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Abstract

The Wiener index of a connected graph is defined as the sum of
distances between all unordered pairs of its vertices. In this paper,
we survey the known extremal results about the Wiener index of
trees and the roots of the Wiener polynomials of trees from 2014
together with some open problems.

1 Introduction

All graphs considered in this paper are simple and connected graphs. Let

G be a graph with vertex set V (G) and edge set E(G). The distance of

a vertex v, denoted by dG(v), is the sum of distances between v and all

other vertices of G. The distance between vertices u and v of G is denoted

by dG(u, v). The Wiener index of a connected graph G is defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

The Wiener index belongs among the oldest graph-based structure de-

scriptors (topological indices) which was first introduced by Wiener [42]

for predicting the boiling points of paraffins. Nowadays, the Wiener index

is considered as one of the most applicable topological indices. Numerous
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of its basic mathematical properties are well studied [4,9,34] and accumu-

lated in the surveys [6, 7, 17,36].

Chemists are often interested in the Wiener index of certain trees which

represent some acyclic organic molecules. Many researches are devoted to

studying the extremal trees that maximize or minimize the Wiener index

within certain classes of trees.

In 2001, Dobrynin, Entringer and Gutman [6] summarized a great deal

of knowledge (both mathematical and chemical) on the Wiener index of

trees, including many extremal results. The other extremal results on the

Wiener index of trees from 2002 to 2013 were collected in the survey [36]

by Xu et al..

In this review, we focus our attention to the extremal results on the

Wiener index of trees appeared from 2014 to this moment. We also re-

strict our survey to the above defined Wiener index, and avoid to examine

the related distance-based indices such as hyper-Wiener index, Harary in-

dex, Wiener polarity index, reciprocal complementary Wiener index, the

terminal Wiener index and similar.

In the sequel, for convenience of discussion, we need some further ter-

minologies and notations.

The degree degG(v) of a vertex v in G is the number of edges of G

incident with v. The degree sequence of a graph is the non-increasing

sequence of its vertex degrees. In a tree, a vertex of degree one is called a

pendent vertex, and a vertex of degree at least three is called a branching

vertex.

A segment of a tree T is a path-subtree S whose terminal vertices are

branching or pendent vertices of T . The length of a segment S is equal

to the number of edges in S and it is denoted by lS . Dobrynin, Entringer

and Gutman (see Section 5 of [6]) summarized many applications of this

concept to the calculation of the Wiener index of trees. If a tree T has

segments S1, S2, ...,Sm, then the sequence (lS1 , lS2 , ..., lSm) is called the

segment sequence of T . It is known that [6, p. 229] a sequence (t1, t2, ..., tm)

(m ≥ 3) of positive integers is a segment sequence of an n−vertex tree if

and only if

t1 + t2 + ...+ tm + 1 = n.
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Let G be a connected graph. The eccentricity of a vertex v of G,

denoted by eccG(v), is defined by eccG(v) = maxw∈V (G)dG(v, w). The

diameter of a graph G, denoted by diam(G), is the maximum eccentricity

in G. Similarly, the radius of G, denoted by rad(G), is the minimum

eccentricity in G. The center of G, denoted by Cr(G), is the set of vertices

with minimum eccentricity.

A maximal subtree containing a vertex v of a tree T as a pendent vertex

will be called a branch of T at v. The weight of a branch B, denoted by

BWT (B) is the number of edges in it. The branch weight of a vertex v,

denoted by BWT (v) is the maximum of the weights of the branches at v.

The centroid of a tree T , denoted by Cd(T ), is the set of vertices of T

with minimum branch weight. The center and centroid play special roles

with respect to the Wiener index of trees, the reader may see Section 3

of [6] for a general introduction.

For a tree T , we remark that Cr(T ) may not coincide with Cd(T ).

Let T be the tree as shown in Figure 1, then Cr(T ) = {c1, c2}. A direct

calculation gives that dT (u) = 22, dT (c1) = 24, dT (c2) = 28, dT (v1) = 40,

dT (v2) = 30, dT (v3) = dT (v4) = dT (v5) = dT (v6) = 26, dT (v7) = 34,

dT (v8) = 42 and dT (v9) = 52. Thus, Cd(T ) = {u} and Cd(T )∩Cr(T ) = ∅.
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Figure 1. The tree T

We now introduce some special trees which will frequently appeared in

several extremal results.

The unique n-vertex trees with 2 and n− 1 pendent vertices are called

the path and star and denoted by Pn and Sn, respectively. A tree T is

called a caterpillar if the tree obtained from T by removing all pendent

vertices is a path.

The dumbbell D(n, a, b) consists of the path Pn−a−b together with a in-
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dependent vertices adjacent to one pendent vertex of P and b independent

vertices adjacent to the other pendent vertex.

For a real number x, the symbols ⌊x⌋ and ⌈x⌉ denote the greatest

integer not exceeding the real number x and the smallest integer not less

than x, respectively. The following n−vertex tree M(n, k) depicted in

Figure 2 will appear in several extremal results.

t t t t t t
t t t t t t t tt t t t... ... ...

... ... ...1 2 ⌈k
2 ⌉1 2 x 1 2⌊k

2 ⌋

M(n, k)

x = n− 2k − 2

Figure 2. The tree M(n, k)

2 On the minimum and maximum Wiener

index of trees with some fixed parameters

In this section, we give a survey of lower and upper bounds for the Wiener

index of trees of given order with some fixed parameters.

The trees with a given diameter that minimise the Wiener index were

characterized in [27, 41]. There have been many attempts to overcome

the corresponding maximisation problem [27, 28, 37, 41]. In 2019, Sun et

al. [35] investigated the question that which graphs with a given diameter

attains the maximum value with respect to the Wiener index. One result

(see Theorem 6 of [35]) implied the following.

Theorem 1 ( [35]). If T is a tree on n vertices with diameter n − c,

where c is a constant and n is large enough relative to c, then

W (T ) ≤ W (D(n, ⌊ c+1
2 ⌋, ⌈ c+1

2 ⌉)),
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the equality holds if and only if T = D(n, ⌊ c+1
2 ⌋, ⌈ c+1

2 ⌉).
Sun et al. [35] pointed out that for the general case c ≥ 3, Theorem 1

holds for n ≥ 1
6 (7c

3 − 18c2 + 23c− 6).

Recently, Das et al. [5] obtained the trees with the maximal Wiener

index among all trees with given order and radius (see Theorem 3.1 of [5]).

Theorem 2 ( [5]). Let T be a tree on n vertices with radius r. Then

W (T ) ≤ r(n− r)[n− r + r(r−1)
n−1 ]

with the equality holding if and only if T = Sn.

Now we turn our attention to trees with some degree restrictions. Many

researches are devoted to this topics, we refer the reader to two surveys

[6, 36] for extremal trees with respect to the Wiener index with specific

degree condition, such as trees with given number of pendent vertices.

In particular, as for trees with given degree sequence, Wang [40] and

Zhang et al. [43] independently determined the tree that minimizes the

Wiener index among trees of given degree sequence. But the following

problem from [16,31,44] is still open, although it is known for longer time

that extremal graphs are caterpillars [30].

Problem 1([16, 31, 44]). Which trees maximize the Wiener index among

trees of given degree sequence?

In [10, 11, 19], the trees extremal with respect to the Wiener index as

well as the trees with the first few smallest and first few greatest Wiener

indices were determined in the class of trees of order 2n whose all vertices

have odd degrees.

Let ETn,r be the set of all n−vertex trees with exactly r(≥ 1) vertices of

even degree and let S(n,m) be an n−vertex tree obtained from m disjoint

paths (each has ⌈n−1
m ⌉ or ⌊n−1

m ⌋ vertices) by attaching one endvertex of

each path to a new vertex a.

In [22], the trees which minimize and maximize the Wiener index

among all trees with given number of vertices of even degree were charac-

terized respectively by the author of present paper.

Theorem 3 ( [22]). Let T ∈ ETn,r, where 1 ≤ r < n − 2 and n ≡ r
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(mod 2). Then

W (S(n, n− r)) ≤ W (T ) ≤ W (M(n,
n− r − 2

2
)) ,

with the left equality if and only if T = S(n, n − r) and right equality if

and only if T = M(n, n−r−2
2 ).

Branchings are natural characteristics of the structure of a tree. In [21],

the lower bound and the upper bound of the Wiener index of an n−vertex

tree with given number of branching vertices were obtained respectively

by the author of present paper.

Let BTn,r be the set of all n−vertex trees having exactly r branching

vertices and let B(n, r) be the tree shown in Figure 3.
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Figure 3. The tree B(n, r)

Theorem 4 ( [21]). Let T ∈ BTn,r, where 1 ≤ r ≤ n
2 − 1, then the

following holds.

(a) W (T ) ≤ W (M(n, r)),

with equality if and only if T = M(n, r).

(b) If r = 1, then

W (T ) ≥ W (Sn),

with equality if and only if T = Sn,

if 2 ≤ r ≤ n
2 − 1, then

W (T ) ≥ (n− r)(n− 1) + 3(r − 1)(n− 3),
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moreover, if n and r satisfy one of the following conditions:

(b-1) r = 2, n ≥ 6,

(b-2) r = 3, n ≥ 8,

(b-3) 4 ≤ r ≤ n+2
3 ,

then the above bound is sharp and B(n, r) is the unique tree realizing this

bound.

Let MTn,k be the set of trees of order n with exactly k(≤ n − 2)

vertices of maximum degree. Note that the path Pn is the unique element

in MTn,n−2. In [23], the trees with the maximal Wiener index in MTn,k

were characterized by the author of present paper.

Theorem 5 ( [23]). Let T ∈ MTn,k, where 1 ≤ k ≤ n− 3. Then

W (T ) ≤ W (M(n, k)),

with equality if and only if T = M(n, k).

The following problem proposed in [23] is still open to the present

moment.

Problem 2 ([23]). Characterize the tree(s) with the minimal Wiener

index in MTn,k.
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ST (17, 6)

Figure 4. The tree ST (17, 6)

Let STn,t be the set of all n−vertex trees with exactly t segments. Note

that the path Pn is the unique element in STn,1, the star Sn is the unique
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element in STn,n−1 and the set STn,2 is empty. So in the following we only

consider the class STn,t with 3 ≤ t ≤ n− 2. Let ST (n,m) be an n−vertex

tree obtained from m disjoint paths (each has ⌈n−1
m ⌉ or ⌊n−1

m ⌋ vertices) by
attaching one endvertex of each path to a new vertex a, see Figure 4 for

an example.

In [24], the trees with the minimal Wiener index in the class STn,t were

characterized by Song and one author of present paper.

Theorem 6 ( [24]). For any tree T ∈ STn,t, where 3 ≤ t ≤ n − 2, it

holds that

W (T ) ≥ W (ST (n, t)),

with equality if and only if T = ST (n, t).

r r r r r rr r r r r r r rr r r r... .. ..
... ... ...1 ⌈ t−1

4 ⌉1 2 x 1⌊ t−1
4 ⌋

O(n, t)
x = n− t− 1

r
r r r r r rr r r r r r r rr r r r... .. ..
... ... ...1 ⌊ t−2

4 ⌋1 2 x 1⌈ t−2
4 ⌉

E(n, t)
x = n− t− 1

Figure 5. Two trees O(n, t) and E(n, t)

Let O(n, t) and E(n, t) be the trees depicted in Figure 5.

In [1], the tree with the maximal Wiener index in the class STn,t was

obtained by Andriantiana et al., which is a conjecture presented in [24].

Theorem 7 ( [1]). Among all trees in STn,t, O(n, t) (resp. E(n, t))

attains the maximum value of the Wiener index for odd (resp. even) t.

For more detailed results on this topic, we refer the reader to the mono-

graph by Wagner and Wang [38].

3 Extremal Wiener index of trees with some

special structures

3.1 Trees with a Pr-factor

A subgraph F of a graph G is called a factor of G if F is a spanning

subgraph of G. A path factor of a graph G is a factor of G such that each
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component of the factor is a path, in particular, if each component of the

factor is required to be a path with exactly r vertices, such a factor is

called a Pr-factor of G. In this sense, the well-known perfect matchings

(or 1-factor) is a P2-factor. In [12], Gutman and Rouvray proved that if T

and T ′ are two trees with perfect matchings on equal number of vertices.

then W (T ) ≡ W (T ′) (mod 4). This result was generalized by the author

of present paper [20] to trees with Pr-factor and further generalized by

Gutman, Xu and Liu [13] to even much larger class of graphs. In [15], K.

Hriňáková, M. Konr, R. Škrekovski and A. Tepeh continued to generalized

it to a large families of graphs with a tree-like structure.
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Figure 6. The tree F2m

Let T2m be the set of 2m−vertex trees with perfect matchings and let

F2m be the tree shown in Figure 6. The following result was independently

obtained by Du et al. [8] and Lin et al. [26].

Theorem 8 ( [8, 26]). Let T ∈ T2m, where m ≥ 2. Then

W (T ) ≥ W (F2m),

with equality if and only if T = F2m.

Let FPr,k be the set of trees of order kr with a Pr-factor, k ≥ 2, r ≥ 2.

Let T ∗
kr be the tree (depicted Figure 7) obtained from k vertex disjoint

r−vertex paths L1, L2, ..., Lk by joining u1 to each of the vertices u2, u3,



262 r rr rr r r r r r rr r r r
r r r r r��

���
���

��

HH
HHH

HHH
HH... ... ... ... ... ... ...

... ...

u2

L2

L1

u1

u3

L3
uk

Lk

T ∗
kr

Figure 7. The tree T ∗
kr

..., uk, where ui ∈ Cr(Li) for each i = 1, 2, ..., k. Clearly, T ∗
kr ∈ FPr,k. The

following result was obtained by the author of present paper [25].

Theorem 9 ( [25]). Let T ∈ FPr,k where r ≥ 2 and k ≥ 2. Then

W (T ∗
kr) ≤ W (T ) ≤

(
kr+1

3

)
,

with left equality if and only if T = T ∗
kr and with right equality if and only

if T = Pkr.

Remark. By the definition of the Pr−factor, the perfect matching is

a P2−factor. Note that any vertex of the path P2 belongs to Cr(P2),

namely V (P2) = Cr(P2), thus the set T2m is just the set FP2,m, and hence

Theorem 9 is a natural generalization of Theorem 8.

It is interesting that Theorem 9 might be generalized to a even much

large class of trees. Let R be the forest consisting of k disjoint trees T1,

T2, ..., Tk. Let FT1,T2,...,Tk
(k ≥ 2) be the set of trees with R as a factor.

Clearly, if for each i = 1, 2, ..., k, Ti = Pr, then FT1,T2,...,Tk
= FPr,k.

The following problem proposed in [25] by the author of present paper

is still open up to now.

Problem 3 ([25]). Characterize the tree(s) with the minimal and maxi-

mal Wiener index in FT1,T2,...,Tk
, k ≥ 2, respectively.
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3.2 Trees containing a prescribed subtree

Let G be a graph with vertex set V (G) and edge set E(G). A graph H is

a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
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2 ... k

k = n− |V (T0)|
Tu
T0,n

T0

u

Figure 8. The tree Tu
T0,n

Given a tree T0 and an integer n > |V (T0)|, let ST0,n be the set of

trees of order n that contain T0 as a subtree and let Tu
T0,n

be the tree (see

Figure 8) obtained by attaching n− |V (T0)| new vertices of degree one to

one vertex, say u, in the centroid of T0.

In [32], the trees with the minimal Wiener index in the class ST0,n were

characterized by Song and the author of present paper.

Theorem 10 ( [32]). Given a tree T0 and an integer n > |V (T0)|, then
for any tree T ∈ ST0,n it holds that

W (T ) ≥ W (Tu
T0,n

),

where u is a vertex in the centroid of T0.

a aq q qq q q q q q q q q q q q q q qv2

v1 u1 u2 v3 v4 u1 u2 u1 u2

T0 Tu1

T0,7
Tu2

T0,7

Figure 9. The trees T0, T
u1
T0,7

and Tu2
T0,7

We remark that the set of extremal trees attain the minimum Wiener

index in ST0,n may not consist of a single tree. Consider the 6-vertex tree

T0 in Figure 9 and the set ST0,7. A direct calculation gives that dT0
(u1) =

dT0
(u2) = 8, dT0

(v1) = dT0
(v2) = 12, dT0

(v3) = 10, dT0
(v4) = 14, thus
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Cd(T0) = {u1, u2}. Note that the tree Tu1

T0,7
is not isomorphic to Tu2

T0,7
(see

Figure 9) and W (Tu1

T0,7
) = W (Tu2

T0,7
) = 46. Thus both Tu1

T0,7
and Tu2

T0,7
are

extremal trees in Theorem 10.

The following problem proposed in [32] is still open up to now.

Problem 4 ([32]). Characterize the trees with the maximal Wiener index

in ST0,n, n > |V (T0)|.

3.3 Trees with a prescribed segment sequence

Given a sequence (l1, l2, ..., lm) of positive integers, denote by Sl1,l2,...,lm the

set of all trees with the segment sequence (l1, l2, ..., lm), and by S(l1, l2, ...,

lm) the tree obtained from m disjoint paths Pl1 , Pl2 , ..., Plm by adding a

new vertex u and joining u to each of the vertices w1, w2, ..., wm, where

wi is a terminal vertex of the path Pli for i = 1, 2, ...,m.

In [24], the tree with the minimal Wiener index in the class Sl1,l2,...,lm
was characterized by Song and the author of present paper.

Theorem 11 ( [24]). For any tree T ∈ Sl1,l2,...,lm , m ≥ 3, it holds that

W (T ) ≥ W (S(l1, l2, ..., lm)),

with equality if and only if T = S(l1, l2, ..., lm).

This leaves the natural question which trees with segment sequence

(l1, l2, ..., lm) maximize the Wiener index. The answer to this question

seems to be much more complicated,

qqqqqq qqq qqq qqq q q q q q q q q q q qq
R

Figure 10. A quasi caterpillar R

Define a quasi-caterpillar to be a tree with the property that all its

branching vertices lie on a path, see Figure 10 for an example. Let the

longest path of a quasi-caterpillar containing all the branching vertices be

called the backbone, all segments that do not lie on the backbone (and
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thus connect a pendent vertex with a branching vertex) are called pendant

segments.

In [1], Andriantiana et al. obtained the following result which is a

conjecture presented in [24] proposed by Song and the author of present

paper.

Theorem 12 ( [1]). Let Tmax be the tree with the maximum Wiener

index among all trees with segment sequence (l1, l2, ..., lm), then Tmax is a

quasi-caterpillar.

In [1], Andriantiana et al. also presented some further characteristics

of extremal quasi-caterpillars.

Theorem 13 ( [1]). A quasi-caterpillar that maximizes the Wiener index

among trees with segment sequence (l1, l2, ..., lm) must satisfy the follow-

ing:

1. If the number of segments is odd, all branching vertices have degree

exactly 3. If the number of segments is even, all but one of the branching

vertices have degree 3. The only exception must be a branching vertex

of degree 4, which must be the first (or last) branching vertex on the

backbone. This also means that the number of segments on the backbone

is k = ⌊m+1
2 ⌋, the number of pendant segments is k′ = ⌈m−1

2 ⌉,
2. The lengths of the segments on the backbone, listed from one end

to the other, form a unimodal sequence r1, r2, ..., rk, i.e.,

r1 ≤ r2 ≤ ... ≤ rj ≥ ... ≥ rk

for some j ∈ {1, 2, ..., k},
3. The lengths of the pendant segments, starting from one end of the

backbone towards the other, form a sequence of values s1, s2, ..., sk′ such

that

s1 ≥ s2 ≥ ... ≥ sj′ ≤ ... ≤ sk′

for some j′ ∈ {1, 2, ..., k′}.
The following problem from [1,24] is still open.

Problem 5 ([1,24]). Which trees maximize the Wiener index among

trees of given segment sequence (l1, l2, ..., lm)?
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4 Extremal results of the roots of the Wiener

polynomials of trees

The Wiener polynomial (Hosoya polynomial) of a connected graph G is

W (G, x) =
diam(G)∑

i=1

di(G)xi,

where diam(G) is the diameter of G, and di(G) is the number of unordered

pairs of vertices of G at distance i.

The Wiener polynomial was introduced in [14] and independently in

[29]. It is easy to see that the Wiener index of a graph is equal to the

derivative of its Wiener polynomial evaluated at x = 1. Data on Wiener

polynomials of all trees with up to 10 vertices are available [33]. Some

basic properties of the Wiener polynomial of trees can be found in [3], we

also refer the reader to [6] for details.

t t t t

t t

tt t t
t@

@
@

�
�
�

...

Tn

1 n− 8

Figure 11. The tree Tn

In 2018, Brown et al. investigated the roots of the Wiener polynomials

of graphs [2]. In 2020, Wang proved the following theorem ( [39], Theorem

1.4]) which solved a problem of [2]. Let Tn be the tree depicted in Figure

11.

Theorem 14 ( [39]). Among all trees on n > 31 vertices, the tree Tn

uniquely attains the maximum modulus among all the roots of its Wiener

polynomial.
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In [2], Brown et al. also proved that there are connected graphs (even

trees) with roots of their Wiener polynomials having arbitrarily large imag-

inary part and there are connected graphs (even trees) with roots of their

Wiener polynomials having arbitrarily large positive real part ( [2], Propo-

sition 4.1 and Proposition 4.2).

5 Conclusion

This survey gathers all the extremal results on the Wiener index of trees

from 2014 to this moment and presents some open problems in order to

inspire readers to obtained new extremal results on this topic.
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