meet and the edges representing the k-polygons’ sides. In the rest of this

article, by a k-polygonal system we mean the graph corresponding to the

considered k-polygonal system.

By a linear triangular chain, we mean a triangular chain of maximum

degree at most 4. A maximal linear triangular (polyomino, respectively)

sub-chain of a triangular (polyomino, respectively) chain T is known as a

segment of T . By an external segment of a triangular (polyomino, respec-

tively) chain, we mean a segment containing at least one external polygon.

A segment that is not external is referred to as an internal segment. The

number of polygons in a segment is known as its length. A non-linear tri-

angular chain in which one external segment has length 3 and the other

external segment has length either 3 or 4, and every internal segment (if
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exists) has length 4, is known as a zigzag triangular chain.

In a polyomino chain, a kink is an internal square containing a vertex

of degree 2; in a hexagonal chain, a kink is an internal hexagon containing

an edge connecting vertices of degree 2. A linear polyomino chain (linear

hexagonal chain, respectively) is the one containing no kink. A non-linear

polyomino chain consisting of only kinks and external squares is known as

a zigzag polyomino chain.

In a catacondensed hexagonal system, a branched hexagon is the one

adjacent to three other hexagons.

By isomeric hexagonal systems, we mean the hexagonal systems that

have an equal number of vertices and an equal number of edges.

Consider two hexagonal systems H1 and H2. Let u, v ∈ V (H1) be

vertices of degree 2 having a common neighbor of degree 3. Let x, y ∈
V (H2) be two adjacent vertices of degree 2. A fluoranthene system F is

a molecular graph obtained from the hexagonal systems H1 and H2 by

inserting the edges ux and vy. If, in addition, F satisfies the following

three conditions then F is called a fluoranthene linear chain: (i) H1 has

only two hexagons (ii) H2 is the hexagonal linear chain (iii) each of the

vertices x, y has only neighbors of degree 2 in H2; see Figure 1, which

depicts a fluoranthene linear chain and a fluoranthene system that is not

a fluoranthene linear chain (because in this case, condition (iii) is not

satisfied).

The SC index, defined in the previous section, was generalized in [104].

For a graph G, its general SC index is defined as

SCα(G) =
∑

uv∈E(G)

(du + dv)
α.

For α = −1, 1/2, 1, the general SC index SCα corresponds to the harmonic

index H = 2SC−1 (which was first considered in [42]), the reciprocal sum-

connectivity index RSC = SC1/2 (see [15,52]), the first Zagreb index M1 =

SC1, respectively.
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(a) (b)

Figure 1. (a)A fluoranthene linear chain (b) A fluoranthene system
that is not a fluoranthene linear chain.

The general Platt index [9] of a graph G is defined as

Plα(G) =
∑

uv∈E(G)

(du + dv − 2)α,

provided thatG does not contain any component isomorphic to the path P2

whenever α < 0. The index Pl−1 is known as the modified Platt index [16],

denoted as mPl.

3 Extremal results

This section is devoted to collecting and presenting results concerning the

extremum values of the ABS index. This section is divided into two sub-

sections: the first one provides the extremal results regarding the minimum

ABS index, while the second one deals with the maximum ABS index.

3.1 Minimum ABS index

In this section, first we present existing results concerning the minimum

ABS index and then we establish such type of results by utilizing existing

general results. We start with the following simple but notable result.

Although the problem of determining graphs attaining the minimum ABC
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index among all trees of a fixed order was a hard problem (for example,

see [10, 36, 37, 57, 57]), the corresponding problem for the ABS index was

quite easy:

Theorem 1. [12] In the class of all n-order trees, with n ≥ 4, the path Pn

uniquely attains the minimum ABS index.

In Theorem 1, if the text “n-order trees, with n ≥ 4,” is replaced with

“n-order connected graphs, with n ≥ 3,” then the modified statement

remains valid [12]. Also, in Theorem 1, if “all n-order trees” and “the

path” are replaced with “line graphs of all n-order trees” and “the line

graph of the path”, respectively, then the resulting statement remains

true [47].

By Theorem 1, Pn uniquely achieves the minimum ABS index over

the class of all molecular n-order trees for n ≥ 4; over the same class,

for n ≥ 13, trees attaining second to sixth minimum ABS index were

determined in [105].

Since ABS(P2) = 0 < ABS(Pn) for n ≥ 3, among all trees with 2

pendent vertices, P2 uniquely achieves the minimum ABS index. For the

case when the number of pendent vertices in a tree is greater than 2, we

have the next result, which gives a solution to an open problem posed

in [13].

Theorem 2. [20] The star Sp+1 uniquely attains the minimum ABS index

among all trees with p ≥ 3 pendent vertices.

The problem of characterizing trees with the minimum ABC index over

the class of all trees having a fixed number of pendent vertices was not easy

(for example, see [10]); on the other hand, this problem for the ABS index

was rather easy (see Theorem 2). Since the extremal tree in Theorem 2 is

not a molecular tree for p ≥ 5, it seems to be interesting to consider the

following problem.

Problem 1. Characterize graphs that attain the minimum ABS index

among all molecular trees with p ≥ 5 pendent vertices.

For a fixed integer p ≥ 3, let T(1, 3; p) be the class of all trees with p

pendent vertices such that every member of T(1, 3; p) consists of vertices of
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degrees 1 and 3 only. For n ≥ 3p−2 ≥ 7, denote by T⋆(n, p) the class of all

trees whose arbitrary member T ⋆(n, p) is obtained from some T (1, 3; p) ∈
T(1, 3; p) by subdividing every pendent edge of T (1, 3; p) at least once,

such that the total number of subdivisions performed is n− 2p+ 2, which

is the number of vertices of degree 2 in T ⋆(n, p); for example, see Figure

2.

T1 T2 T3 T4

Figure 2. Some trees T1, T2, T3, T4, belonging to the class T⋆(18, 6).

The next result was proved independently in [20,74].

Theorem 3. [20, 74] Among all n-order trees with p pendent vertices,

only the member(s) of T⋆(n, p) attain(s) the minimum ABS index for n ≥
3p− 2 ≥ 7.

Note that every member of the class T⋆(n, p) is a molecular tree. Thus,

if the text “n-order trees” in Theorem 3 is replaced with “n-order molecular

trees” then the resulting statement remains true (see also Corollary 3.12

in [39]).

A tree having exactly two non-pendent vertices is known as a double

star. By a balanced double star, we mean a double star in which the

degrees of non-pendent vertices differ by at most 1.



282

Theorem 4. [20] Among all trees of order p+ 2 with p ≥ 4 pendent ver-

tices, the balanced double star uniquely attains the minimum ABS index.

The problem concerning the minimum ABS index of n-order trees with

p ≥ 4 pendent vertices, for p+ 3 ≤ n ≤ 3p− 3, was left open in [20].

Problem 2. [20] Characterize tree(s) attaining the minimum ABS index

among all n-order trees with p ≥ 4 pendent vertices, where p + 3 ≤ n ≤
3p− 3.

p = 4

p = 5

p = 6

Figure 3. The graphs that provide solution to Problem 2 for p = 4, 5, 6.

Figure 3 provides solution to Problem 2 for p = 4, 5, 6, see [20]. How-

ever, for p ≥ 7, Problem 2 remains open. To obtain better insight into some

structural properties of the extremal trees of Problem 2, we performed a
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computer search for p = 7, 8, 9; for these values of p, the obtained extremal

trees are depicted in Figures 4, 5, 6, respectively.
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Figure 4. Trees attaining the minimum ABS index among all n-order
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Figure 6. Trees attaining the minimum ABS index among all n-order
trees with 9 pendent vertices, where 12 ≤ n ≤ 24.

Next, we present a result, obtained in a recent preprint [60], concerning

the minimum ABS index of n-order trees with a fixed maximum degree.

Theorem 5. [60] In the class of all n-order trees of maximum degree ∆,

(i) only a tree(s) having exactly one branching vertex, adjacent to ∆ ver-

tices of degree 2 attain(s) the minimum ABS index, when 3 ≤ ∆ ≤
⌊(n− 1)/2⌋;

(ii) only a tree(s) possessing exactly one branching vertex, having n−∆−1

neighbors of degree 2 and 2∆ + 1− n pendent neighbor(s), attain(s)

the minimum ABS index, when ⌈(n− 1)/2⌉ ≤ ∆ ≤ n− 3.
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Now, we shift the focus of our attention toward results on the minimum

ABS index of graphs containing cycles.

Theorem 6. [13] In the class of all n-order unicyclic graphs, with n ≥ 4,

the cycle Cn uniquely attains the minimum ABS index.

In Theorem 6, if the text “all n-order unicyclic graphs” and “the cycle”

are replaced with “line graphs of all n-order unicyclic graphs” and “the

line graph of the cycle”, respectively, then the modified statement remains

valid [47].

Let Un be the class of those n-order unicyclic graphs that are obtained

by adding an edge between a vertex of the cycle Cn−k and a pendent vertex

of the path Pk, where k ≥ 2.

Theorem 7. [13] The member(s) of the class Un uniquely attain(s) the

second-minimum ABS index among all n-order unicyclic graphs for every

n ≥ 5.

Since the extremal graphs mentioned in Theorems 6 and 7 are molecular

ones, if the text “unicyclic graphs” in the statements of these theorems is

replaced with “molecular unicyclic graphs”, then the modified statements

remains valid.

The graphs that attain the third-minimum ABS index among all n-

order molecular unicyclic graphs, for n ≥ 7, were determined in [105].

Theorem 8. [77] The graph formed by adding an edge between a pendent

vertex of the path Pn−k and a vertex of the cycle Ck, uniquely attains the

minimum ABS index among all n-order unicyclic graphs of girth k, where

3 ≤ k ≤ n− 2.

The graphs attaining the second-minimum value of the ABS index over

the class of all n-order unicyclic graphs of girth k, with 3 ≤ k ≤ n − 2,

were also determined in [77].

Let U ℓ1,ℓ2,...,ℓr
n,g be the n-order unicyclic graph obtained by attaching r

paths to a single vertex of the cycle Cg such that the attached paths have

lengths ℓ1, ℓ2, . . . , ℓr provided that
∑r

i=1 ℓi = n− g, where 3 ≤ g ≤ n− 2.

Theorem 9. [75] Among all n-order unicyclic graphs with maximum de-

gree ∆,
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(i) the member(s) of
{
U

ℓ1,ℓ2,...,ℓ∆−2
n,3 : 1 ≤ ℓi ≤ 2, for i = 1, 2 . . . ,∆− 2

}
at-

tain(s) the minimum ABS index, when n+2
2 ≤ ∆ ≤ n− 2;

(ii) the member(s) of
{
U

ℓ1,ℓ2,...,ℓ∆−2
n,g : g ≥ 3, ℓi ≥ 2, for i = 1, 2 . . . ,∆−2

}
attain(s) the minimum ABS index, when 3 ≤ ∆ < n+2

2 .

Theorem 10. [105] Only the graphs depicted in Figure 7 attain the min-

imum ABS index over the class of all n-order bicyclic molecular graphs

for n ≥ 6.

Figure 7. The bicyclic graphs referred in Theorem 10.

The graphs attaining the second-minimum ABS index over the class

of all n-order bicyclic molecular graphs, for n ≥ 6, were also determined

in [105].

Theorem 10 suggests the following conjecture.

Conjecture 1. Only the graphs depicted in Figure 7 attain the minimum

ABS index over the class of all n-order connected bicyclic graphs for every

n ≥ 6.

Theorem 11. [105] The graph formed by inserting n−4 vertices of degree

2 on one of the edges of the complete graph K4 (see Figure 8) uniquely

attains the minimum ABS index among all n-order tricyclic molecular

graphs for n ≥ 6.

Figure 8. The tricyclic graph referred in Theorem 11 and Conjecture
2.

The graphs attaining the second-minimum ABS index among all n-

order tricyclic molecular graphs, for n ≥ 6, were also determined in [105].
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Theorem 11 suggests the following conjecture.

Conjecture 2. The graph depicted in Figure 8 uniquely attains the min-

imum ABS index among all n-order connected tricyclic graphs for every

n ≥ 6.

Theorem 12. [12] In the class of all non-trivial n-order graphs, only the

graphs having the maximum degree at most 1 attain the minimum ABS

index.

In the rest of this subsection, we collect those extremal results concern-

ing the minimum ABS index that can be derived from existing extremal

results about general BID indices.

A cut vertex of a connected graph G is a vertex whose removal makes G

a disconnected graph. By a 2-connected graph G, we mean a non-complete

and connected graph containing no cut vertex.

From Theorem 4.2 of [90], the next result follows.

Theorem 13. Among all 2-connected graphs of order n, the cycle Cn

uniquely attains the minimum ABS index for every n ≥ 4.

By Theorem 8 of [95], the value of a BID index, defined via a function

b(x, y), is decreasing if and only if

b(x+ 1, y + 1)− b(x+ 1, y) < b(x, y + 1)− b(x, y),

for all positive integers x and y. Note that if b(x1, x2) =
√

x1+x2−2
x1+x2

then

the function f defined by

f(x1, x2) = b(x1, x2 + 1)− b(x1, x2)

is strictly decreasing in x1 for all real numbers x1 and x2 greater than or

equal to 1. Thus, f(x + 1, y) < f(x, y) for all positive integers x and y.

Thus, the ABS index is deescalating. Results concerning the minimum

ABS index over the class of all

• trees,

• unicyclic graphs of minimum degree 1,
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• connected bicyclic graphs of minimum degree 1,

• connected graphs of minimum degree 1,

with a given degree sequence, follow from [72], see also [93,100,102].

For a connected r-cyclic graph H of order n− k, the graph Kk +H is

known as a k-cone r-cyclic graph, where k ≥ 1; a 0-cone graph is simply

a connected graph, see [71]. Since the ABS index is deescalating, from

Corollary 2.1 and Theorem 2.3 of [71], one obtains the graphs attaining

the minimum ABS index over the class of all k-cone

• trees,

• unicyclic graphs,

• bicyclic graphs,

with a given degree sequence for k ≥ 0.

A subgraphH of a graphG is said to be a spanning subgraph if V (H) =

V (G); in addition, if H is a tree then H is called a spanning tree of G. The

following problem is a special case of a general problem attacked in [38]:

Problem 3. INSTANCE: A graph G and a real number k.

QUESTION: Does G has a spanning tree T with ABS(T ) ≤ k?

Theorem 1 of [38] implies that Problem 1 is NP-complete.

Next, we obtain results concerning the minimum ABS index of k-

polygonal systems; for definitions of polygonal chains and related concepts,

see Section 2.

The following result is a consequence of the second part of Corollary

3.2 of [7].

Theorem 14. [7] Over the family of all those triangular chains with t ≥ 4

triangles in which every vertex has degree less than or equal to 5, the linear

triangular chain uniquely attains the minimum ABS index.

From the first part of Theorem 2.10 of [17], the next result follows.

Theorem 15. [17] The linear polyomino chain uniquely attains the min-

imum ABS index among all polyomino chains with s ≥ 3 squares.



288

Since no extremal result from [18] concerning pentagonal chains is ap-

plicable for the ABS index, it would be nice to establish such results for

this index.

The second part of Theorem 9 of [34], or Corollary 2.12 of [81], gives

the following result.

Theorem 16. [34, 81] Only those catacondensed hexagonal systems that

contain ⌊h/2⌋ − 1 branched hexagons and ⌈h/2 − ⌊h/2⌋⌉ kinks attain the

minimum ABS index among all catacondensed hexagonal systems with

h ≥ 3 hexagons.

The following result follows from Theorem 2 of [91].

Theorem 17. [91] Among all catacondensed fluoranthene systems with h

hexagons, the system shown in Figure 9 has the minimum ABS index for

every h ≥ 5.

... ...

When h is odd When h>5 is even

Figure 9. The fluoranthene system referred in Theorem 17.

Corresponding to Theorem 17, we refer the reader to the second part

of Theorem 8 in [56].

Theorem 5(a) of [32] provides the systems attaining the minimum ABS

index in the class of all isomeric hexagonal systems.

Additional extremal results regarding the minimum ABS index of dif-

ferent types of hexagonal systems can be easily obtained from general

results reported in [8, 31,33].
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3.2 Maximum ABS index

In this section, first we present existing results concerning the maximum

ABS index and then we establish such type of results by utilizing existing

general results. Although the trees attaining the minimum ABS index and

the ones attaining the minimum ABC index over the class of all n-order

trees, for n ≥ 10, are not the same; in the case of maximization, such trees

are the same, as stated in the following theorem:

Theorem 18. [12] In the class of all n-order trees, with n ≥ 4, the star

Sn uniquely attains the maximum ABS index.

In Theorem 18, if the texts “all n-order trees” and “the star” are re-

placed with “line graphs of all n-order trees” and “the line graph of the

star”, respectively, then the modified statement remains valid [47].

Theorem 19. [78] Among all n-order trees having p pendent vertices, the

tree Sn,p uniquely attains the maximum ABS index, where 3 ≤ p ≤ n− 2

and Sn,p is the tree formed by attaching p − 1 pendent vertices to exactly

one pendent vertex of the path graph Pn−p+1 of order n− p+ 1.

T1 T2

Figure 10. Two examples, T1 and T2, of trees belonging to the class

T†
e(18, 10).

For a fixed even integer p ≥ 6, let Te(1, 4; p) be the class of all trees

with p pendent vertices such that every member of Te(1, 4; p) consists of

vertices of degrees 1 and 4 only. For n ≥ 2p − 3 ≥ 9, p being even,
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denote by T†
e(n, p) the class of all trees whose arbitrary member T †

e (n, p)

is obtained from some Te(1, 4; p) ∈ Te(1, 4; p) by replacing every (4, 4)-edge

of Te(1, 4; p) with a path of length at least 2, such that the total number

of vertices of degree 2 in T †
e (n, p) is n− 3p

2 +1; for example, see Figure 10.

Theorem 20. [39] Among all n-order molecular trees with p pendent ver-

tices, only the member(s) of T†
e(n, p) attain(s) the maximum ABS index,

where p is even and n ≥ 2p− 3 ≥ 9.

T1 T2

Figure 11. Two examples, T1 and T2, of trees belonging to the class

T†
o(29, 15).

For a fixed odd integer p ≥ 9, let To(1, 3, 4; p) be the class of all trees

with p pendent vertices such that every member of To(1, 3, 4; p) does not

contain any vertex of degree 2 and it contains exactly one vertex of degree

3, which is adjacent to three vertices of degree 4. For n ≥ 2p − 2 ≥ 16, p

being odd, denote by T†
o(n, p) the class of all trees whose arbitrary member

T †
o (n, p) is obtained from some To(1, 3, 4; p) ∈ To(1, 3, 4; p) by replacing

every (i, 4)-edge of To(1, 3, 4; p) with a path of length at least 2, such that

the total number of vertices of degree 2 in T †
o (n, p) is n − 3p−1

2 , where

i = 3, 4; for example, see Figure 11.

Theorem 21. [39] Only the member(s) of T†
o(n, p) attain(s) the maximum

ABS index over the class of all n-order molecular trees with p pendent

vertices, where p is odd and n ≥ 2p− 2 ≥ 16.

Theorems 20 and 21 suggest the following problem.

Problem 4. Characterize trees attaining the maximum ABS index in the
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class of all n-order molecular trees with p pendent vertices for sufficiently

large p and n ≤ 2p− 4.

By a matching in a graph G, we mean a subset S of E(G) such that

the members of S are pairwise non-adjacent. A maximum matching of G

is the one possessing the maximum possible number of edges of G. The

matching number of G is the cardinality of a maximum matching of G. By

subdividing an edge uv of a graph G, we mean obtaining a new graph G′

from G by inserting a new vertex w and replacing the edge uv with two

new edges uw,wv. The next result was proved independently in [59,101].

Theorem 22. [59,101] The tree formed by subdividing β−1 edge(s) of the

star Sn−β+1 uniquely attains the maximum ABS index in the class of all

n-order trees with matching number β, where n ≥ 4 and 1 ≤ β ≤ ⌊n/2⌋.

By replacing the phrase “matching number” with “domination num-

ber” in Theorem 22, the resulting statement remains true (see [101]).

A perfect matching S of a graph G is a matching such that every vertex

of G is incident to exactly one edge of S.

Theorem 23. [94] Among all molecular n-order trees with perfect match-

ing, the tree depicted in Figure 12 uniquely attains the maximum ABS

index, where n = 2k + 12 ≥ 14.

k︷ ︸︸ ︷

Figure 12. The tree referred in Theorem 23.

Theorem 24. [59] In the class of all n-order trees with diameter d, the tree

formed by attaching n − d pendent edge(s) to exactly one of the pendent

vertices of the path Pd uniquely attains the maximum ABS index, where

n ≥ d+ 1 ≥ 3.

Next, we turn our attention to extremal results involving cyclic graphs.

Theorem 25. [13] The graph formed by connecting two pendent vertices

with an edge in the star Sn, uniquely attains the maximum ABS index

among all n-order unicyclic graphs, for every n ≥ 4.
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The unique graph with the second-maximum ABS index, among all

n-order unicyclic graphs for every n ≥ 5, was also reported in [13].

Theorem 26. [76] The graph formed by attaching n− g pendent vertices

to a single vertex of the cycle Cg, uniquely attains the maximum ABS

index over the class of all n-order unicyclic graphs with girth g, where

3 ≤ g ≤ n− 2.

The graphs with the second-maximum ABS index, among all n-order

unicyclic graphs with a given girth, were also reported in [76].

Theorem 27. [1] The graph formed by adding two new adjacent edges in

the star Sn, uniquely attains the maximum ABS index among all n-order

connected bicyclic graphs, for every n ≥ 5.

Theorem 28. [3] Among all molecular n-order graphs of size m, with

n− 1 ≤ m ≤ 2n and n ≥ 13,

(i) only the graph(s) containing no vertices of degrees 2 and 3 attain the

maximum ABS index, when n+m ≡ 0 (mod 3), and this maximum

value is
(25− 4

√
5 )m+ 4(2

√
5− 5)n

10
√
3

,

(ii) only the graph(s) containing no vertex of degree 2 and containing

exactly one vertex of degree 3, adjacent to three vertices of degree 4,

attain the maximum ABS index, when n+m ≡ 1 (mod 3), and this

maximum value is

(25− 4
√
5 )m+ 4(2

√
5− 5)n

10
√
3

+
45
√
35− 140

√
3− 7

√
15

105
,

(iii) only the graph(s) containing no vertex of degree 3 and containing

exactly one vertex of degree 2, adjacent to two vertices of degree 4,

attain the maximum ABS index, when n+m ≡ 2 (mod 3), and this

maximum value is

(25− 4
√
5 )m+ 4(2

√
5− 5)n

10
√
3

− 2(5− 5
√
2 +

√
5 )

5
√
3

.
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The case m = n− 1 of Theorem 28 was first proved in [12].

Theorem 29. [6] The complete bipartite graph K⌈n/2⌉,⌊n/2⌋ uniquely at-

tains the maximum ABS index over the class of all triangle-free graphs of

order n ≥ 4.

In Theorem 29, if the text “triangle-free graphs” is replaced with “bi-

partite graphs” then the resulting statement remains true [6].

Theorem 30. [6] Among all graphs of size m ≥ 2, the star Sm+1 uniquely

attains the maximum ABS index.

Theorem 31. [12] In the class of all non-trivial n-order graphs, the com-

plete graph Kn uniquely possesses the maximum ABS index.

The vertex connectivity of a non-trivial connected graph G is the least

number of vertices whose removal makes G either a disconnected graph or

a trivial graph. Similarly, the edge connectivity of G is the least number

of edges whose removal makes G a disconnected graph. The next result,

concerning the vertex connectivity, was proved independently in [5, 67].

Theorem 32. [5,67] Among all n-order connected graphs with the vertex

connectivity at most r, such that 1 ≤ r ≤ n − 2 and n ≥ 5, the graph

K
(r)
n uniquely attains the maximum ABS index, where K

(r)
n is the graph

obtained from the complete graph Kn−1 by joining a new vertex (through

edges) to exactly r vertices of Kn−1.

Recall that the vertex connectivity of a connected graph G is at most

the edge connectivity of G. Hence, in Theorem 32, if the text “vertex con-

nectivity” is replaced with “edge connectivity” then the resulting state-

ment remains valid [67].

It is a well-known fact that the vertex connectivity of a graph G is less

than or equal to the minimum degree of G. Thus, Theorem 32 implies the

next result.

Theorem 33. [21] The graph K
(r)
n , defined in Theorem 32, uniquely at-

tains the maximum ABS index among all n-order connected graphs of

minimum degree δ, where 1 ≤ δ ≤ n− 2.
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Theorem 34. [5] Over the class of all n-order connected graphs with

matching number β, such that 1 ≤ β ≤ ⌊n/2⌋ − 1 and n ≥ 5, the graph

Kβ + Kn−β uniquely attains the maximum ABS index. If β = ⌊n/2⌋,
then Kn uniquely attains the maximum ABS index over the aforemen-

tioned class of graphs.

In Theorem 34, if the text “matching number β” is replaced with

“matching number at most β” then the resulting statement remains true

[67].

By a nearly k-regular graph of order n ≥ 3, with k ≥ 1, we mean a

graph having n− 1 vertices of degree k and one vertex of degree k − 1.

Theorem 35. [21] Among all n-order connected graphs of maximum de-

gree ∆ ≥ 1,

(i) only ∆-regular graph(s) achieve(s) the maximum ABS index, when

n∆ is even;

(ii) only nearly ∆-regular graph(s) achieve(s) the maximum ABS index,

when n∆ is odd.

Denote by B(n, r) the complete r-partite graph with n vertices such

that the number of vertices in any two partite sets of B(n, r) differs by at

most 1, where r ≥ 2.

Theorem 36. [21] In the class of all n-order connected graphs with chro-

matic number χ, the graph B(n, χ) uniquely attains the maximum ABS

index, where χ ≥ 3 and n ≥ 5.

It is a well-known fact that the chromatic number of a connected graph

G is 2 if and only if G is bipartite. Also, every bipartite graph is triangle-

free. Thus, by Theorem 29, if the condition “χ ≥ 3” in Theorem 36 is

replaced with “χ ≥ 2” then the resulting statement remains valid (see

also [67]); this resulting statement follows also from Theorem 3.2 of [89].

Furthermore, if the text “chromatic number” and the constraint “χ ≥ 3” in

Theorem 36 are replaced with “clique number” and “χ ≥ 2”, respectively,

then again the resulting statement remains true [67].
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A subset S of the vertex set of a graph G is said to be an independent

set if the members S are pairwise non-adjacent. By a maximum indepen-

dent vertex set of a graph G, we mean an independent set possessing the

maximum possible number of vertices of G. The independence number of

a graph G is the cardinality of a maximum independent set of G.

Theorem 37. [21] Among all non-trivial n-order connected graphs with

independence number α, the graph Kn−α+Kα uniquely achieves the max-

imum ABS index.

Since the sum of the independence number and vertex cover number of

an n-order graph G is always n (for example, see [96]), Theorem 37 gives

the graph attaining the maximum ABS index among all connected graphs

of a given order and fixed vertex cover number.

Theorem 38. [21] The graph formed by attaching p pendent vertices to

exactly one vertex of the complete graph Kn−p, uniquely achieves the max-

imum ABS index over the class of all n-order connected graphs with p

pendent vertices, where 0 ≤ p ≤ n− 3.

In the rest of this subsection, we collect those extremal results concern-

ing the maximum ABS index that can be derived from existing extremal

results about general BID indices.

A graph in which the degrees of any two adjacent vertices differ by 1 is

known as a stepwise irregular graph [50]. By Theorem 4.4 of [2], we have

the next result.

Theorem 39. [2] In the class of all stepwise irregular graphs of order

n ≥ 5,

(i) only the complete bipartite graph K(n−1)/2,(n+1)/2 attains the maxi-

mum ABS index, when n is odd;

(ii) only the graph Gn attains the maximum ABS index, when n

≡ 0 (mod n) and n is even, where Gn is the graph with degree set{
n−4
2 , n−2

2 , n
2

}
such that the number of vertices with degrees n−4

2 ,
n−2
2 , n

2 are n
4 ,

n
2 ,

n
4 , respectively;
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(iii) only the graph(s) of the class Gn attain(s) the maximum ABS index,

when n is even and n ≡ 2 (mod n), where Gn is the class of graphs

with degree set {n−2
4 , n+2

4 } such that the number of vertices with

degrees n−2
4 , n+2

4 are n+2
2 , n−2

2 , respectively.

The next result provides a useful tool for establishing several extremal

results concerning the maximum ABS index.

Theorem 40. [12] If u and v are non-adjacent non-isolated vertices of

a graph G, then ABS(G) < ABS(G + uv), where G + uv is the graph

obtained from G by adding the edge uv.

A cut edge (or a bridge) of a graph G is an edge whose removal increases

the number of components of G. Proposition 2 of [97] and Theorem 40

yield the next result.

Theorem 41. [97] If G is a graph attaining the maximum ABS index

among all connected n-order graphs with r cut edges, namely e1, e2, . . . , er,

then every component of the graph G− {e1, e2, . . . , er} is complete.

From Proposition 1.1 of [28] and Theorem 40, the following result is

deduced.

Theorem 42. [28] If G is a graph attaining the maximum ABS index

among all bipartite n-order graphs with r cut edges, namely e1, e2, . . . , er,

then every component of the graph G−{e1, e2, . . . , er} is either a complete

bipartite graph or K1.

Recall that a cut vertex of a connected graph G is a vertex whose

removal makes G a disconnected graph. By a block B of G, we mean a

maximal connected subgraph of G such that B does not contain any cut

vertex.

Proposition 1 of [97] and Theorem 40 yield the next result.

Theorem 43. [97] If G is a graph attaining the maximum ABS index

among all connected n-order graphs with r cut vertices, then every block of

G is complete and every cut vertex of G is contained in exactly two blocks.
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The minimum number of vertices of a graph G whose removal makes G

a bipartite graph is known as the vertex bipartiteness (or bipartite vertex

frustration) of G, see [43,98]. By using Theorem 40 in Proposition 1 of [30],

we obtain the following result.

Theorem 44. [30] If G is a graph possessing the maximum ABS index

over the class of all connected n-order graphs with the vertex bipartiteness

at most r, where 1 ≤ r ≤ n − 2, then there exist positive integers s and t

such that s+ t = n− r and G is of the form Kr +Ks,t.

In [46], the concept of vertex bipartiteness was generalized to vertex k-

partiteness for k ≥ 2. The minimum number of vertices of a graph G whose

removal makes G a k-partite graph is known as the vertex k-partiteness of

G. From Theorem 3.2 of [46] and Theorem 40, the next result (a general

form of Theorem 44) follows.

Theorem 45. [46] If G is a graph possessing the maximum ABS index

over the class of all connected n-order graphs with the vertex k-partiteness

at most r, where 1 ≤ r ≤ n − 2, then there exist k positive integers

t1, t2, . . . , tk such that
∑k

i=1 ti = n−r and G is of the form Kr+Kt1,t2,...,tk .

A vertex cut U of a connected graph G is a subset of V (G) such that

the graph G−U is disconnected. A vertex cut of G with the least possible

number of elements is known as a minimum vertex cut of G.

By using Proposition 1.1 of [27] and keeping in mind Theorem 40, we

arrive at the following result.

Theorem 46. [27] Let G be a graph possessing the maximum ABS index

over the class of all connected bipartite graphs of order n with the vertex

connectivity κ. Let S be a minimum vertex cut of G. If the graph G−S has

a nontrivial component, then G − S has exactly two components, namely

H1 and H2, such that the graphs G[S ∪ V (H1)] and G[S ∪ V (H2)] are

complete bipartite.

Here, we remark that some extra work is required to completely char-

acterize the extremal graphs in Theorems 41, 42, 43, 44, 45 and 46. Thus,

the following problem arises.
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Problem 5. Characterize graphs attaining the maximum ABS index over

the graph classes considered in Theorems 41, 42, 43, 44, 45 and 46.

From Theorem 2.1 of [89] (see also Proposition 1 in [29]), the next

result follows.

Theorem 47. The complete bipartite graph Kβ,n−β uniquely achieves the

maximum ABS index among all connected bipartite graphs of order n with

the matching number β, where 2 ≤ β ≤ ⌊n/2⌋.

A subset S of the vertex set (edge set, respectively) of a graph G is

said to be a vertex cover (edge cover, respectively) if every edge (vertex,

respectively) ofG is incident to at least one vertex (edge, respectively) of S.

A minimum vertex cover (edge cover, respectively) of G is the one with the

minimum cardinality among all vertex covers (edge covers, respectively)

of G. The vertex cover number (edge cover number, respectively) of G is

the cardinality of a minimum vertex cover (edge cover, respectively) of G.

Remark. Since the vertex cover number and the matching number of every

connected bipartite graph are the same (by König-Egeváry theorem), if

the text “matching number” in Theorem 47 is replaced with “vertex cover

number” then the resulting statement of Theorem 47 remains true.

Since the sum of the matching number and edge cover number of an

n-order graph G without isolated vertices is always n (see [44,88]). Thus,

by Theorem 47, we have the next result.

Theorem 48. The complete bipartite graph Kr,n−r uniquely achieves the

maximum ABS index among all connected bipartite graphs of order n with

the edge cover number r, where ⌈n/2⌉ ≤ r ≤ n− 2.

Since the sum of the independence number and vertex cover number

of an n-order graph G is always n (for example, see [89,96]), and because

of Remark 3.2, if the text “edge cover number” in Theorem 48 is replaced

with “independence number” then the resulting statement remains true.

Next, we obtain results concerning the maximum ABS index of k-

polygonal systems; for definitions of polygonal chains and related concepts,

see Section 2.
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The following result is a consequence of the second part of Corollary

3.3 of [7].

Theorem 49. [7] Over the family of all those triangular chains with t ≥ 4

triangles in which every vertex has degree less than or equal to 5, the zigzag

triangular chain uniquely attains the maximum ABS index.

The next result follows from the first part of Theorem 2.12 of [17].

Theorem 50. [17] Among all those polyomino chains with s ≥ 3 squares

in which no internal segment of length 3 possesses any (3, 3)-edge, the

zigzag polyomino chain uniquely attains the maximum ABS index.

Since no extremal result from [18] concerning pentagonal chains is ap-

plicable for the ABS index, it would be nice to establish such results for

this index.

The second part of Theorem 9 of [34], or Corollary 2.11 of [81], gives

the next result.

Theorem 51. [34, 81] The linear hexagonal chain uniquely attains the

maximum ABS index among all catacondensed hexagonal systems with

h ≥ 3 hexagons.

The following result follows from either Theorem 1 of [91] or Theorem

8 of [56].

Theorem 52. [56,91] Among all catacondensed fluoranthene systems with

h hexagons, the fluoranthene linear chain has the maximum ABS index

for every h ≥ 5.

From several general results reported in [56], one may obtain some

additional results about the maximum ABS index of fluoranthene systems.

Theorem 5(a) of [32] provides the systems attaining the maximum ABS

index in the class of all isomeric hexagonal systems.

Additional extremal results regarding the maximum ABS index of dif-

ferent types of hexagonal systems can be easily obtained from general

results reported in [8, 23,31,33,66].
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4 Bounds

This section consists of two subsections: the first one deals with the ABS

index’s upper bounds, while the second one is related to the ABS index’s

lower bounds.

4.1 Upper bounds

Theorem 53. [6] For a triangle-free graph G of order n and size m ≥ 2,

it holds that

ABS(G) ≤ m

√
n− 2

n

with equality if and only if G is complete bipartite.

Theorem 54. [4] If G is a connected graph of order n, size m and maxi-

mum degree ∆ ≥ 2, then

ABS(G) ≤ n∆− 2m√
∆2 − 1

+
m(∆ + 1)− n∆√

∆(∆− 1)
, (1)

where the equality in (1) holds if and only if the degree set of G is either

{∆} or {1,∆}.

Theorem 55. [12] If G has m edges, then

ABS(G) ≤
√
m(m−H(G))

with equality if and only if either m = 0 or there exists a fixed positive

integer k such that du + dv = k for every edge uv ∈ E(G).

Theorem 56. [60] If G is a connected non-trivial graph of size m, maxi-

mum degree ∆ and minimum degree δ, then

ABS(G) ≤ m

√
∆− 1

δ
,

with equality if and only if G is regular.
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Theorem 57. [60] If G is a connected non-trivial graph with order n,

maximum degree ∆, clique number α and minimum degree δ, then

ABS(G) ≤ n2(α− 1)

2α

√
∆− 1

δ
,

with equality if and only if G is a complete α-partite graph whose all partite

sets have the same number of elements.

Theorem 58. [60] If G is a graph with size m ≥ 1 and chromatic number

χ, then

ABS(G) ≤ m

√
2m− χ

2m
,

with equality if and only if G is either a complete graph or the union of a

complete graph and some isolated vertices.

Theorem 59. [68] If G is a connected graph of maximum degree ∆, then

ABS(G) ≤
√

∆(∆− 1)R(G) and ABS(G) ≤
√
∆(∆− 1)H(G),

where the equality in either of the inequalities holds if and only if G is

regular.

Upper bounds on the ABS index of n-order molecular trees in terms

of the Randić index and n can be found in [62].

Theorem 60. [61] Let G be a connected graph of size m and maximum

degree ∆. Then

ABS(G) ≤ m

√
1− 1

∆

where the equality holds if G is regular.

Theorem 61. [61] If G is a graph having t isolated edges then

ABS(G) ≤ Pl1/2(G)

√
H(G)

2
− t .

If G has m edges (from which t are isolated edges) then

ABS(G) ≤ (SC(G)− t)
√
m− t− 1 ,
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where the equality holds if and only if G is the union of a star graph and

t isolated edges.

Theorem 62. [16] If G is a graph of minimum degree at least 1, then

ABS(G) ≤
√
SC(G)(RSC(G)− 2 · SC(G)) ;

in addition, if G has size m then

ABS(G) ≤
√

(M1(G)− 2m)H(G)

2
,

where in these inequalities the equality holds if and only if G is either a

regular graph or a semiregular bipartite graph.

Since Pl(G) = M1(G)− 2m, the second inequality in Theorem 62 can

be written as

ABS(G) ≤
√

Pl(G)H(G)

2
.

Theorem 63. [16] If G is an n-order graph of size m, minimum degree

δ ≥ 1 and maximum degree ∆, then

ABS(G) ≤
√

(2m(∆ + 2δ − 1) + ∆δ2ID(G)− nδ(2∆ + δ))H(G)

2
(2)

and

ABS(G) ≤
√

(2m(∆ + δ − 1)− n∆δ)H(G)

2
, (3)

where ID(G) is the inverse degree index of G (for example, see [11])

ID(G) =
∑

u∈V (G)

1

du
.

On the other hand, if G is an n-order tree of maximum degree ∆, with

n ≥ 3, then

ABS(G) ≤
√

∆(n− 2)H(G)

2
. (4)

The equality in the inequalities (2) and (4) holds if and only if ∆ = d1 =

· · · = dt ⩾ dt+1 = · · · = dn = δ, for some t ∈ {1, 2, . . . , n − 1}, where
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(d1, d2, . . . , dn) is the degree sequence of G in non-increasing form and δ

is the minimum degree of G. The equality in (3) holds if and only if G is

either a regular graph or a semiregular bipartite graph.

We remark here that inequality (2) is stronger than (3), see [16]. Some

additional upper bounds on the ABS index can be found in [16,48,61].

4.2 Lower bounds

Following [101], we define the class T of trees recursively as follows.

• The path graph P3k of order 3k is a member of T, where k ≥ 1.

• For T ∈ T, let v be a pendent vertex of T . If T ′ is a tree generated

from T and P3t by adding an edge between v and a pendent vertex

of P3t, then T ′ ∈ T.

• For T ∈ T, let v ∈ V (T ) be a vertex of degree 2 such that every

member of NT (v) has degree 2 and v belongs to a minimum domi-

nating set of T . If T ′ is a tree generated from T and P3t+1 by adding

an edge between v and a pendent vertex of P3t+1, then T ′ ∈ T.

Theorem 64. [101] Let T be an n-order tree with domination number γ,

where n ≥ 3 and 1 ≤ γ ≤ ⌊n/2⌋. Then

ABS(T ) ≥

(√
3

3
+

3
√
15

5
− 3

√
2

2

)
(n− 3γ) +

3
√
2

2
γ +

(
2
√
3

3
− 3

√
2

2

)
,

with equality if and only if T ∈ T.

Theorem 65. [60] If G is a connected non-trivial graph of size m, maxi-

mum degree ∆ and minimum degree δ, then

ABS(G) ≥ m

√
δ − 1

∆
,

with equality if and only if G is regular.
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Theorem 66. [60] If G is a connected graph of size m, maximum degree

∆ and minimum degree δ ≥ 2, then

ABS(G) ≥
2H(G)

√
∆δ(∆− 1)(δ − 1) +M1(G)− 2m

2
(√

δ(δ − 1) +
√
∆(∆− 1)

) ,

with equality if and only if G is regular, where M1(G) and H(G) are the

first Zagreb and harmonic indices of G, respectively.

Theorem 67. [60] If G is an n-order graph of size m, then

ABS(G) ≥ m−
√
2SC(G),

with equality if and only if G is a 1-regular graph, where SC(G) is the

sum-connectivity index of G.

Theorem 68. [68] If G is a connected graph of minimum degree δ, then

ABS(G) ≥
√
δ(δ − 1)R(G) and ABS(G) ≥

√
δ(δ − 1)H(G),

where the equality in either of the inequalities holds if and only if G is

regular.

A vertex adjacent to a pendent vertex is known as a quasi-pendent

vertex.

Theorem 69. [68] If G is a connected graph in which the degree of ev-

ery quasi-pendent vertex is at least 3, then ABS(G) > R(G) and hence

ABS(G) > H(G).

Theorem 70. [14] Let G be a connected n-order graph of minimum degree

at least 2. Then

ABS(G) ≥ ABC(G),

with equality if and only if G is the cycle graph Cn.

ABS(G) > ABC(G) (5)

Theorem 71. [14] If G is any of the following graphs then inequality (5)

holds:
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(i) Line graph of a connected n-order graph K such that n ≥ 5 and that

K ̸∈ {Pn, Cn}.

(ii) A connected graph of size m such that the number of pendent vertices

of G is at most ⌊m/2⌋ and the number of vertices of degree 2 in G

is zero.

(iii) A connected graph of size m such that the number of pendent vertices

of G is at most ⌊m/2⌋ and if v ∈ V (G) is a vertex of degree 2 then

v has no neighbor of any of degrees 2, 3 and 4.

It was found in [14] that inequality (5) in reverse order holds for every

n-order tree satisfying 3 ≤ n ≤ 10. However, if n ≥ 11 then there exists

at least one n-order tree satisfying inequality (5). These observations lead

to the following problem.

Problem 6. [14] Characterize the trees that satisfy inequality (5).

Take Θ = ABC − ABS. Employing computer search, it was found

in [14] that Θ ̸= 0 for all n-order trees satisfying 3 ≤ n ≤ 15. It would be

of some interest to extend this finding to higher values of n or to discover

a tree (or a graph with minimum degree 1) for which Θ = 0 [14].

Let Tn be the number of n-order trees and tn the number of n-order

trees for which Θ < 0. Since tn/Tn > 0 for n ≥ 11, the following problem

is natural to ask.

Problem 7. [14] Does the limn→∞ tn/Tn exist, and if yes, what is its

value?

Theorem 72. [61] Let G be a connected graph of size m and minimum

degree δ. Then

ABS(G) ≥ m

√
1− 1

δ

where the equality holds if G is regular.

Theorem 73. [61] For any connected graph G of order at least 3, size m

and maximum degree ∆, it holds that

ABS(G) ≥ (M1(G)− 2m)
3/2

2(∆− 1)
√
M1(G)

,
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with equality if and only if G is regular.

Theorem 74. [61] If G is a connected non-trivial graph of size m, then

ABS(G) ≥
√
m(2m−H(G)).

with equality if and only if G is regular.

Theorem 75. [16] If G is a connected graph of size r ≥ 2, then

ABS(G) ≥ r3/2√
r + 2 mPl(G)

,

with equality if and only if G is either a regular graph or a semiregular

bipartite graph.

Some additional lower bounds on the ABS index can be found in the

papers [48,61].

5 Concluding notes

In the present survey, we presented the main, hitherto established, mathe-

matical results on the atom-bond sum-connected index. By this, we hope

to have contributed to the emerging mathematical theory of this recently

introduced vertex-degree-based graph invariant. More results along these

lines are anticipated, and the open problems and conjectures stated in this

survey may help to motivate such future research.
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AKCE Int. J. Graph. Comb. 17 (2020) 74–85.



311
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[85] M. Randić, M. Novič, D. Plavšić, Solved and Unsolved Problems in
Structural Chemistry, CRC Press, Boca Raton, 2016.

[86] Y. Tang, D. B. West, B. Zhou, Extremal problems for degree-based
topological indices, Discr. Appl. Math. 203 (2016) 134–143.
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[104] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math.
Chem. 47 (2010) 210–218.

[105] X. Zuo, A. Jahanbani, H. Shooshtari, On the atom-bond sum-
connectivity index of chemical graphs, J. Mol. Struct. 1296 (2024)
#136849.


	Introduction
	Preliminaries
	Extremal results
	Minimum ABS index
	Maximum ABS index

	Bounds
	Upper bounds
	Lower bounds

	Concluding notes

