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Abstract

We show how Schwitzer inequality allows us to find inequalities
relating an additive descriptor of the form Dp(G) =

∑N
i=1 c

p
i to its

reciprocal D−p(G) =
∑N

i=1 c
−p
i . We look at three cases (the inverse

degree, the Kirchhoff, and the multiplicative degree-Kirchhoff in-
dices) where p = 1 and where, of the two D1(G) and D−1(G), one
is known in closed form, therefore allowing to find an upper bounds
for the other.

1 Introduction

Let G = (V,E) be a simple, connected, undirected graph where V =

{v1, ..., vn} is the set of vertices and E the set of edges. We denote by

∆ = d1 ≥ d2 ≥ ... ≥ dn = δ the degrees of the vertices ofG. It is well known

that
∑n

i=1 di = 2|E|. Let A(G) be the adjacency matrix of G and D(G) be

the diagonal matrix of vertex degrees. The matrix L(G) = D(G) − A(G)

is called the Laplacian matrix of G, with eigenvalues µ1 ≥ µ2 ≥ · · · ≥
µn−1 > µn = 0, while L(G) = D(G)−1/2L(G)D(G)−1/2 is known as the

normalized Laplacian, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn−1 > λn = 0.

For more details on graph theory we refer the reader to [9].
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In this article we are interested in topological descriptors of a graph G

with the form

Dp(G) =

N∑
i=1

cpi , (1)

where the cis are some positive parameters associated to G, and p is an

arbitrary real number. Sometimes these descriptors arise as generalizations

of other descriptors which were originally thought of as particular cases of

p. An example of these is the general first Zagreb index

Mp
1 (G) =

n∑
i=1

dpi ,

which generalizes the first Zagreb index, obtained when p = 2. The reader

should consult the survey [8] for a discussion of this and several other

indices.

Sometimes the descriptors that we will look at do not generalize former

descriptors, but still have the form (1), for example

sp(G) =

n−1∑
i=1

µp
i ,

where the µis are the non-zero Laplacian eigenvalues of G, and

s∗p(G) =

n−1∑
i=1

λp
i ,

where the λis are the non-zero normalized Laplacian eigenvalues of G.

These latter descriptors were introduced in [20]. One particular variant of

s−1(G) is the Kirchhoff index

Kf (G) = ns−1(G),

whose expression in terms of the Laplacian eigenvalues was found in [7]

and [21]. This index also has a more physical definition, put forward in [10],
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as

Kf (G) =
∑
i<j

Rij ,

where Rij is the effective resistance, computed with Ohm’s laws, between

vertices i and j. Another electrical index that we will touch upon in this

article, introduced in [2], is the multiplicative degree-Kirchhoff index:

K∗
f (G) =

∑
i<j

didjRij .

Depending on the topological index studied, the index of the summa-

tion in (1) can run in one of the sets {1, 2, . . . , n}, or {1, 2, . . . , n− 1}, or
E, or all the pairs of indices i, j such that i < j, conveniently ordered. In

this article N will be either n or n − 1, and the context will make clear

which case is being considered. In what follows, using Schweitzer inequal-

ity, we derive a relation involving Dp(G) and its reciprocal D−p(G), and

then focus on some particular cases. We refer the reader to our previous

work [14], for other relationships between additive indices of the form (1)

found using Radon’s inequality.

2 Schweitzer inequality and its applications

to descriptors

We start off with the main tool of this note, Schweitzer inequality, first

shown in [15] and usually found in the context of Probability Theory and

Statistics (see [5] [19]; in the latter there is a history of the inequality):

Lemma 1. For all 0 < m ≤ xi ≤ M we have

n∑
i=1

xi

n∑
i=1

1

xi
≤ n2(m+M)2

4mM
. (2)

The equality holds whenever m = xi = M for all i, or whenever n is
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even and

x1 = · · · = xn
2
= m and x(n

2 +1) = · · · = xn = M.

In [11], Lupaş showed the following refinement of Schweitzer inequality:

Lemma 2. For all 0 < m ≤ xi ≤ M and n is odd we have

n∑
i=1

xi

n∑
i=1

1

xi
≤ n2(M +m)2 − (M −m)2

4mM
. (3)

The equality holds when m = xi = M for all i, or when the smallest n−1
2

of the numbers x1, . . . xn are equal to m, the largest n−1
2 are equal to M ,

and the middle xi is equal to either m or M .

Now we can prove the following

Theorem 1. For any descriptor Dp(G) of the form given in (1), we have

N2 ≤ Dp(G)D−p(G) ≤ N2 (m+M)2

4mM
. (4)

Both equalities are attained in case m = cpi = M for all 1 ≤ i ≤ N . Also,

the right inequality is attained if n is even and the first n
2 of the cpi s are

equal to m and the other n
2 of the cpi s are equal to M .

Also, if n is odd we have

N2 ≤ Dp(G)D−p(G) ≤ N2(M +m)2 − (M −m)2

4mM
. (5)

Both equalities are attained in case m = cpi = M for all 1 ≤ i ≤ N . Also,

the right equality is attained if the first n−1
2 of the cpi s are equal to m, the

last n−1
2 of the cpi s are equal to M , and the middle cpi is either m or M .

Proof. The left inequalities hold by the arithmetic-harmonic-mean

inequality. The right inequalities are shown taking xi = cαi in (2) and (3)

•

Note. In [6] the authors use the same idea of relating indices and their

reciprocals with the help of Schweitzer inequality. However, the inequality
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is incorrectly used and all their purported lower bounds are actually upper

bounds. Also, as shown above, their claim that the equality is attained if

and only if all the terms in the summation are equal is inexact.

In what follows we will obtain a series of corollaries from theorem

1. We start with M−1
1 (G), more commonly known as the inverse degree

index ID(G), and notice that its reciprocal is M1
1 (G) = 2|E|. We get the

following

Corollary. For any n-vertex graph G we have

n2

2|E|
≤ ID(G) ≤ n2(∆ + δ)2

8|E|∆δ
, (6)

where both equalities are attained for regular graphs, and the right equality

is also attained by biregular graphs such that n is even, half the vertices

have degree δ and the other half have degree ∆.

Also, if n is odd we have

n2

2|E|
≤ ID(G) ≤ n2(∆ + δ)2 − (∆− δ)2

8|E|∆δ
, (7)

where both equalities are attained for regular graphs, and also the right

equality is attained by biregular graphs such that n−1
2 vertices have degree δ

and n+1
2 vertices have degree ∆, or biregular graphs such that n+1

2 vertices

have degree δ and n−1
2 vertices have degree ∆.

The index ID(G) has been extensively studied, and our bounds (6)

and (7) are at least not comparable to those found in the literature: for

instance, those in [3] are not attained by our biregular graphs, and the one

similar to our (7) found in [4]:

ID(G) ≤ n(∆ + δ)− 2|E|
∆δ

, (8)

is better than ours for biregular graphs with a different distribution of

degrees than those in corollary 1. However, for the unicyclic graphs Gn

consisting of a triangle with a n−3 -long path graph attached to one of the

vertices on the triangle, we have that the bound (8) becomes 2n
3 , which is



60

the same value obtained for our bound (6) for n even, but it is worse than

our (7) for n odd, which becomes 2n
3 − 1

6n .

Now we study the Kirchhoff index Kf (G) = n
∑n−1

i=1
1
λi
, and with the

help of the well known fact that
∑n−1

i=1 λi = 2|E|, we produce bounds that
to the best of our knowledge are new.

Corollary. For all G we have

n(n− 1)2

2|E|
≤ Kf (G) ≤ n(n− 1)2(m+M)2

8|E|mM
, (9)

where m is the smallest eigenvalue and M is the largest eigenvalue of the

Laplacian matrix. Both equalities holds when all the eigenvalues are the

same, which is the case of the complete graph. Also, the right equality holds

when there are only two nonzero eigenvalues with the same multiplicity and

n is odd. Also, when n is even and there are only two nonzero eigenvalues,

whose multiplicities differ by 1, we get the refinement

n(n− 1)2

2|E|
≤ Kf (G) ≤

n
[
(n− 1)2(m+M)2 − (M −m)2

]
8|E|mM

, (10)

The cases where the right inequalities in (9) and (10) become equalities,

i.e., where the graphs have only two nonzero eigenvalues with multiplicities

either equal or differing by one, are abundant, and the subject of study

in [16] and [19]. For instance, in the former reference they mention two

graphs on 16 vertices with Laplace spectra {0, 87, 48} and {0, 88, 47}, that
attain the right equality in (10). It is also simple to verify that (10) is

attained by K1,3 and K2,2, whereas (9) is attained by K1,2.

We now obtain bounds for the multiplicative degree-Kirchhoff index

K∗
f (G) using the index s∗1(G) and its reciprocal s∗−1(G), defined above,

and for which it is well known that (see [1], for instance)

s∗1(G) = n, (11)
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and

s∗−1(G) =
1

2|E|
K∗

f (G). (12)

An application of theorem 1 yields the following

Corollary. For all G we have

2|E|(n− 1)2

n
≤ K∗

f (G) ≤ 2|E|(n− 1)2(m+M)2

4nmM
, (13)

where m is the smallest eigenvalue and M is the largest eigenvalue of the

normalized Laplacian matrix. Both equalities hold when all the eigenvalues

are the same, which is the case of the complete graph. Also, the right

equality holds when there are only two nonzero eigenvalues with the same

multiplicity and n is odd. Also, when n is even and there are only two

nonzero eigenvalues, whose multiplicities differ by 1 we get the refinement

2|E|(n− 1)2

n
≤ K∗

f (G) ≤
2|E|

[
(n− 1)2(m+M)2 − (M −m)2

]
4nmM

. (14)

As in the case of corollary 2, the cases where the right equalities in

(13) and (14) are attained correspond to graphs with exactly two nonzero

normalized Laplacian eigenvalues. These graphs have been studied in [17],

and out of those, we are interested in the ones whose multiplicities are

equal or differ by 1. In that regard, we need this definition: a cone over a

graph G is a graph obtained by adjoining a new vertex to all vertices of G,

i.e., it is a graph with a vertex with degree n− 1. Then, as stated in [17],

a cone over a disjoint union of an isolated vertex and a strongly regular

graph with parameters (n, k, λ, µ) with n = 2k + 1, k = 2µ and λ = µ− 1

has exactly two nonzero normalized Laplacian eigenvalues: n±
√
n−2

n−1 , each

with multiplicity n−1
2 , and thus all these graphs attain the equality in

(13). Also, K1,2 attains the equality in (13) and K1,3 and K2,2 attain the

equality in (14).

A final observation regarding the joint behavior of the two Kirchhoffian

indices studied in this article: the left inequalities of (9) and (13) allow us
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to conclude that

Corollary. for all G we have

(n− 1)4 ≤ Kf (G)K∗
f (G).

The equality is attained by the complete graph.

Finding the graph that attains the maximum value of the product

Kf (G)K∗
f (G) seems to be a rather hard problem (see [13]).
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