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Abstract

The General Sombor index of a graph G is given by,

SOα(G) =
∑

xy∈E(G)

(d2G(x) + d2G(y))
α,

where dG(x) represents the degree of vertex x in graph G. This
paper focuses on determining the maximum and minimum General
Sombor index among trees with given number of pendent vertices,
where α ∈ (0, 1). Additionally, the graphs that achieve the extremal
index values are identified and described in this paper.

1 Introduction

Let G be a simple graph. This graph possesses a combination of ver-

tices and edges, represented as V (G) and E(G), respectively. We use the
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symbols m and n to represent the total number of edges and vertices,

where |E(G)| = m and |V (G)| = n. We denote the degree of a specific

vertex y within G, as dG(y) or simply d(y), corresponds to the total count

of the neighboring vertices attached to it. When vertices x and y are con-

nected, the connecting edge is denoted as e = xy. In both mathematical

and chemical literature, numerous graph invariants centered around ver-

tex degrees (often termed “topological indices”) has been introduced and

thoroughly examined [10–12]. A numerical quantity, denoted as TI(G),

can be used to represent a topological index, which is computed or deter-

mined based on a (chemical) graph in a manner that preserves its value

when considering graph isomorphism. These invariants can generally be

expressed using the formula

TI(G) =
∑

xy∈E(G)

H(dG(x), dG(y)),

here H(x, y) represents a function exhibiting the characteristic H(x, y) =

H(y, x). Numerous topological indices, explored within the realm of chem-

ical graph theory, hold multiple significant applications in chemistry. This

is evident from recent publications like [29,33].

Another degree-based topological index, the Sombor index [11],

SO(G) =
∑

xy∈E(G)

√
(d2G(x) + d2G(y))

was originally formulated based on geometric principles and rapidly cap-

tured substantial attention. While the Sombor index has been exten-

sively explored for its mathematical attributes and chemical utility [1,

2, 6, 9, 13, 15, 19, 20, 26, 27], its geometric aspects have largely gone unno-

ticed. The maximal Sombor index has been investigated in relation to

(chemical) trees [3, 4, 7, 8, 17, 18, 31, 32], chemical graphs [3, 9, 19, 22, 35],

c-cyclic graphs [5,14,21,22,30], as well as its implications in chemical con-

texts [8,19,24,28] and spectral characteristics [23,24], among other areas.
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In [16], X. Hu and L. Zhong defined the general Sombor index as,

SOα(G) =
∑

xy∈E(G)

(d2G(x) + d2G(y))
α.

Inspired by the work in [36], we investigate the General Sombor index for

the trees having a given number of pendent vertices. Let NG(x) (or N(x)),

represent the collection of neighboring vertices for a given vertex x ∈ V (G).

Since the degree dG(x) (or d(x)) corresponds to the number of edges in G

that are incident to x, it can also be denoted as dG(x) = |NG(x)|. Specif-
ically, we define ∆(G) as the highest value among the degrees of vertices

in G, i.e., the maximum degree in G. For any y ∈ V (G), the G− y graph

is formed by eliminating vertex y and its connecting edges from G. The

graph G− xy is derived by removing the edge xy from G, where xy is an

edge in the edge set E(G).

A vertex with a degree of one is referred to as a pendent vertex. If

the degree of a vertex x is r, it is termed as an r-vertex. The edges

adjacent to the pendent vertices are called pendent edges. Consider an

induced sub-path P = y0y1...yr within graph G, where P has a length

of r. If d(y0) equals 1, d(y1) through d(yr−1) are all equal to 2, and

d(yr) is greater than or equal to 3, then we refer to the sub-path P

as a pendent path within G. The collection containing all the pendent

vertices in graph G is symbolized as PV(G) and we represent the col-

lection of all pendent paths in graph G as P(G). In G, a vertex set

V (G) = {d(y1), d(y2), . . . , d(yn)}, where d(y1) ≥ d(y2) ≥ . . . ≥ d(yn)

holds, then the sequence (d(y1), d(y2), ..., d(yn)) is termed the degree se-

quence of G.

When a connected graph T has m = n− 1, it is termed a tree. We can

easily verify that every tree must have a minimum of two vertices having

degree one, where star is the only tree having precisely n− 1 vertices that

are pendent. For 2 ≤ k ≤ n − 1, we define two collection : Tn,k for trees

and CT n,k for chemical trees, both of order n and k vertices that are pen-

dent. If a tree T belongs to Tn,k and all its vertices which are not pendent

vertices are 3-vertices, then we call T a (k, 3)-regular tree. It is observed

directly that all the (k, 3)-regular tree consists of 2k−2 vertices, including
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exactly k pendent vertices.

In [36] Zhang et al. initially introduced three transformations for a tree

T consisting of n vertices, which will hold significant significance through-

out the main results.

Transformation I : The process of taking a fixed edge xy in T and

constructing another tree Txy having n − 1 vertices, by merging the two

vertices connected by the edge xy in T is referred as Transformation I

(See figure 1).

x y

y1

y2 y3

x(y)

T Txy

Figure 1. Illustration of Transformation I

Transformation II : Suppose y ∈ V (T ) with N(y) = Y ′∪Y ′′ satisfying

Y ′ ∩Y ′′ = ∅, |Y ′| = b1 ≥ 1, and |Y ′′| = b2 ≥ 1. We denote by Ty 7→(b1,b2), a

new tree with |V (Ty 7→(b1,b2))| = |V (T )|+1. The construction of Ty 7→(b1,b2)

from T involves splitting the vertex y into two new vertices y′ and y′′ and

adding an edge between y′ and y′′, joining y′ and all vertices of Y ′, and

then joining y′′ and all vertices of Y ′′. In the subsequent discussions, we

will refer to Ty 7→(b1,b2) as a result of Transformation II (See figure 2).

x y

y1

y2 y3

T

x y′1

y′′1

y2 y3

y1

y4

Ty→(1,4)

Figure 2. Illustration of Transformation II

Transformation III : Consider a tree T with a vertex y containing at
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least four vertices. We can construct a new tree Ty 7→(3−reg), by modifying

T . This transformation involves substituting the vertex y ∈ T with a

(b, 3)-tree H, such that we individually identify each vertex in the neigh-

borhood of y and each pendent vertex in H. This process is referred to as

Transformation III when applied to T (See figure 3).

x y

y1

y2 y3

T

x1

x2

y4
y5

y6

x̄

ȳ2 ȳ3

ȳ1

ȳ4

x1

x2

x∗

y∗2 y∗3

y∗1
y∗4

y5

y6

H Tv→(3−reg)

Figure 3. Illustration of Transformation III

We define ηi(G) as the total count of vertices in graph G having i as

it’s degree, and the notation ei,j(G) signifies the count of edges in graph G

linking a i-vertex with a j-vertex. When there is no risk of confusion, we

will utilize the more concise notations ηi and ei,j . Additionally, we denote

the star with n vertices as Sn and the path with n vertices as Pn. The set

E2(G) = {xy : xy ∈ E(G) and d(x) = d(y) = 2}. The expression A := B

signifies that B is identical to A.

2 Preliminaries

In this section, we present few lemmas that have a frequent application

in the subsequent sections.
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y1

yr

yr
y1

y2

yr−1 y2 yr−1

G G′

Figure 4. The graphs G and G′ from Lemma 1

Lemma 1. Consider a graph G and an induced sub-path P = y1y2...yr

belonging to G, having the degrees of both y1 and yr are at least 2. A new

graph G′ is constructed as, G′ = G− {yrz : z ∈ N(yr)\yr−1}+ {y1z : z ∈
N(yr)\yr−1} (refer to Figure 4 for a visual representation). Then we have

SOα(G) < SOα(G
′).

Proof. Consider the function ψ(p, q) defined as follows:

ψ(p, q) = (4 + p2)α + (4 + q2)α − (4 + (p+ q − 1)2)α − 5α,

where both p and q are greater than or equal to 2. It can be easily verified

that:

∂ψ(p, q)

∂p
= 2αp(4 + p2)α−1 − 2α(p+ q − 1)(4 + (p+ q − 1)2)α−1 < 0

implying that ψ(p, q) strictly decreases as p increases while q is fixed and

∂ψ(p, q)

∂q
= 2αq(4 + q2)α−1 − 2α(p+ q − 1)(4 + (p+ q − 1)2)α−1 < 0

This implies that ψ(p, q) strictly decreases as q increases while p is fixed,

implying ψ(p, q) is strictly decreasing with fixed q ≥ 2 and for p ≥ 2, and

strictly decreasing for fixed p ≥ 2 and with q ≥ 2. For convenience we
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assign the values dG(y1) = p ≥ 2 and dG(yr) = q ≥ 2 in the subsequent

discussion.

Case 1 : r > 2

Consequently, we have

SOα(G)− SOα(G
′)

=
∑

z∈NG(y1)\{y2}

(
p2 + d2G(z)

)α

+
∑

z∈NG(yr)\{yr−1}

(
q2 + d2G(z)

)α

+ (22 + p2)α + (22 + q2)α +−(12 + 22)α − (22 + (p+ q − 1)2)α

−
∑

z∈NG(y1)∪NG(yr)\{y2,yr−1}

(
(p+ q − 1)2 + d2G(z)

)α

< (22 + p2)α + (22 + q2)α − (12 + 22)α − (22 + (p+ q − 1)2)α = ψ(p, q)

≤ ψ(2, 2) = (22 + 22)α + (22 + 22)α − (12 + 22)α − (22 + (2 + 2− 1)2)α

= 2 · 8α − 5α − 13α < 0

implying SOα(G) < SOα(G
′).

Case 2 : r = 2

To begin, it’s important to observe that for values of p ≥ 2 and q ≥ 2,

the expression 1 + (p + q − 1)2 − (p2 + q2) = 2(pq − p − q) + 1 is greater

than zero. By this fact, we can now state that:

SOα(G)− SOα(G
′)

=
∑

z∈NG(y1)\{y2}

(
p2 + d2G(z)

)α

+
∑

z∈NG(y2)\{y1}

(
q2 + d2G(z)

)α

−
∑

z∈NG(y1)∪NG(y2)\{y1,y2}

(
(p+ q − 1)2 + d2G(z)

)α

+ (p2 + q2)α − (12 + (p+ q − 1)2)α

< (p2 + q2)α − (12 + (p+ q − 1)2)α < 0

Thus the proof is completed.
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Corollary 1. Consider a tree T with a total of n vertices, where n is

greater than or equal to 3. We have,

8α(n− 3) + 2 · 5α ≤ SOα(T ) ≤ (n− 1)(n2 − 2n+ 2)α

The left inequality is achieved iff T is identical to Pn, and the right side

inequality is achieved iff T is identical to Sn.

Proof. If we have a tree T that is distinct from the star graph Sn, then it

is possible to transform T into the star graph Sn through a series of finite

steps using the transformation from Lemma 1. Consequently, according to

Lemma 1, we can establish that SOα(T ) is bounded by SOα(Sn), which

equals (n− 1)(n2 − 2n+ 2)α.

Conversely, if T is not isomorphic to the path graph Pn, then by apply-

ing the transformation from Lemma 1 to Pn a suitable number of times,

we can eventually obtain the desired tree T . Again, by Lemma 1, we can

deduce that SOα(T ) is greater than or equal to SOα(Pn), which equals

8α(n− 3) + 2 · 5α.

Lemma 2. If r is greater than or equal to 1, and α ∈ (0, 1), then the

function f(u) = (u2 + r2)α − uα strictly decreases for u ≥ 1.

Proof. One can readily observe that, for values of r greater than or equal

to 1 and α ∈ (0, 1), the derivative f ′(u), is expressed as follows: f ′(u) =

2αu
[
(u+r)α−1−uα−1

]
, and it consistently remains negative. As a result,

the lemma remains valid.

Lemma 3. Consider a tree T from the collection Tn,k and y be a vertex

with degree 2 in T . If the two neighbor vertices of z are not pendent and

α ∈ (0, 1), then there exists a tree T ∗ of Tn,k so that SOα(T ) ≥ SOα(T ∗)

with equality if and only if y is adjacent to at least one vertex with degree

2.

Proof. Let N(y) = {x, z} where d(x) = s ≥ 2 and d(z) = t ≥ 2. Assume

that p is a pendent vertex and q is the only neighbor of p in the tree T
with d(q) = r ≥ 2. Define Txy as a result of applying Transformation I

to T and let T ∗ be the graph constructed from Txy by introducing a new
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edge to the pendent vertex p. It follows that T ∗ ∈ Tn,k. Since s, t, r ≥ 2,

and α ∈ (0, 1) we have,

SOα(T )− SOα(T ∗)

= (s2 + 22)α + (t2 + 22)α + (u2 + 1)α − (s2 + t2)α − (u2 + 22)α − 10α

=
[
(s2 + 22)α + (t2 + 22)α − (s2 + t2)α

]
−

[
(u2 + 22)α − (u2 + 1)α

]
− 10α

Let ϕ(s, t) = (s2 + 22)α + (t2 + 22)α − (s2 + t2)α having s, t ≥ 2, and

α ∈ (0, 1) then

∂f(s, t)

∂s
= 2αs

[
(s2 + 22)α−1 − (s2 + t2)α−1

]
≥ 0

and
∂f(s, t)

∂t
= 2αt

[
(t2 + 22)α−1 − (s2 + t2)α−1

]
≥ 0

implying f(s, t) increases for both s and t with s, t ≥ 2. From Lemma 2,

it follows that

SOα(T )− SOα(T ∗) = ϕ(s, t)− f(u2 + 1)− 10α ≥ ϕ(2, 2)− f(3)− 10α = 0

Lemma 4. Consider a tree T from the collection Tn,k, and let pq represent

an edge within T such that the d(p) = b ≥ 3, and d(q) = 1. For α ∈ (0, 1)

and the collection E2(T ) is non-empty, there exists another T ∗ in Tn,k so

that SOα(T ) > SOα(T ∗) holds.

Proof. Consider that E2(T ) is not an empty set. Consequently, it is possi-

ble to create T ∗ containing n− 1 vertices derived from T by merging any

edge from E2(T ) and subsequently introducing a new vertex to the edge

pq. Thus, T ∗ belongs to the set Tn,k. According to Lemma 2, this leads

to

SOα(T )− SOα(T ∗) = 8α + (b2 + 1)α − (b2 + 22)α − 5α

=
[
8α − 5α

]
−
[
(b2 + 22)α − (b2 + 1)α

]
> 0

Hence the lemma holds.
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Lemma 5. Consider a tree T belonging to the collection Tn,k and a vertex

x within T that has a degree of 4. Furthermore, let y1, y2, y3, and y4 denote

four vertices that are neighbors of x, so that d(y4) ≤ 5 and d(y1) ≤ d(y2) ≤
d(y3) ≤ 3. If α ∈ (0, 1) and the collection E2(T ) is not empty, then there

exists another T ∗ in the set Tn,k so that SOα(T ) > SOα(T ∗).

Proof. Note that E2(T ) is not an empty set. As a result, we have the

ability to create T ′ with a total of n−1 vertices by merging any edge from

the set E2(T ). Subsequently, we can generate an additional tree labeled

as T ∗ := T ∗
y 7→(3−reg) from T ′ through Transformation III, while ensuring

T ∗ remains within the set Tn,k. Given that d(y1) ≤ d(y2) ≤ d(y3) ≤ 3 and

d(y4) ≤ 5, and in accordance with Lemma 2, we have

SOα(T )− SOα(T ∗) = 8α +

4∑
i=1

[
(42 + d2(yi))

α − (32 + d2(yi))
α
]
− 18α

≥ 8α + 3
[
25α − 18α

]
+ 41α − 34α − 18α

= 8α − 4 · 18α + 3 · 25α + 41α − 34α

Let ϕ(α) = 8α − 4 · 18α + 3 · 25α + 41α − 34α with α ∈ (0, 1). It is easy to

check that ϕ(α) > 0 for α ∈ (0, 1). (see Figure 5)

Figure 5. ϕ(α) from Lemma 5
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Lemma 6. If T represents a tree from the collection Tn,k, and let x be

one of the vertices in T , with a degree of at least 4. If |E2(T )| ≥ b − 3

and the neighbors of x are denoted as N(x) = {y1, y2, ..., yb} such that

d(y1) ≤ d(y2) ≤ ... ≤ d(yb). For α ∈ (0, 1) if we consider T , satisfying

either of the following two conditions:

(i) When d(yb−1) ≤ 3 and b ≥ 5.

(ii) When 3 ≤ d(yb−1) ≤ 4 and b ≥ 8.

then we can find another T ∗ of Tn,k so that SOα(T ) > SOα(T ∗).

Proof. Let d(yb−1) = a. It’s important to note that |E2(T )| ≥ b − 3.

Consequently, new T ′ can be constructed by taking T and contracting

b − 3 arbitrary edges from E2(T ). When we consider Transformation III,

another tree denoted as T ∗ := T ∗
y 7→(3−reg),can be constructed from T ′.

Also note that, the tree T ∗ belongs to the collection Tn,k. Since b ≥ 4,

α ∈ (0, 1),and by Lemma 2, we have

SOα(T )− SOα(T ∗)

= (b− 3)8α +

b∑
i=1

[
(d2(yi) + b2)α − (d2(yi) + 32)α

]
− (b− 3) · 18α

≥ (b− 3)
[
8α − 18α

]
+ (b− 1)

[
(a2 + b2)α − (a2 + 32)α

]
+
[
(d2(yb) + b2)α − (d2(yb) + 32)α

]
> (b− 3)

[
8α − 18α

]
+ (b− 1)

[
(a2 + b2)α − (a2 + 32)α

]
(1)

Let ϕ(a, b) = (b− 3)
[
8α − 18α

]
+ (b− 1)

[
(a2 + bq2)α − (a2 + 32)α

]
where

α ∈ (0, 1), a ≥ 1 and b ≥ 4.

By Lemma 2, ϕ(a, b) strictly decreases on a.

Since α ∈ (0, 1), then
∂2ϕ(a, b)

∂b2
≥ α(a2 + b2)α−2(2a2 +2b2 − b+1) > 0

Hence
∂ϕ(a, b)

∂b
strictly increases on b. Now, the subsequent cases are ex-

amined.

Case (i) : T satisfies (i). i.e., b ≥ 5 and a ≤ 3 and so ϕ(a, b) ≥ ϕ(3, b).

∂ϕ(3, b)

∂b
≥ ∂ϕ(3, b)

∂b

∣∣∣∣∣
b=5

= 34α−1
[
4α+ 34

]
+ 34α − 2 · 18α > 0
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where in Figure 6 (a), the last strict inequality is indicated. Thus, ϕ(3, b)

strictly increases on b ≥ 5. Combining this with (1), we have

SOα(T )−SOα(T ∗) > ϕ(a, b) ≥ ϕ(3, b) ≥ ϕ(3, 5) = 2·8α−6·18α+4·34α > 0

where in Figure 6 (b), the last strict inequality is indicated.

(a) (b)

(c) (d)

Figure 6. The four functions ϕ(α) from Lemma 6

Case (ii) : T satisfies (ii). i.e., a ≤ 4 and b ≥ 8 and so ϕ(a, b) ≥ ϕ(4, b)

∂ϕ(4, b)

∂b
≥ ∂ϕ(4, b)

∂b

∣∣∣∣∣
b=8

= 8α − 18α − 25α + 80α−1
[
80 + 7α

]
> 0

where in Figure 6 (c), the last strict inequality is indicated. Thus, ϕ(4, b)
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strictly increases b ≥ 8. We have,

SOα(T )− SOα(T ′) > ϕ(a, b) ≥ ϕ(4, b) ≥ ϕ(4, 8)

= 5(8α − 18α) + 7(80α − 25α) > 0

where in Figure 6 (d), the last strict inequality is indicated.

Lemma 7. [34] Let T be a tree of Tn,k. If 3 ≤ k ≤
⌊
n+2
3

⌋
and E2(T ) ⊆

E(P(T )), then

|E2(T )| ≥ η4 + 2η5 + · · ·+ (∆(T )− 3)η∆(T ).

3 Main results

Within this section, our focus is on identifying the maximum and minimum

General Sombor indices for trees that have a specified number of vertices

that are pendent.

3.1 The maximum general Sombor index of trees

with given number of pendent vertices

Within this context, we denote a tree known as the broom graph as Yn,k.

This broom graph is essentially created by taking the star graph Sk and

substituting one of the edge that is pendent with a path Pn−k. We establish

the broom graph Yn,k as the unique tree within the collection Tn,k that

achieves the maximum general Sombor index.

Theorem 1. Suppose we have a tree denoted as T in the collection Tn,k.
For any value of α ∈ (0, 1), then

SOα(T ) ≤ (k − 1)(1 + k2)α + (4 + k2)α + (n− k − 2) · 8α + 5α

and the inequality holds if and only if T is isomorphic to the tree Yn,k.

Proof. When k equals either 2 or n − 1, it means that T takes the form

of either Pn = Yn,2 or Sn = Yn,n−1. Therefore, theorem is true for
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these specific cases when k is 2 or n − 1. Now, let’s proceed with the

assumption 3 ≤ k ≤ n−2, and that the result has already been established

for trees within Tn′,k′ , where n′ ≤ n− 1 and k′ ≤ p− 1. Suppose we have

a tree T belonging to Tn,k and a vertex y within PV(T ). If x serves

as the neighbor of y, and the set NT (x) = {y, x1, x2, ..., xt−1}, then we

know that dT (x) = t, which is less than or equal to k. Moreover, within

the neighborhood set NT (x), there is at least a vertex having a degree

exceeding two. For the sake of simplicity, we can make the assumption,

without compromising generality, that dT (x1) is greater than or equal to

two, and for i = 1, 2, ..., t− 1, dT (xi) ≥ 1.

Now, we obtain T ′, by eliminating y from T , i.e., T ′ = T − y.

If dT (x) = 2, it implies that dT ′(x) = 1, and as a result, T ′ belongs

to the set Tn−1,k. Using the induction hypothesis, we can now derive the

following:

SOα(T ′) ≤ SOα(Yn−1,k) = (k−1)(1+k2)α+(4+k2)α+(n−k−2)8α+5α.

Hence,

SOα(T ) = SOα(T ′) + 5α + (d2T (x1) + 22)α − (d2T (x1) + 12)α

≤ (k − 1)(1 + k2)α + (4 + k2)α + (n− k − 2)8α + 5α + 8α − 5α

= (k − 1)(1 + k2)α + (4 + k2)α + (n− k − 2)8α + 5α

The equality is valid if and only if T ′ = Yn,k−1, and dT (x1) = 2 implying

T is isomorphic to Yn,k. Now, when dT (x) ≥ 3, it implies that dT ′(x) ≥ 2,

consequently we have, T ′ ∈ Tn−1,k−1. Applying the induction hypothesis,

we obtain:

SOα(T )

= SOα(T ′) + (t2 + 12)α +

t−1∑
i=1

(t2 + d2T (xi))
α −

t−1∑
i=1

((t− 1)2 + d2T (xi))
α

≤ SOα(Yn−1,k−1) + (t2 + 12)α

+

t−1∑
i=1

[
(t2 + d2T (xi))

α − ((t− 1)2 + d2T (xi))
α
]
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≤ SOα(Yn−1,k−1) + (t2 + 12)α + (t− 2)
[
(t2 + 1)α − ((t− 1)2 + 1)α

]
− ((t− 1)2 + 4)α + (t2 + 4)α

= SOα(Yn−1,k−1) + (t2 + 12)α + (t− 2)ϕ(t, 1) + ϕ(t, 2)

≤ SOα(Yn−1,k−1) + (k2 + 12)α + (k − 2)ϕ(k, 1) + ϕ(k, 2) (Since t ≤ k)

= (k − 1)(1 + k2)α + (4 + k2)α + (n− k − 2) · 8α + 5α

The equalities mentioned above are valid if and only if certain conditions

holds: firstly, T ′ ∼= Yn−1,k−1, secondly, the degrees of all the vertices in

the collection x1, x2, ..., xt−1 within T must be equal to 1, and finally, the

value of T must equal k. Consequently, we can conclude that T ∼= Yn,k,

thereby completing the proof.

Observe that Theorem 1, generalize the findings of Chen et al. [2] (see

Theorem 3.5 in [2]), where the maximum Sombor index of trees in Tn,k
(for 3 ≤ k ≤

⌊
n+2
3

⌋
) are determined.

3.2 The minimum general Sombor index of trees with

given number of pendent vertices

We now represent the collection of trees on n vertices as T ∗
n,k con-

structed from a (k, 3)-regular tree by replacing each pendent edge with a

path of length at least 2. It can be easily verified that T ∗
n,k has exactly

k pendent vertices, n − 2k + 2 vertices of degree 2 and k − 2 vertices of

degree 3.

For any tree, T , belonging to the set T ∗
n,k, as per the definition of T ∗

n,k, it

can be deduced that the following conditions hold :

• The cardinality of vertices in T , denoted as |V (T )|, equals n.

• The maximum degree of any vertex in T , represented as ∆(T ), is 3.

• Each neighboring vertex of a vertex with a degree of 3 is either

another vertex with a degree of 3 or a vertex with a degree of 2.
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Consequently, leading to η1(T ) = k, η2(T ) = n+ 2− 2k, and η3(T ) =

k − 2. For instance, consider the class T ∗
13,4, which contains exactly four

distinct trees, as illustrated in Figure 7. To simplify further, when com-

bined with the sets Tn,2 = CT n,2 = Pn, Tn,n−1 = Sn, and CT n,n−1 =

{Sn|3 ≤ n ≤ 5}, we limit our focus to cases where 3 ≤ k ≤ n− 2.

Figure 7. The elements of the collection T ∗
13,4

Theorem 2. Consider a tree T belonging to the collection Tn,k, where

3 ≤ k ≤
⌊
n+2
3

⌋
. When α ∈ (0, 1), then,

SOα(T ) ≥ (5α + 13α) k + 8α (n+ 2− 3k) + 18α (k − 3).

and the equality holds if and only if T belongs to the collection T ∗
n,k.

Proof. We assume throughout the proof that there exists a tree denoted

as T ∗ ∈ Tn,k which possesses the minimum general Sombor index within

this collection . Given that k is greater than or equal to 3, it follows that

∆(T ∗) ≥ 3. We will now proceed to establish certain assertions.

Assertion 1: Along a pendent path, each vertex in T ∗ with degree two

is situated.

Proof for Assertion 1: To illustrate this assertion through a proof by con-

tradiction, let’s assume that there exists a vertex, denoted as x0, in T ∗

with a degree of 2 but is not part of any pendent path. In such a case, all

neighboring vertices of x0 are non-pendent vertices. In accordance with

Lemma 3, it follows that within the collection Tn,k, there exists a tree T1
for which SOα(T ∗) ≥ SOα(T1), with equality only if x0 is connected to at
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least one vertex of degree 2.

Through successive application of the transformations from Lemma 3,

we can obtain a collection of trees denoted as {Ti|i ≥ 0} within the collec-

tion Tn,k, with T0 defined as T ∗. Simultaneously, we can form a sequence

of vertices {xi|i ≥ 0}, so that every vertex xi having a degree two is not

situated on any pendent path of Ti, and furthermore, the general Sombor

index SOα(Ti) is greater than or equal to SOα(Ti+1) for all i ≥ 0.

As the count of 2-vertices not located on pendent paths in Ti+1 con-

sistently remains one less than that in Ti, this series of transformations

will ultimately conclude after a finite number of iterations. In simpler

terms, there exists a non-negative integer b such that every 2-vertex within

Tb+1 is located on a pendent path. Consequently, we can identify xb as

the only 2-vertex in Tb that doesn’t belong to any pendent path. As

a result, xb is connected to two vertices in Tb, both of which have de-

grees of at least 3. This establishes a descending sequence of inequalities:

SOα(T0) ≥ SOα(T1) ≥ ... ≥ SOα(Tb) > SOα(Tb+1), which contradicts the

initial choice of T ∗.

According to Assertion 1, it can be deduced that E2(T ∗) is a subset of

E(P(T ∗)). Now, we will proceed to illustrate that

∆(T ∗) = 3 (2)

To the contrary, we suppose (2) is not true, i.e., ∆(T ∗) ≥ 4. By Lemma

7, it follows that

|E2(T ∗)| ≥ η4 + 2η5 + ...+ (∆(T ∗)− 3)η∆(T∗) ≥ ∆(T ∗)− 3 ≥ 1.

Assume that there exists y0 ∈ V (T ∗), where d(y0) = ∆(T ∗) is at least

4. Let P := y0, y1, . . . , yt be a path within T ∗,where d(yt) is greater than

or equal to 4. We can make the assumption that the length of this path P

is maximized. In the case where t = 0, we can deduce from Lemmas 5 and

6(i) that there is a tree within Tn,k with a smaller Sombor index compared

to T ∗. However, this contradicts the T ∗, defined above. Hence, it must

concluded that t ≥ 1. According to assertion 1, it follows that when t ≥ 2,

the minimum value among the collection of d(yi) for 1 ≤ i ≤ t − 1 is at
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least 3.

When t = 1, define N∗(yt−1) = N(yt−1). For t ≥ 2, define N∗(yt−1) as

the result of removing yt−2 from the collection N(yt−1) ie., N∗(yt−1) :=

N(yt−1)\{yt−2}. It’s evident that yt belongs to the collection N∗(yt−1).

Assertion 2 : The maximum number of edges connected to any vertex in

T ∗, which belongs to the set N∗(yt−1), is 4, and the degree of the vertex

yt is equal to 4.

Proof for Assertion 2: Suppose there exists a vertex denoted as w in the

neighborhood of yt−1, and let the set N(w) be defined as {w1, w2, ..., wb},
where the degrees of these vertices are arranged as d(w1) ≤ d(w2) ≤ ... ≤
d(wb). Thus we have, |E2(T ∗)| ≥ ∆(T ∗) − 3 ≥ b − 3. Remember that

we have already maximized the length of path P. Consequently, we have

d(wb−1) ≤ 3. When t = 1 (in this case, yt−1 = y0), we observe that

d(yt−1) = ∆(T ∗) ≥ 4, which is greater than d(wb−1). Additionally, when

t ≥ 2, we have d(yt−1) ≥ 3, which is also greater than or equal to d(wb−1).

Hence, we can assume that wb = yt−1. Considering the selection of T ∗

and referring to Lemma 6(i), we can conclude that the degree of vertex w

is at most 4. Notably, as yt belongs to the neighborhood of yt−1 and has

a degree of at least 4, it follows that d(yt) = 4. This concludes the proof

of assertion 2.

Now, let’s focus on the vertex yt−1. However, from assertion 2, every

vertex in N(yt−1) excluding yt−2 (for t ≥ 2) having degrees of maximum

4 within T ∗. Considering Lemma 6(ii) by taking into account our choice

of T ∗, it shall be concluded that d(yt−1) is at most 7. Moreover, based on

assertion 2, it can be inferred that every vertex in N(yt) excluding yt−1

within T ∗ has a degree not exceeding 3. Now, considering d(yt) = 4 and

our choice of T ∗, Lemma 5 indicates that d(yt−1) must be at least six. As

a result, we can determine that 6 ≤ d(yt−1) ≤ 7.

Suppose we have d(yt−1) = a, and the neighborhood of yt−1 is denoted

as N(yt−1) = {z1, z2, ..., za}. Based on assertion 2, it can be inferred that

d(zi) ≤ 4 for 1 ≤ i ≤ a − 1. Given that |E2(T ∗)| ≥ 1, we have the

opportunity to create a new tree T̄ by contracting an edge from E2(T ∗)

within T ∗. Applying Transformation II, we can subsequently form another
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tree denoted as T ′ := T̄yt−1 7→(3,a−3)
belonging to Tn,k, originating from T̄ .

By Combining 6 ≤ a ≤ 7 and Lemma 2, we have

SOα(T ∗)− SOα(T ′)

= 8α +

3∑
i=1

[
(d2(zi) + a2)α − (d2(zi) + 42)α

]
+

a∑
i=4

[
(d2(zi) + a2)α − (d2(zi) + (a− 2)2)α

]
− (a2 + 22)α

≥ 8α + 3
[
(a2 + 42)α − 32α

]
+ (a− 4)

[
(a2 + 42)α − (a2 + 22)α

]
+ (d2(za) + a2)α − (d2(za) + (a− 2)2)α − (a2 + 22)α

> 8α + 3
[
(a2 + 42)α − 32α

]
+ (a− 4)

[
(a2 + 42)α − (a2 + 22)α

]
− (a2 + 22)α

= (a− 1)(a2 + 42)α + 8α − 3 · 32α − (a− 3)(a2 + 22)α

(a) a = 6 (b) a = 7

Figure 8. ϕ(a) from Theorem 2

Let ϕ(a) = (a− 1)(a2 + 42)α + 8α − 3 · 32α − (a− 3)(a2 + 22)α. When

a = 6, we find that ϕ(6) > 0. Similarly, when a = 7, we also have ϕ(7) > 0,

in Figure 8, the last strict inequality is indicated. Consequently, we can

deduce that for any value of 6 ≤ a ≤ 7, the expression SOα(T ∗)−SOα(T ′)

is greater than 0. This contradicts the initial assumption. Therefore, we

can affirm that (2) is valid.
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By referring to (2), we can establish the equations η1 + η2 + η3 = n

and η1 + 2η2 + 3η3 = 2(n − 1). It’s worth noting that η1 is equivalent to

k, where 3 ≤ k ≤
⌊
n+2
3

⌋
. Consequently, η2 can be expressed as n− 2k+2,

which is also greater than or equal to k. Considering both assertion (1) and

assertion (2), to conclude the proof, it is necessary to demonstrate that

every vertex with degree one is connected to 2-vertex. To the contrary,

suppose a vertex with degree one denoted as x in T ∗ that is adjacent to

a vertex with degree 3 exists. As η2 ≥ k and in accordance with the

assertion (1), we can conclude that E2(T ∗) ̸= ϕ. However, based on our

selection of T ∗ and in consideration of Lemma 4, this assumption leads to

a contradiction. Hence, it follows that every vertex with degree one in T ∗

should be connected to a 2-vertex. Through straightforward calculations,

it is evident that :

SOα(T ∗) = (5α + 13α) k + 8α (n+ 2− 3k) + 18α (k − 3)

Hence the theorem.

Given that all trees in T ∗
n,k exhibit a maximum degree of 3, it follows

that T ∗
n,k ⊆ CT n,k ⊆ Tn,k. Consequently, the subsequent result can be

established (the detailed proof is omitted due to the similarity of ideas):

Theorem 3. For any tree T ∈ CT n,k where 3 ≤ k ≤
⌊
n+2
3

⌋
and 0 < α <

1, then

SOα(T ) ≥ (5α + 13α) k + 8α (n+ 2− 3k) + 18α (k − 3)

Equality holds if and only if T ∈ T ∗
n,k.

Observe that Theorem 2 and Theorem 3 generalize the findings of

Maitreyi et al. [25] (see Theorem 3.1 in [25] ) and Liu et al. [19] (see The-

orem 3.5 in [19] ), where the minimum Sombor indices of trees in Tn,k and

chemical trees in CT n,k (for 3 ≤ k ≤
⌊
n+2
3

⌋
) are determined, respectively.
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the Sombor indices of graphs, Contrib. Math. 3 (2021) 59–67.
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