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Abstract

Let G be a simple graph of order n. The eigenvalue of a graph
G is the eigenvalue of its adjacency matrix. The energy E(G) of
G is the sum of absolute values of its eigenvalues. A graph G of
order n is orderenergetic if E(G) = n. The algebraic multiplicity of
the number zero in the spectrum of G is referred to as its nullity,
and is denoted by η. In this paper, we show that if the cycle C4

is not an induced subgraph of a graph G with nullity η = 3, then
G is not orderenergetic. We also obtain some results connecting
orderenergetic graphs and minimum degree. Finally, we show that
there is a connected orderenergetic graph on 10k+8 vertices for all
k ≥ 0.

1 Introduction

All graphs considered here are simple and undirected. Let G be a graph

with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G), where |V (G)| =
∗Corresponding author
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n and |E(G)| = m. The degree of a vertex vi is denoted by di and the

minimum degree of G is denoted by δ. The adjacency matrix of the graph

G with vertex set V (G) is the n×n symmetric matrix A(G) = (aij), where

aij = 1 if vivj ∈ E(G), and aij = 0, otherwise. The spectrum of A(G)

is called the spectrum of the graph G. The algebraic multiplicity of the

number zero in the spectrum of a graph is referred to as its nullity, and

is denoted by η. Let λ1, λ2, . . . , λn be the eigenvalues of the adjacency

matrix A(G) of graph G. The energy of graph G is denoted by E(G) and

is defined as

E(G) =

n∑
i=1

|λ1|.

The definition of graph energy is motivated from chemistry and was first

introduced by Gutman in 1978, see [16]. Studies on graph energy have

been intensified in last few years. For properties and studies on the energy

of graphs we refer to the book entitled ”Graph Energy” by Li, Shi and

Gutman [20], and especially the most recent works [1,8–11]. A graph G is

borderenergtic if E(G) = 2(n− 1). The definition was first put forwarded

in [14]. Plently of research work on borderenergetic graphs have been

presented in [12–14, 19, 24]. As usual, we denote by Cn, nG, Kn1,n2,...,nk

the cycle of length n and n copies of G, and the complete multipartite

graph of order n1 + n2 + · · ·+ nk. The complement graph of G is denoted

by G.

A graph is said to be orderenergetic if its energy is equal to its order,

that is, if E(G) = n. This concept was introduced in [2] for the first time.

It is shown in [2] that there are infinitely many connected orderenergetic

graphs. If n = 4, then the only connected orderenergetic graph is the

cycle C4 and the complete bipartite graph Kp,p is orderenergetic for all

p ≥ 1. It is well-known that the energy of graph is never an odd integer,

see [6]. Hence orderenergetic graphs must have even number of vertices.

In [2], using a computer-aided search all orderenergetic connected graphs

up to 10 vertices is presented. Among all non-singular connected graphs

only P2 is orderenergetic and also, there is no orderenergetic graph with

nullity η = 1, see [2]. Several open problems and conjectures are pointed

out in [2]. For example, we have the following:
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Conjecture 1. [2] For a given non-negative integer k, there are finitely

many connected orderenergetic graphs with nullity k.

Problem 1. [2] Find a method for constructing connected orderenergetic

graphs, not using the direct product.

In [2], it was shown that Conjecture 1 is true for k = 1 and in [4] it

was proved for k = 2. Motivated by this, in this paper, we show that if

the cycle C4 is not an induced subgraph of a graph G with nullity η = 3,

then G is not orderenergetic. Again motivated by Problem 1, we show

that there are connected orderenergetic graphs on 10k+8 vertices for all

k ≥ 0. Some basic results on connected orderenergetic graphs of order 2n

with minimum degree δ = n or n− 1 are obtained.

2 Main results

The following lemma is due to Gutman [15].

Lemma 1. [15] Let G be a graph with n vertices and m edges, possessing

q quadrangles, and let d1, d2,. . . ,dn be its vertex degrees. Then

E(G) ≥ 2m

√
2m

2
∑n

i=1 d
2
i − 2m+ 8q

.

The following lemma gives a lower bound for the energy of a graph in

terms of energies of vertex disjoint induced subgraphs.

Lemma 2. [3] Let G be a graph and H1, H2, . . . ,Hk be its k vertex disjoint

induced subgraphs.Then

E(G) ≥
k∑

i=1

E(Hi).

Bapat and pati [6] proved the following result.

Lemma 3. [6] There are no connected orderenergetic graphs of odd order.
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A {1, 2}-factor of a graph G is a spanning subgraph of G whose each

component is an edge or a cycle.

Lemma 4. [2] Let G be graph of order n. If G has a {1, 2}-factor, then
E(G) ≥ n. Equality holds if and only if G is the disjoint union of balanced

complete bipartite graphs.

The following result is obtained from [2] (see, Lemma 10 and the proof of

Lemma 11).

Lemma 5. [5] For any odd integer n ≥ 3, E(Cn) ≥ n+ 1 with equality if

and only if n = 3.

The adjacency polynomial P (G, x) of G is defined as

P (G, x) = det(xIn −A(G)) =

n∑
i=0

ai x
n−i. (1)

Lemma 6. [7,17] Let G be a graph with order n and adjacency polynomial

P (G, x) =
n∑

i=0

ai x
n−i. Then

ai =
∑
S∈Li

(−1)p(S) 2c(S), (2)

where Li denotes the set of Sachs graphs of G with i vertices, that is, the

graphs in which every component is either a K2 or a cycle, p(S) is the

number of components of S and c(S) is the number of cycles contained in

S. In addition a0 = 1.

Lemma 7. Let G be a graph such that the cycle C4 is not an induced

subgraph of G. Let x be a vertex adjacent to at least two vertices in the

induced cycle C : v1v2 . . . v2p+1 of odd length 2p+1 (p ≥ 2). Then C ′∪M is

a Sachs subgraph of order 2p+1 such that (V (C) ∪ {v}) \V (C ′∪M) = {vk}
for some 1 ≤ k ≤ 2p + 1 and vk is adjacent to an edge component of M,

where M is a maximum matching of the induced path C\V (C ′) and C ′ is

an induced cycle of odd length.

Proof. Without loss of generality, we can assume that vertex x is adja-

cent to s (≥ 2) vertices in cycle C of odd length 2p + 1, where V (C) =
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{v1, v2, . . . , v2p+1}. Let Q = {vi1 , vi2 , . . . , vis} ⊆ V (C) be the set of ver-

tices adjacent to vertex x and 1 ≤ i1 < i2 < · · · < is ≤ 2p+ 1.

Case 1: Suppose vijvij+1 ∈ E(C) for some 1 ≤ j ≤ s− 1 or visvi1 ∈ E(C).

Then C ′ : xvijvij+1x (1 ≤ j ≤ s − 1) or C ′ : xvi1visx is an odd cycle of

length 3. Since |V (C)| = 2p + 1 ≥ 5, the induced graph C\V (C ′) is a

path of even length. Let M be a maximum matching of the induced path

C\V (C ′). Then the graph C ′ ∪ M is a Sachs subgraph of order 2p + 1

such that the vertex vk ∈ V (C) (vk /∈ V (C ′ ∪M)) is adjacent to an edge

component of M.

Case 2: Suppose vijvij+1
/∈ E(C) for all j, 1 ≤ j ≤ s−1 and visvi1 /∈ E(C).

Then there exists an integer j (1 ≤ j ≤ s − 1) such that the induced cy-

cle C ′ : xvij . . . vij+1
x or C ′ : xvi1 . . . visx is of odd length. (Otherwise,

2p+1 =
s−1∑
j=1

d(vij , vij+1
)+d(vis , vi1) = even number as each term is even,

a contradiction). Now, the induced graph C\V (C ′) is either an isolated

vertex or a path of even length. Suppose the induced graph C\V (C ′) is

an isolated vertex vℓ, (say). Then xvℓ−1vℓvℓ+1x is the cycle C4 in G, a

contradiction as C4 is not an induced subgraph of G. Thus C\V (C ′) is a

path of even length. Let M be a maximum matching of the induced path

C\V (C ′). Then the graph C ′ ∪ M is a Sachs subgraph of order 2p + 1

such that the vertex vk ∈ V (C) (vk /∈ V (C ′ ∪M)) is adjacent to an edge

component of M.

Let G be a graph with induced cycle C. Also let v be a vertex in G

such that v /∈ V (C). We define

Ω(C, v) = |{vj ∈ V (C) : vvj ∈ E(G)}|.

Theorem 2. If the cycle C4 is not an induced subgraph of a connected

graph G with nullity η = 3, then G is not orderenergetic.

Proof. We prove this result by contradiction. For this we assume that

there exists an orderenergetic connected graph G of order n with nullity

η = 3. Since G is connected and η = 3, we have n ≥ 5. By Lemma 3, n

must be even and hence n ≥ 6. Since η = 3, by (1), the coefficient an−3
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of P (G, x) is non-zero. Therefore, by (2), we obtain

0 ̸= an−3 =
∑

S∈Ln−3

(−1)p(S) 2c(S).

Then there exists a Sachs subgraph of G of order n − 3. Without loss

of generality, we can assume that H (subgraph of G) is a Sachs graph of

order n− 3 such that all the components of H are edges and induced odd

cycles of G (as pK2 is a subgraph of cycle C2p of order 2p). Since n is

even, n − 3 is odd and so H contains at least one odd cycle C1, (say).

Since |V (H)| = n − 3, there are exactly three vertices x, y and z of G

which are not in the vertex set of H. Let F = {x, y, z} and G[F ] denotes

the subgraph of G induced by F .

Case1. E(G[F ]) ̸= ∅. First we assume that |E(G[F ])| ≥ 2. In this case

G[F ] ∼= P3 or C3. Then E(G[F ]) > 2. Therefore by Lemma 2, we obtain

E(G) ≥ E(H\C1)+E(C1)+E(G[F ]) > |V (H\C1)|+(|V (C1)|+1)+2 = n,

a contradiction.

Next we assume that |E(G[F ])| = 1. Without loss of generality, we

can assume that xy ∈ E(G). Let R = {x, y} and we have E(G[R]) = 2.

Since G is connected, vertex z is adjacent to at least one vertex in H. If

z is adjacent with some edge component e = uw of H, then it is easy to

check that E(G[K]) > 2, where K = {u, w, z}. By Lemma 5, E(C1) ≥
|V (C1)|+ 1. Thus from Lemma 2, we get

E(G) ≥ E(H\{V (C1) ∪ {u, w}}) + E(C1) + E(G[K]) + E(G[R])

> |V (H\{V (C1) ∪ {u, w}})|+ |V (C1)|+ 1 + 2 + 2 = n,

a contradiction. Otherwise, zvj ∈ E(G), where vj ∈ V (C1). Since the

cycle C1 is of odd length, the path graph C1\{z, vj} is of even order and

so it has a perfect matching M, (say). We define a graph H1 as follows:

V (H1) = V (H) ∪ {x, y, z}, E(H1) = E(H\C1) ∪ {x, y} ∪M∪ {z, vj}.
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Thus the graph H1 is a Sachs subgraph of G of order n. Therefore by

Lemma 2, we obtain

E(G) ≥ E(H1) ≥ |V (H\C1)|+ 2 + |M|+ 2 = n.

By Lemma 4, E(G) = n if and only if G is a balanced complete bipartite

graph (that is, η = n− 2 and n is even), a contradiction to the hypothesis

that η = 3 and n ≥ 6. Hence E(G) > n, a contradiction.

Case2. E(G[F ]) = ∅. Let t be the number of odd cycles in H. First we

assume that t > 1. Since |V (H)| (= n− 3) is odd, t ≥ 3. If any one cycle

length is at least 5 or t > 3, then by Lemmas 2 and 5, we obtain

E(G) ≥ E(H) > n,

a contradiction. Otherwise, t = 3 and each cycle length is 3. Since G is

connected, each vertex in F is adjacent to some vertex in H. For vertex

x is adjacent to the edge component in H or adjacent to a vertex in some

cycle of H. For both cases, again by Lemma 2, one can easily see that

E(G) > n,

a contradiction as E(P3) > 2.82, E(P3 ∪K1) > 4, E(K2 ∪ 2K1) > 4 and

E(K4) > 4.

Next we assume that t = 1. Then H ∼= C1 ∪ pK2, where C1 is a induced

cycle of odd length of graph G and 2p = n − 3 − |V (C1)|. Moreover, we

have |V (G)| = |V (H)| + |F |. Without loss of generality, we can assume

that Ω(C1, x) ≥ Ω(C1, y) ≥ Ω(C1, z). We consider the following cases:

Case 2.1. Ω(C1, x) ≤ 1. We divided the following cases:

Case 2.1.1. Ω(C1, x) = Ω(C1, y) = Ω(C1, z) = 0. In this case the ver-

tices x, y and z must be adjacent with the vertices of some of the edge

components of H as shown in Fig. 1. Let L be any one of the graphs

G1, G2, G3, G4, or G5 as depicted in Fig. 1. Also let L⋆ be the graph

obtained from L by considering the induced subgraph of each components
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of L in G. By Sage [23], one can easily check that E(L⋆) ≥ |V (L∗)| − 1

with equality if and only if L⋆ ∼= K1,4. By Lemma 5, we obtain E(C1) ≥
|V (C1)|+ 1 with equality if and only if C1 ∼= C3.

z

xy

G1

y

z
G2

x

y zx

G3

x y z

G4

x y z

G5

Figure 1. Graphs G1, G2, G3, G4 and G5.

First we assume that C1 ≇ C3. Then by using the above results with

Lemma 2, we obtain

E(G) ≥ E(H\
{
C1 ∪ L⋆\{x, y, z}

}
) + E(C1) + E(L⋆)

> |V (H\
{
C1 ∪ L⋆\{x, y, z}

}
)|+ |V (C1)|+ 1 + |V (L∗)| − 1 = n,

a contradiction.

Next we assume that C1 ∼= C3. If L⋆ ≇ K1,4, then by using the above
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results with Lemma 2, we obtain

E(G) ≥ E(H\
{
C1 ∪ L⋆\{x, y, z}

}
) + E(C1) + E(L⋆)

> |V (H\
{
C1 ∪ L⋆\{x, y, z}

}
)|+ |V (C1)|+ 1 + |V (L∗)| − 1 = n,

a contradiction. Otherwise, L⋆ ∼= K1,4. Since G is connected, a vertex of

the odd cycle C1 is either adjacent with an end vertex of an edge com-

ponent of H or it is adjacent to a vertex of L⋆. Let H1 be the subgraph

induced by the vertices of C1 and an edge component e of H. Then it is

not difficult to see that E(H1) > |V (H1)|+1. Thus by Lemma 2, we have

E(G) ≥ E(H\{H1 ∪ L⋆\{x, y, z}}) + E(H1) + E(L⋆)

> |V (H\{H1 ∪ L⋆\{x, y, z}})|+ |V (H1)|+ 1 + |V (L⋆)| − 1 = n,

a contradiction. Let H2 be the subgraph induced by the vertices of C1

and L⋆. By Sage [23], one can easily check that E(H2) > |V (H2)|. Thus

by Lemma 2, we have

E(G) ≥ E(H\H2) + E(H2)

> |V (H\H2)|+ |V (H2)| = n,

a contradiction.

Case 2.1.2. Ω(C1, x) = Ω(C1, y) = Ω(C1, z) = 1. In this case the ver-

tices x, y and z must be adjacent with the vertices of C1 as shown in Fig.

2. Let C⋆ be any one of the graphs G6, G7 or G8 as depicted in Fig. 2.

G6 G7 G8

Figure 2. Graphs G6, G7 and G8.
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If C⋆ is the graph G6 as depicted in Fig. 2, then by Lemma 1, it is easy

to see that E(C⋆) > |V (C⋆)| for |V (C1)| ≥ 11. For 3 ≤ |V (C1)| ≤ 9, using

Sage [23], we see that E(C⋆) > |V (C⋆)|. Thus by Lemma 2, we obtain

E(G) ≥ E(H\C1) + E(C⋆) > |V (H\C1)|+ |V (C⋆)| = n,

a contradiction. Similarly, if C⋆ is isomorphic to the graph G7 or G8 as

depicted in Fig. 2, then by using Sage [23] and Lemma 2, it can be shown

that E(G) > n, a contradiction.

Case 2.1.3. Ω(C1, x) = Ω(C1, y) = 1, Ω(C1, z) = 0. In this case two

vertices x and y are adjacent to the vertices of the cycle C1 and the vertex

z is adjacent to an edge component e of H. Let C⋆ be the subgraph

induced by the vertices of the cycle C1 and the vertices x and y of G.

Then C⋆ ∼= G9 or C⋆ ∼= G10 (G9 and G10 are shown in Fig 3).

G9 G10

Figure 3. Graphs G9 and G10.

First we assume that C⋆ ∼= G9. If |V (C⋆)| < 8, then by Sage [23],

we obtain E(C⋆) > |V (C⋆)| + 0.2. Otherwise, by Lemma 1, we have

E(C⋆) > |V (C⋆)|+0.2. Thus if L⋆ is the subgraph induced by the vertices

of e and the vertex z, then E(L⋆) > |V (L⋆)| − 0.2 and hence by Lemma 2,

we obtain

E(G) ≥ E(H\{C1 ∪ e}) + E(C⋆) + E(L⋆)

> |V (H\C1)|+ |V (C⋆)|+ 0.2 + |V (L⋆)| − 0.2 = n,
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a contradiction. Next we assume that C⋆ ∼= G10. Similarly, it can be

shown that E(G) > n.

Case 2.1.4. Ω(C1, x) = 1, Ω(C1, y) = Ω(C1, z) = 0. In this case only one

vertex x is adjacent to the exactly one vertex of C1 and vertices y & z are

adjacent to edge components of H. Let C⋆ be the subgraph induced by the

vertices of the cycle C1 and the vertex x of graph G. If |V (C⋆)| < 7, then

by Sage [23], we obtain E(C⋆) > |V (C⋆)| + 0.6. Otherwise, by Lemma 1,

we get E(C⋆) > |V (C⋆)|+ 0.6. Now, we assume that y and z are adjacent

to the vertices of the edge components of H. Let L be any one of the

graphs G11, G12 or G13 as depicted in Fig. 4.

z

y

G11

y

G12

z

y z

G13

Figure 4. Graphs mentioned in the proof of Theorem 2.

Let L⋆ be the subgraph induced by the vertices of L of graph G. By

Sage [23], we get E(L⋆) > |V (L⋆)| − 0.6. Then by Lemma 2, we obtain

E(G) ≥ E(H\{C1 ∪ L⋆\{y, z}}) + E(C⋆) + E(L⋆)

> |V (H\{C1 ∪ L⋆\{y, z}})|+ |V (C⋆)|+ 0.6 + |V (L⋆)| − 0.6 = n,

a contradiction.

Case 2.2. Ω(C1, x) ≥ 2. In this case vertex x is adjacent to at least two
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vertices in the induced cycle C1 of graph G. Then by Lemma 7, we have

H1 ∼= (H\C1) ∪ C2 ∪M1 is a Sachs subgraph of order n − 3 of graph G

such that vk /∈ V (H1) (vk ∈ V (C1)) is adjacent to an edge component of

H1, where M1 is a maximum matching of the induced path C1\V (C2)

and C2 is an induced cycle of odd length of graph G.

Without loss of generality, we can assume that Ω(C2, y) ≥ Ω(C2, z).

We consider the following two cases:

Case 2.2.1. Ω(C2, y) ≤ 1. In this case we have the following three cases:

Case 2.2.1.1. Ω(C2, y) = Ω(C2, z) = 0. The proof of this case is similar

to the Case 2.1.1.

Case 2.2.1.2. Ω(C2, y) = Ω(C2, z) = 1. The proof of this case is similar

to the Case 2.1.3.

Case 2.2.1.3. Ω(C2, y) = 1, Ω(C2, z) = 0. The proof of this case is

similar to the Case 2.1.4.

Case 2.2.2. Ω(C2, y) ≥ 2. In this case vertex y is adjacent to at least two

vertices in the induced cycle C2 of graph G. Then by Lemma 7, we have

H2 ∼= (H1\C2) ∪ C3 ∪ M2 is a Sachs subgraph of order n − 3 of graph

G such that vℓ /∈ V (H2) (vℓ ∈ V (C2)) is adjacent to an edge component

of H2, where M2 is a maximum matching of the induced path C2\V (C3)

and C3 is an induced cycle of odd length of graph G. We consider the

following cases:

Case 2.2.2.1. Ω(C3, z) = 0. The proof of this case is similar to the Case

2.1.1.

Case 2.2.2.2. Ω(C3, z) = 1. The proof of this case is similar to the Case

2.1.4.

Case 2.2.2.3. Ω(C3, z) ≥ 2. In this case vertex z is adjacent to at least

two vertices in the induced cycle C3 of graph G. Then by Lemma 7, we

have H3 ∼= (H2\C3)∪C4∪M3 is a Sachs subgraph of order n−3 of graph

G such that vs /∈ V (H3) (vs ∈ V (C3)) is adjacent to an edge component

of H3, where M3 is a maximum matching of the induced path C3\V (C4)

and C4 is an induced cycle of odd length of graph G. Then the proof of
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this case is similar to the Case 2.1.1. This completes the proof of the

theorem.

Lemma 8. [22] A graph has exactly one positive eigenvalue if and only

if its non isolated vertices form a complete multipartite graph.

Lemma 9. [21] Let G be a connected graph with minimum degree δ(G).

Then E(G) ≥ 2δ(G) and the equality holds if and only if G is a complete

multipartite graph with equal size of parts.

Lemma 10. [7] Let G be a connected graph of order n and size m. Then

λ1 ≥ 2m/n. Equality holds if and only if G is a regular graph.

Lemma 11. [18] Let G be an r-regular graph (r > 0) of order n. Then

E(G) ≥ n. Equality is attained if and only if every component of G is

isomorphic to the complete bipartite graph Kr,r.

Theorem 3. If a positive integer is an eigenvalue of a connected graph G

of order 2n and minimum degree δ = n− 1, then G is not orderenergetic.

Proof. Suppose G is orderenergetic. Let λ1 ≥ λ2 ≥ · · · ≥ λn0
be the

positive eigenvalues of A(G). Then it is well-known that

E(G) = 2(λ1 + λ2 + · · ·+ λn0
). (3)

If G is regular, then by Lemma 11, G ∼= Kn−1,n−1, a contradiction to the

order of the graph G. Otherwise, G is a non-regular graph. By Lemma

10, λ1 ≥ n − 1 and the equality holds if and only if G is regular. Thus

λ1 > n− 1. From (3), we obtain

E(G) > 2(n− 1) + 2(λ2 + λ3 + . . .+ λn0).

Since a positive integer is an eigenvalue of G, we must have λ1 = n, λ2 =

λ3 = . . . = λn0 = 0. Therefore G has only one positive eigenvalue. Hence

by Lemma 8, Gmust be a complete multipartite graph. Since the minimum

degree of G is n− 1, Kn+1,n−1 is a subgraph of G and so |E(G)| ≥ n2 − 1.

If |E(G)| ≥ n2, then by Lemma 10, λ1 > n, a contradiction. Otherwise,
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|E(G)| ≤ n2 − 1 and hence |E(G)| = n2 − 1. Thus G ∼= Kn−1,n+1. There-

fore, E(G) = 2
√
n2 − 1. Hence G is not orderenergetic. This completes

the proof.

The following corollary is immediate from the above theorem.

Corollary. There is no orderenergetic connected integral graph G of order

2n and minimum degree n− 1.

Theorem 4. Let G be an orderenergetic connected graph of order 2n and

minimum degree n. Then G ∼= Kn,n.

Proof. Let G be an orderenergetic connected graph of order 2n and min-

imum degree n. Then E(G) = 2n and hence by Lemma 9, G must be a

regular complete multipartite graph. Let G ∼= Kt, t,..., t. Then λ1 = 2n− t

and so E(G) = 2λ1 = 2(2n− t). Since E(G) = 2n, we get 2(2n− t) = 2n.

Thus n = t. Therefore G ∼= Kn,n.

The join of two graphs G1 and G2, denoted by G1 ∨ G2 is obtained by

joining every vertex of G with the vertices of H.

Lemma 12. [7] If G1 is an r1 regular with n1 vertices and G2 is r2 regular

with n2 vertices, then the characteristic polynomial of the join G1 ∨G2 is

given by

P (G1 ∨G2, x) =
P (G1, x)P (G2, x)

(x− r1) (x− r2)

(
(x− r1)(x− r2)− n1n2

)
.

Theorem 5. The graph aKp,p ∨K2p(4a−1) is orderenergetic.

Proof. From Lemma 12, it follows that the spectrum of aKp,p ∨K2p(4a−1)

is {
4ap, p, p, . . . , p︸ ︷︷ ︸

a−1

, −p, −p, . . . , −p︸ ︷︷ ︸
a

, 0, 0, . . . , 0︸ ︷︷ ︸
2p(4a−1)+2a(p−1)−1

, −4ap+ p
}
.

Thus E(Ka,a ∨K6a) = 2p(5a− 1). Hence aKp,p ∨K2p(4a−2) is orderener-

getic.

Letting p = 1 in Theorem 5, we obtain the following corollary.
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Corollary. There exists orderenergetic graphs of order 10k + 8 for all

k ≥ 0
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