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Abstract

Let G be a graph with adjacency matrix A. The energy of G is
denoted by E(G) and defined as the sum of the absolute values of the
eigenvalues of A. In this paper we study the problem of variation
of the energy when a vertex is deleted. Concretely, we show that if
G is a graph and G(j) is the graph obtained from G by deleting the
vertex vj of G, then

E(G)− E(G(j)) ≤ 2
√

dj ,

where dj is the degree of vj . Moreover, equality occurs if and only if
the connected component of G containing vj is isomorphic to a star
tree and vj is its center. Afterwards, we introduce a new approach
to the local energy of a vertex and initiate the study of its basic
properties.

1 Introduction

Let G be a graph with adjacency matrix A. The energy of G is denoted

by E(G) and defined as the sum of the absolute values of the eigenvalues

of A. We refer the reader to [9,12] for further information on graph energy

and [1, 2, 10] for recent results.
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The problem of how the energy of a graph changes when some of its

edges are deleted was first studied by Day and So [5,6], and more recently

in [13]. It is our main concern in this paper to study the problem of the

variation of the energy when a vertex is deleted. Concretely, based on Ky

Fan’s triangular inequality theorem for the trace norm, we show that if G

is a graph and G(j) is the graph obtained from G by deleting the vertex

vj of G, then

E(G)− E(G(j)) ≤ 2
√
dj ,

where dj is the degree of vj . Moreover, equality occurs if and only if the

connected component of G containing vj is isomorphic to a star tree and

vj is its center.

Intuitively, E(G)− E(G(j)) measures the contribution of the vertex vj

to the energy of G. So in Section 3, we define naturally the local concept of

energy of G at vertex vj and initiate the study of its basic properties. This

new approach should be compared to the interesting concept of energy of

a vertex introduced in [3], defined as the diagonal elements of the matrix

(AA∗)
1
2 . Finally, we introduce a new energy defined as the sum of the

local energies, and show that it is upper bounded by the regular energy of

a graph.

2 Graph energy change due to vertex dele-

tion

Recall that a real symmetric matrix M is positive semidefinite when-

ever it satisfies x⊤Mx ≥ 0 for all x ∈ Rn. This is well-known to be

equivalent to the fact that all eigenvalues of M are nonnegative [11]. We

will use in our arguments below the property that if the diagonal element

[M ]kk of a positive semidefinite matrix M is equal to zero, then all ele-

ments in the row k of M and all elements in the column k of M are equal

to zero.

Recall that the trace norm of the matrix M , denoted by ∥M∥∗, is

the sum of its singular values. When M is real and symmetric, ∥M∥∗ is

precisely the sum of the absolute values of its eigenvalues. The following
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result will be crucial in our study of the variation of the energy when a

vertex is deleted.

Theorem 1. [5], [8]. Let X,Y be square matrices of the same size. Then

∥X + Y ∥∗ ≤ ∥X∥∗ + ∥Y ∥∗.

Equality holds if and only if there exists an orthogonal matrix P , such that

PX and PY are both positive semidefinite.

Let G be a graph with set of vertices V (G) = {v1, . . . , vn} and G(j) the

graph obtained from G by deleting the vertex vj . Let A be the adjacency

matrix of G and A(j) the matrix obtained from A by deleting the row and

the column j. Clearly, A(j) is the adjacency matrix of G(j). Let B(j) be

the matrix obtained from A by substituting the row and column j of A by

zeroes.

Theorem 2. Let vj be a vertex of a graph G of degree dj. Then

0 ≤ E(G)− E(G(j)) ≤ 2
√

dj .

Equality in the left occurs if and only if vj is an isolated vertex. Equality

in the right occurs if and only if the connected component of G containing

vj is isomorphic to a star tree and vj is its center.

Proof. The left inequality and equality condition is well known [12, Theo-

rem 4.19].

Next we prove the right inequality. Note that

E(G)−E(G(j)) = ∥A∥∗−∥A(j)∥∗ = ∥A∥∗−∥B(j)∥∗ ≤ ∥A−B(j)∥∗ = 2
√
dj .

(1)

Suppose that E(G) − E(G(j)) = 2
√
dj . Without loosing generality, we

may assume that j = 1. By (1), ∥A∥∗ − ∥B(1)∥∗ = ∥A − B(1)∥∗ which

implies

∥(A−B(1)) +B(1)∥∗ = ∥A∥∗ = ∥A−B(1)∥∗ + ∥B(1)∥∗.

It follows from Theorem 1 that there exists an orthogonal matrix P = (pij)
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such that P (A − B(1)) and PB(1) are positive semidefinite. Note that

P (A−B(1)) and (A−B(1))P are similar matrices since P⊤ = P−1 and

(A−B(1))P = P⊤P (A−B(1))P.

In particular, (A−B(1))P is also positive semidefinite.

Let v2, . . . , vs be the vertices ofG that are adjacent to v1. Then A−B(1)

is the 2× 2 block matrix

A−B(1) =

(
C O

O O

)
,

where C is the s× s matrix

C =



0 1 1 · · · 1

1 0 0 · · · 0

1 0 0 · · · 0
...

...
... · · · 0

1 0 0 · · · 0


,

and the rest are zero matrices of the adequate size. It easily follows that

(A−B(1))P =

(
X Y

O O

)
,

where X is the s× s matrix

X =



p21 + · · ·+ ps1 p22 + · · ·+ ps2 · · · p2s + · · ·+ pss

p11 p12 · · · p1s

p11 p12 · · · p1s
...

...
...

...

p11 p12 · · · p1s


,

and Y is the s× (n− s) matrix
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Y =



p2,s+1 + · · ·+ ps,s+1 p2,s+2 + · · ·+ ps,s+2 · · · p2,n + · · ·+ ps,n

p1,s+1 p1,s+2 · · · p1,n

p1,s+1 p1,s+2 · · · p1,n
...

...
...

...

p1,s+1 p1,s+2 · · · p1,n


.

Since (A−B(1))P is positive semidefinite and the diagonal elements[
(A−B(1))P

]
kk

= 0

for all s + 1 ≤ k ≤ n, we deduce that Y = 0. Moreover, the diagonal

elements p12, p13, . . . , p1s of X are all strictly positive, otherwise we would

have a zero row in the orthogonal matrix P , a contradiction.

On the other hand,

[
PB(1)

]
11

=

n∑
k=1

p1k

[
B(1)

]
k1

= 0.

Since PB(1) is positive semidefinite and p1k = 0 for all s + 1 ≤ k ≤ n, it

follows that

0 =
[
PB(1)

]
1j

=

n∑
k=1

p1k

[
B(1)

]
kj

= p12a2j + p13a3j + · · ·+ p1sasj

for all 2 ≤ j ≤ n. But p1k > 0 for all 2 ≤ k ≤ s implies that akj = 0 for

all 2 ≤ k ≤ s and 2 ≤ j ≤ n. In other words,

A =

(
C O

O ∗

)
.

This clearly implies that the connected component containing v1 is a star

tree and v1 is its center.

Conversely, assume that G is isomorphic to the direct sum of a star
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tree S with center vertex v1 and a graph L. Then clearly

E(G)− E(G(1)) = E(S) = 2
√
d1.

3 Local energy of a graph at a vertex

We keep the notation introduced in the previous section. Intuitively,

E(G) − E(G(j)) measures the contribution of the vertex vj to the energy

of G.

Definition 1. Let G be a graph with set of vertices {v1, . . . , vn}. We

define the local energy of G at vertex vj as

EG(vj) = E(G)− E(G(j)). (2)

Directly from Theorem 2 we deduce the following result.

Corollary 1. Let G be a graph and v ∈ V (G) with degree dv. Then

0 ≤ EG(v) ≤ 2
√
dv.

Moreover, equality in the left inequality occurs if and only if v is an isolated

vertex. Equality in the right inequality occurs if and only if v is the center

of a star.

Example 1. Let us compute the local energy for some special graphs.

1. Let G = Kn, the complete graph with n vertices. We know that

E(Kn) = 2 (n− 1) and E(K(j)
n ) = 2 (n− 2), for all vertex vj of Kn.

Hence

EKn(vj) = 2 (n− 1)− 2 (n− 2) = 2,

for all j.

2. Let G = Cn be the cycle on n vertices. Then



95

E(Cn) =


4 cot π

n if n ≡ 0 (mod 4)

4 csc π
n if n ≡ 2 (mod 4)

2 csc π
2n if n ≡ 1 (mod 2)

,

and for each vertex vj in Cn

E(C(j)
n ) = E(Pn−1) =

2 cot π
2n − 2 if n ≡ 0 (mod 2)

2 csc π
2n − 2 if n ≡ 1 (mod 2)

.

Hence,

ECn
(vj) = E(Cn)− E(C(j)

n )

=


2− 2 cot π

2n + 4 cot π
n if n ≡ 0 (mod 4)

2− 2 cot π
2n + 4 csc π

n if n ≡ 2 (mod 4)

2 if n ≡ 1 (mod 2)

.

Note that the complete graph and the cycle are regular graphs for which

the local energy is constant for every vertex. This is not always the case

for general regular graphs.

v1

v2

v3

v4

v5

v6

v7

EG(v1) ≈ 2.56

EG(v2) ≈ 1.26

EG(v3) ≈ 2.56

EG(v4) ≈ 2.56

EG(v5) ≈ 1.26

EG(v6) ≈ 2.56

EG(v7) ≈ 1.26

Figure 1. A regular graph with different local energies.
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Example 2. Consider the graph G depicted in Figure 1. G is a 4-regular

graph, however, the local energy is not constant at every vertex.

The following problem naturally arises.

Problem 1. Assume that the local energy of a graph is constant at each

vertex of the graph. Is the graph regular?

Next we consider the local energy of the complete bipartite graph Kp,q.

Example 3. Let G = Kp,q, the complete bipartite graph with p + q

vertices. Assume that P is the set of p vertices and Q is the set of q

vertices of G. Then E(Kp,q) = 2
√
pq and for vi ∈ P and vj ∈ Q,

E(K(i)
p,q) = 2

√
(p− 1)q,

and

E(K(j)
p,q) = 2

√
p(q − 1).

Consequently,

EKp,q
(vi) = 2

√
pq − 2

√
(p− 1)q,

and

EKp,q
(vj) = 2

√
pq − 2

√
p(q − 1).

In particular, in the star tree Sn, the local energy at the center vertex vi

is

ESn
(vi) = 2

√
n− 1,

and for any leaf vj

ESn(vj) = 2
√
n− 1− 2

√
n− 2.

From the fact that the function g (x) = x
x−1 is nonincreasing in the

interval [2,+∞], we easily deduce that if q ≥ p ≥ 1 then

EKp,q
(vi) ≥ EKp,q

(vj),
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for all vi ∈ P and vj ∈ Q. In other words, if u, v ∈ Kp,q and du ≥ dv, then

EKp,q (u) ≥ EKp,q (v). This is not always the case for general graphs, as we

can see in our next example.

Example 4. Consider the graph G depicted in Figure 2. Although dv1 <

dv2 , we have that EG(v1) ≈ 2.02 > 1.34 ≈ EG(v2).

v1
v2

v3

v4
v5

v6

EG(v1) ≈ 2.02
EG(v2) ≈ 1.34

EG(v3) ≈ 1.34

EG(v4) ≈ 2.02
EG(v5) ≈ 1.34

EG(v6) ≈ 1.34

Figure 2. Local energy is not increasing with respect to the degree of
the vertices.

Recall that if G is a bipartite graph with n vertices, then

ϕG(x) =
∑
k≥0

(−1)km(G, k)xn−2k, (3)

where m(G, k) is the number of k-matchings of G (that is, the number of

selection of k independent edges of G). If G1 and G2 are bipartite graphs

such that m(G1, k) ≥ m(G2, k) holds for all k ≥ 0, then we write G1 ⪰ G2.

If m(G1, k) > m(G2, k) for at least one k, then we write G1 ≻ G2. It is

well known [9] that

G1 ≻ G2 ⇒ E(G1) > E(G2). (4)

Proposition 3. Let vi and vj be vertices of the bipartite graph G. If

G(i) ≻ G(j) then EG(vj) > EG(vi).

Proof. By (4), if G(i) ≻ G(j) then E(G(i)) > E(G(j)). Now by Definition
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1,

EG(vj)− EG(vi) = E(G(i))− E(G(j)) > 0.

Hence, EG(vj) > EG(vi).

Example 5. Let Pn be the path on n vertices. For all i = 1, . . . , n,

P (i)
n = Pi−1 ∪ Pn−i,

where P0 is the empty graph. Let n = 4k + s, where s ∈ {0, 1, 2, 3}.
By [12, Lemma 4.6],

P (1)
n ≻ P (3)

n ≻ · · · ≻ P (2k+1)
n ≻ P (2k)

n ≻ P (2k−2)
n ≻ · · · ≻ P (4)

n ≻ P (2)
n .

It follows from Proposition 3 that

EPn
(v1) < EPn

(v3) < · · · < EPn
(v2k+1) < EPn

(v2k)

< EPn
(v2k−2) < · · · < EPn

(v4) < EPn
(v2).

We end this section with the following natural question: if H is a

subgraph of the graph G and v is a vertex of H, is it true that EH(v) ≤
EG(v)?

v1
v2

v3

v4
v5

v6

EK3,3
(v1) ≈ 1.10

EK3,3
(v2) ≈ 1.10

EK3,3
(v3) ≈ 1.10

EK3,3
(v4) ≈ 1.10

EK3,3
(v5) ≈ 1.10

EK3,3
(v6) ≈ 1.10

Figure 3. Complete bipartite graph K3,3.

Example 6. Let H be the graph depicted in Figure 2. Note that this is a

generator subgraph of the complete bipartite graph K3,3 (shown in Figure
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3), since it is obtained by adding the edge v1v4. However, EH(v1) ≈
2.02 > 1.10 ≈ EK3,3(v1). Consequently, adding an edge to a vertex does

not necessarily increase the local energy at the vertex.

On the other hand, consider the graph G depicted in Figure 4 and the

cycle C4. Clearly, C4 is an induced subgraph of G. However, EC4(v2) ≈
1.18 > 1.12 ≈ EG(v2).

v1

v2 v3

v4

v5

EG(v1) ≈ 2.14

EG(v2) ≈ 1.12 EG(v3) ≈ 2.76

EG(v4) ≈ 1.12

EG(v5) ≈ 1.60

v1

v2 v3

v4

EC4
(v1) ≈ 1.18

EC4
(v2) ≈ 1.18 EC4

(v3) ≈ 1.18

EC4
(v4) ≈ 1.18

Figure 4. The cycle C4 as an induced subgraph of G.

4 Local energy of a graph

We introduce now a new type of graph energy.

Definition 2. Let G be a graph. The local energy of G is defined as

e(G) =
∑

v∈V (G)

EG(v).

Example 7. Let us compute the local energy of some special graphs.

1. Let Kn be the complete graph on n vertices. By Example 1 item 1,

e(Kn) =
∑

v∈V (Kn)

EKn
(v) = 2n.

2. Let Cn be the cycle on n vertices. By Example 1 item 2,
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e(Cn) =
∑

v∈V (Cn)

ECn
(v)

=


2n− 2n cot π

2n + 4n cot π
n if n ≡ 0 (mod 4)

2n− 2n cot π
2n + 4n csc π

n if n ≡ 2 (mod 4)

2n if n ≡ 1 (mod 2)

.

3. Let Kp,q be the complete bipartite graph. It follows from Example

3,

e(Kp,q) =
∑

v∈V (Kp,q)

EKp,q
(v)

=
∑
v∈P

EKp,q (v) +
∑
v∈Q

EKp,q (v)

= 2p
(√

pq −
√
(p− 1)q

)
+ 2q

(√
pq −

√
p(q − 1)

)
= 2(p+ q)

√
pq − 2p

√
(p− 1)q − 2q

√
p(q − 1).

In particular,

e(Sn) = 2n
√
n− 1− 2(n− 1)

√
n− 2.

We have the following bounds on the local energy of a graph.

Theorem 4. Let G be a graph. Then,

0 ≤ e(G) ≤ 2
∑

v∈V (G)

√
dv. (5)

Equality in the left inequality occurs if and only if G is totally disconnected.

Equality in the right inequality occurs if and only if G is a direct sum of

copies of K2 plus some isolated vertices.

Proof. The left inequality (and equality condition) follows directly from
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Corollary 1. To see the right inequality, note that again by Corollary 1,

e(G) =
∑

v∈V (G)

EG(v) ≤
∑

v∈V (G)

2
√
dv. (6)

If

e(G) =
∑

v∈V (G)

2
√
dv,

then by the inequality (6) we deduce that∑
v∈V (G)

EG(v) =
∑

v∈V (G)

2
√
dv,

and so by Corollary 1, EG(v) = 2
√
dv for all v ∈ V (G), which implies that

every vertex in G is the center of a star tree. This is equivalent to say that

all connected components of G are K2 or isolated vertices.

Conversely, if G is a direct sum of r copies ofK2 plus s isolated vertices,

where r, s are nonnegative integers, then it is clear that

e(G) = 4r =
∑

v∈V (G)

2
√
dv.

We can improve the upper bound given in Theorem 4 for the local

energy of a graph using the regular energy of a graph.

Theorem 5. Let G be a graph. Then

e(G) ≤ 2E(G) ≤ 2
∑

v∈V (G)

√
dv. (7)

Proof. We first show the left inequality in (7). Let A be the adjacency

matrix of a graph G on n vertices and A(j) the matrix obtained from A by

deleting the row and the column j. Let B(j) be the matrix obtained from

A by substituting the row and column j of A by zeroes. Observe that

(n− 2)A =

n∑
j=1

B(j), (8)
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and ∥A(j)∥∗ = ∥B(j)∥∗, for all j = 1, . . . , n. Hence,

(n− 2) ∥A∥∗ = ∥(n− 2)A∥∗ =

∥∥∥∥∥∥
n∑

j=1

B(j)

∥∥∥∥∥∥
∗

≤
n∑

j=1

∥∥∥B(j)
∥∥∥
∗
=

n∑
j=1

∥∥∥A(j)
∥∥∥
∗
.

(9)

In other words,

(n− 2) E(G) ≤
n∑

j=1

E(G(j)),

or equivalently,

e(G) =

n∑
j=1

(
E(G)− E(G(j))

)
≤ 2E(G).

The right inequality in (7) was shown in [3, Theorem 3.1].

Remark. The equality holds in the right inequality of (7) if and only if

G is a direct sum of copies of K2 plus some isolated vertices. This is a

consequence of [3, Proposition 3.2], since E(G) =
∑

v∈V (G)

√
dv if and only

if every vertex of G is the center of a star.

On the other hand, it is clear that if G is a direct sum of r copies of

K2 plus s isolated vertices, then e(G) = 4r = 2E(G). So for these graphs,

equality holds in the left inequality of (7).

An interesting problem to solve is the following.

Problem 2. Characterize graphs G such that e(G) = 2E(G).
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