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Abstract

A bond incident degree (BID) index TI(G) of a connected graph
G with edge-weight function I(x, y) is defined as

TI(G) =
∑

uv∈E(G)

I(dG(u), dG(v)),

where I(x, y) > 0 is a symmetric real function with x ≥ 1 and y ≥ 1,
dG(u) is the degree of vertex u in G.

In this paper, we use a unified method to characterize the first
two maximum and the first two minimum trees with respect to (ex-
ponential) BID indices, respectively. As corollaries, we deduce a
number of previously established results, and state a few new. The
results extend some results of Zeng et al. (2021) and Yang et al.
(2023).
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1 Introduction

1.1 Background

Let G be a connected graph with vertex set V (G) and edge set E(G).

Let |V (G)| = n and |E(G)| = m be the number of vertices and edges in

G, respectively. The connected graph is called a tree if n−m+1 = 0. Let

dG(u) be the degree of vertex u in G. The vertex with dG(u) ≥ 3 is called

the branching vertex of G. In this paper, all notations and terminologies

used but not defined can refer to Bondy and Murty [4].

Let I(x, y) > 0 be a symmetric real function with x ≥ 1 and y ≥ 1.

The bond incident degree (BID) index TI(G) of a connected graph G with

edge-weight function I(x, y) was defined as [3, 20]

TI(G) =
∑

uv∈E(G)

I(dG(u), dG(v)). (1)

Let f(x, y) > 0 be a symmetric real function with x ≥ 1 and y ≥ 1.

To improve the discrimination of topological indices, Rada [19] proposed

the concept of exponential bond incident degree (BID) indices eTI(G) of

G with edge-weight function f(x, y), which was defined as

eTI(G) =
∑

uv∈E(G)

ef(du,dv). (2)

For the recent research about the exponential bond incident degree indices,

one can see [5, 9, 13,21,26].

It is well known that in the study of topological indices or other invari-

ants, there is basically not much difference in the research methods of many

different topological indices/invariants. Therefore, it is natural and neces-

sary to use a unified approach to study the topological indices/invariants.

After doing so, we do not need to study the indices/invariants one by one.

This not only saves a lot of time, but also promotes the development of

related research fields. This work is meaningful. Here, we have to men-

tion Professor Xueliang Li’s outstanding contribution in this regard. In

2005, Li et al [16] used a unified method to consider different chemical
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indices. Li et al [15] also used a unified method to determine the extremal

spectral radius of trees. Further, Zheng et al [28] consider the extremal

spectral radius of trees and unicyclic graphs by a unified method. Yao et

al. [23] found a unified method to identify the extremal graphs for a set of

topological or spectral invariants by using the majorization theorem. It is

worth mentioning that there is a review article [14] written by Li et al.

In this paper, we investigate the properties of BID indices. Gao [10]

determined the trees with maximum BID indices. Cruz et al. [7] deter-

mined the trees with maximum and minimum (exponential) BID indices.

Cruz et al. [6] and Gao [11] considered the extremal chemical trees with

respect to BID indices. Cruz et al. [8] determined the extremal unicyclic

graphs with respect to BID indices. Ali et al. [1] determined maximum

values of the some BID indices among tree, unicyclic, bicyclic, tricyclic

and tetracyclic graphs. Zhou et al. [29] considered the BID indices of con-

nected graphs with fixed order and number of pendent vertices. For other

related researches, one can see [2, 17,18,24,25].

Let Tn be the set of trees with n vertices. An induced path with vertices

u1, u2, · · · , uℓ of G is called a pendent path of G, if dG(u2) = dG(u3) =

· · · = dG(uℓ−1) = 2 and dG(uℓ) = 1 (there is no requirement on dG(u1)).

Denote by Sn, Pn the star and path with n vertices, respectively. Denote

by Pn,3 the graph obtained from path Pn−1 by attaching one pendent

vertex to the vertex adjacent to the pendent vertex of Pn−1. Let Sa,n−a−2

be the graph obtained from edge uv by attaching a pendent vertices to

vertex u and attaching n− a − 2 pendent vertices to vertex v. We call it

a double star tree and suppose that 1 ≤ a ≤ ⌊n−2
2 ⌋. Then a+ 2 ≤ n− a.

Let I(x, y) > 0 be a symmetric real function with x ≥ 1 and y ≥ 1.

If I(x, y) is monotonically increasing on x (or y), I(a − x, x) is monoton-

ically decreasing on x (x ∈ [1, ⌊a
2 ⌋]) for a ≥ 2, and I(x + c, y) − I(x, y) is

monotonically increasing on x (or y) for c ≥ 0, then we call I(x, y) has the

property P . For convenience, we say the BID index with property P if its

edge-weight function I(x, y) has the property P .

1.2 Main results

The main results of this paper are as follows.
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Theorem 1.1. Let n ≥ 5 and T ∈ Tn. Then for any BID index has the

property P , we have

TI(T ) ≤ (n− 1)I(1, n− 1),

with equality if and only if T ∼= Sn.

Theorem 1.2. Let n ≥ 5 and T ∈ Tn\{Sn}. Then for any BID index has

the property P , we have

TI(T ) ≤ I(1, 2) + I(2, n− 2) + (n− 3)I(1, n− 2),

with equality if and only if T ∼= S1,n−3.

Theorem 1.3. Let n ≥ 5 and T ∈ Tn. Then for any BID index has the

property P , we have

TI(T ) ≥ 2I(1, 2) + (n− 3)I(2, 2),

with equality if and only if T ∼= Pn.

Theorem 1.4. Let n ≥ 5 and T ∈ Tn\{Pn}. Then for any BID index has

the property P , we have

TI(T ) ≥ I(1, 2) + 2I(1, 3) + I(2, 3) + (n− 5)I(2, 2),

with equality if and only if T ∼= Pn,3.

1.3 Preliminaries

In this section, we give some preliminary lemmas.

Lemma 1.1. Let n ≥ 5 and T ∈ Tn. If T has the maximum BID index

with property P , then the distance between a vertex with maximum degree

and a pendent vertex in T is at most two.

Proof. On the contrary, we suppose that u is a vertex with maximum

degree ∆, i.e. dT (u) = ∆. Let uv ∈ E(T ), vw ∈ E(T ), dT (w) = t ≥
2, dT (v) = s ≥ 2 and u ̸= w. Let NT (u) = {v, u1, u2, · · · , u∆−1} and
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dT (ui) = xi for i = 1, 2, · · · ,∆ − 1. Let NT (w) = {v, w1, w2, · · · , wt−1}
and dT (wj) = yj for j = 1, 2, · · · , t−1. Let T ∗ = T−{wwj |j = 1, 2, · · · , t−
1} + {uwj |j = 1, 2, · · · , t − 1}. Bearing in mind that the BID index has

property P , then we have

TI(T ∗)− TI(T )

=

∆−1∑
i=1

(I(xi,∆+ t− 1)− I(xi,∆)) +

t−1∑
j=1

(I(yj ,∆+ t− 1)− I(yj , t))

+ I(∆ + t− 1, s) + I(1, s)− I(∆, s)− I(t, s)

> (I(∆ + t− 1, s)− I(∆, s))− (I(t, s)− I(1, s))

> 0,

which is a contradiction with the maximality of BID index of T . Thus the

distance between a vertex with maximum degree and a pendent vertex is

at most two.

Lemma 1.2. Let n ≥ 5 and T ∈ Tn, uv ∈ E(T ), dT (u) = ∆, NT (v) =

{u, v1, v2, · · · , vt−1} (2 ≤ t ≤ ∆), where dT (vi) = 1 for i = 1, 2, · · · , t− 1.

Let T ∗ = T −{vvi|i = 1, 2, · · · , t− 1}+ {uvi|i = 1, 2, · · · , t− 1}. Then for

any BID index has the property P , we have TI(T ∗) > TI(T ).

Proof. Note that the BID index has property P . Then

TI(T ∗)− TI(T )

> tI(∆ + t− 1, 1)− I(∆, t)− (t− 1)I(t, 1)

= (t− 1)(I(∆ + t− 1, 1)− I(t, 1)) + (I(∆ + t− 1, 1)− I(∆, t))

> 0.

Lemma 1.3. Let n ≥ 5 and T ∈ Tn. If T has minimum BID index with

property P , then ∆ ≤ 2.

Proof. On the contrary, we suppose that ∆ ≥ 3 in T . Let uv ∈ E(T ),

dT (u) = t ≥ 3, dT (v) = s and P = uu1u2 · · ·uℓ be a pendent path,

where u1 ̸= v and dT (uℓ) = 1. Let NT (u) = {v, u1, z1, z2, · · · , zt−2} and
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dT (zi) = xi for i = 1, 2, · · · , t− 2. Let T ∗ = T −{uzi|i = 1, 2, · · · , t− 2}+
{uℓzi|i = 1, 2, · · · , t− 2}.

Case 1. ℓ = 1.

Bearing in mind that the BID index has property P and t ≥ 3, we have

TI(T ∗)− TI(T )

=

(
t−2∑
i=1

I(xi, t− 1) + I(t− 1, 2) + I(2, s)

)
−

(
t−2∑
i=1

I(xi, t) + I(t, 1) + I(t, s)

)

=

t−2∑
i=1

(I(xi, t− 1)− I(xi, t)) + (I(t− 1, 2)− I(t, 1)) + (I(2, s)− I(t, s))

< 0,

which is a contradiction with the minimality of BID index of T .

Case 2. ℓ ≥ 2.

Notice that the BID index has property P and t ≥ 3. Then

I(t, 1)− I(t, 2) < I(2, 1)− I(2, 2).

Combining with the conclusion of Case 1, we have

TI(T ∗)− TI(T )

=

(
t−2∑
i=1

I(xi, t− 1) + I(t− 1, 2) + I(2, s) + I(2, 2)

)

−

(
t−2∑
i=1

I(xi, t) + I(t, 2) + I(t, s) + I(2, 1)

)

=

t−2∑
i=1

(I(xi, t− 1)− I(xi, t)) + (I(t− 1, 2)− I(t, 1)) + (I(2, s)− I(t, s))

+ (I(t, 1)− I(t, 2))− (I(2, 1)− I(2, 2))

< 0,

which is a contradiction with the minimality of BID index of T .

Thus we have ∆ ≤ 2.



157

2 Proofs of Theorems 1.1-1.4

In this section, we give the proofs of Theorems 1.1-1.4.

Proof of Theorem 1.1. Suppose that u is the vertex with maximum de-

gree in T . If T ≇ Sn, then there exists a vertex v in T such that uv ∈ E(T )

and NT (v) = {u, v1, v2, · · · , vt−1} (2 ≤ t ≤ ∆) where dT (vi) = 1 for i =

1, 2, · · · , t−1. Let T ∗ = T −{vvi|i = 1, 2, · · · , t−1}+{uvi|i = 1, 2, · · · , t−
1}. Then for any BID index has the property P , we have TI(T ∗) > TI(T )

by Lemma 1.2. We repeatedly utilize the above transformations, and even-

tually we will get star Sn. Thus TI(T ) ≤ (n− 1)I(1, n− 1), with equality

if and only if T ∼= Sn. This completes the proof. ■

By the conclusion of Theorem 1.1 and the proof of Lemma 1.1, we have

Lemma 2.1. Let n ≥ 5 and T ∈ Tn. If T has the second-maximum BID

index with property P , the distance between a vertex with maximum degree

and a pendent vertex in T is at most two.

Proof of Theorem 1.2. The transformation of Lemma 1.2 will decrease

the number of branching vertices and BID index with property P . Since

T ∈ Tn\{Sn} (n ≥ 5), then eventually we will get double star Sa,n−a−2

(1 ≤ a ≤ ⌊n−2
2 ⌋) by repeatedly utilizing the transformation of Lemma 1.2.

By the fact that the BID index has property P , a ≤ n− a− 2 and the

symmetry of I(x, y), we have I(n − a, 1) > I(1, a + 1) and I(a, n − a) >

I(a+ 1, n− a− 1), and then

TI(Sa−1,n−a−1)− TI(Sa,n−a−2)

= (a− 1)I(1, a) + I(a, n− a) + (n− a− 1)I(n− a, 1)

− aI(1, a+ 1)− I(a+ 1, n− a− 1)− (n− a− 2)I(n− a− 1, 1)

= (a− 1)(I(1, a)− I(1, a+ 1)) + (n− a− 2)(I(n− a, 1)− I(n− a− 1, 1))

+ (I(n− a, 1)− I(1, a+ 1)) + (I(a, n− a)− I(a+ 1, n− a− 1))

> (n− a− 2)[((I(n− a, 1)− I(n− a− 1, 1))− (I(a+ 1, 1)− I(a, 1))] > 0.

Then max{TI(Sa,n−a−2)} = TI(S1,n−3) for 1 ≤ a ≤ ⌊n−2
2 ⌋. Thus

TI(T ) ≤ I(1, 2) + I(2, n − 2) + (n − 3)I(1, n − 2), with equality if and

only if T ∼= S1,n−3. This completes the proof. ■
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Proof of Theorem 1.3. By Lemma 1.3, if T has minimum BID index

with property P , then ∆ ≤ 2. Thus TI(T ) ≥ 2I(1, 2)+(n−3)I(2, 2), with

equality if and only if T ∼= Pn. This completes the proof. ■

Proof of Theorem 1.4. On the contrary, we suppose that T ≇ Pn and

T ≇ Pn,3 with second minimum BID index. Let P = u1u2 · · ·uℓ be the

longest path in T .

Case 1. dT (u2) = dT (uℓ−1) = 2.

Since T ≇ Pn, there exists at one vertex, say ui, in P such that dT (ui) >

2 for 3 ≤ i ≤ ℓ− 2. Let v be one neighbor of ui outside P .

Subcase 1.1. dT (ui) = 3 for some 3 ≤ i ≤ ℓ− 3.

Subcase 1.1.1. dT (uℓ−2) = 2.

Let T ∗ = T − uiv + uℓ−1v, then T ∗ ≇ Pn. Bearing in mind that the

BID index has property P , dT (ui−1) ≥ 2 and dT (ui+1) ≥ 2, then we have

TI(T )− TI(T ∗)

= I(3, dT (ui−1)) + I(3, dT (ui+1)) + I(3, dT (v)) + I(2, 2) + I(1, 2)

− I(2, dT (ui−1))− I(2, dT (ui+1))− I(3, dT (v))− I(2, 3)− I(1, 3)

= (I(3, dT (ui−1))− I(2, dT (ui−1)))− (I(3, 2)− I(2, 2))

+ (I(3, dT (ui+1))− I(2, dT (ui+1)))− (I(3, 1)− I(2, 1))

> 0,

which is a contradiction.

Subcase 1.1.2. dT (uℓ−2) ≥ 3.

Let T ∗ = T − uiv + uℓv, then T ∗ ≇ Pn. Note that the BID index has

property P , dT (ui−1) ≥ 2, dT (ui+1) ≥ 2 and dT (v) ≥ 1. Then

TI(T )− TI(T ∗) = I(3, dT (ui−1)) + I(3, dT (ui+1)) + I(3, dT (v)) + I(1, 2)

− I(2, dT (ui−1))− I(2, dT (ui+1))− I(2, dT (v))− I(2, 2)

= (I(3, dT (ui−1))− I(2, dT (ui−1))) + (I(3, dT (v))− I(2, dT (v)))

+ (I(3, dT (ui+1))− I(2, dT (ui+1)))− (I(2, 2)− I(2, 1))

> I(3, 1)− I(2, 1)− I(2, 2) + I(1, 2) = I(3, 1)− I(2, 2) > 0,

which is a contradiction.
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Subcase 1.2. dT (ui) = 3 for i = ℓ− 2.

If dT (u3) = 2, we let T ∗ = T − uℓ−2v + u2v, then T ∗ ≇ Pn. Similar to

Subcase 1.1.1, we have TI(T ) > TI(T ∗), which is a contradiction.

If dT (u3) ≥ 3, we let T ∗ = T − uℓ−2v + u1v, then T ∗ ≇ Pn. Similar to

Subcase 1.1.2, we have TI(T ) > TI(T ∗), which is a contradiction.

Subcase 1.3. dT (ui) = k(≥ 4) for some 3 ≤ i ≤ ℓ− 2.

Let NT (ui) = {ui−1, ui+1, v1, v2, · · · , vk−2} and T ∗ = T − uivk−2 +

uℓvk−2, then T ∗ ≇ Pn. Bearing in mind that the BID index has property

P , dT (ui−1) ≥ 2 and k ≥ 4, then we have

TI(T )− TI(T ∗)

=

k−3∑
i=1

I(k, dT (vi)) + I(k, dT (ui−1)) + I(k, dT (ui+1)) + I(k, dT (vk−2))

+ I(1, 2)−
k−3∑
i=1

I(k − 1, dT (vi))− I(k − 1, dT (ui−1))

− I(k − 1, dT (ui+1))− I(2, dT (vk−2))− I(2, 2)

> (I(k, dT (ui−1))− I(k − 1, dT (ui−1)))− (I(2, 2)− I(1, 2))

> (I(k, 2)− I(k − 1, 2))− (I(2, 2)− I(1, 2)) > 0,

which is a contradiction.

Case 2. dT (u2) = 3 or dT (uℓ−1) = 3.

Let P = u1u2 · · ·uℓ be the longest path in T . We suppose that

dT (uℓ−1) = 3. Since T ≇ Pn and T ≇ Pn,3, there exists at one ver-

tex, say ui, in P such that dT (ui) > 2 for 2 ≤ i ≤ ℓ − 2. Let v be the

neighbor of uℓ−1 outside P . As P = u1u2 · · ·uℓ is the longest path in

T , then v must be a pendent vertex. Let T ∗ = T − vuℓ−1 + vuℓ. Then

T ∗ ≇ Pn. By the fact that the BID index has property P , dT (uℓ−2) ≥ 2,

then we have

TI(T )− TI(T ∗)

= I(3, dT (uℓ−2)) + 2I(1, 3)− I(2, dT (uℓ−2))− I(2, 2)− I(1, 2)

> (I(1, 3))− I(2, 2) + (I(1, 3)− I(1, 2)) > 0,
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which is a contradiction.

Case 3. dT (u2) ≥ 4 or dT (uℓ−1) ≥ 4.

Let P = u1u2 · · ·uℓ be the longest path in T . We suppose that

dT (uℓ−1) = k ≥ 4. As P = u1u2 · · ·uℓ is the longest path in T , then

the neighbor of uℓ−1 expect uℓ−2 are pendent vertices. Let NT (uℓ−1) =

{uℓ−2, uℓ, v1, v2, · · · , vk−2}.
Let dT (uℓ−2) = t(≥ 2), and T ∗ = T − {uℓ−1vi|i = 1, 2, · · · , k − 2} +

{uℓvi|i = 1, 2, · · · , k − 2}. Then T ∗ ≇ Pn. Bearing in mind that the BID

index has property P and t ≥ 2 and k ≥ 4, then we have

TI(T )− TI(T ∗)

= I(t, k) + (k − 1)I(k, 1)− I(t, 2)− I(k − 1, 2)− (k − 2)I(k − 1, 1)

= (I(t, k)− I(t, 2)) + (I(k, 1)− I(k − 1, 2)) + (k − 1)[I(k, 1)− I(k − 1, 1)]

> 0,

which is a contradiction.

Thus for T ∈ Tn\{Pn} (n ≥ 5). Then for any BID index has the

property P , we have TI(T ) ≥ I(1, 2) + 2I(1, 3) + I(2, 3) + (n − 5)I(2, 2),

with equality if and only if T ∼= Pn,3. This completes the proof. ■

3 Applications

We can easily verify that the function xα + yα (α ≥ 1) satisfies the

property P . Then by Theorem 1.1 we have the following corollaries.

Corollary 3.1. Let n ≥ 5 and T ∈ Tn. If I(x, y) = xα + yα (α ≥ 1), we

have

TI(T ) ≤ (n− 1)(1 + (n− 1)α),

with equality if and only if T ∼= Sn.

In particular, if α = 1, then we have TI(T ) ≤ n(n− 1) with equality if

and only if T ∼= Sn. This result is also shown in [12].

If α = 2, then we have TI(T ) ≤ (n− 1)(1 + (n− 1)2) with equality if

and only if T ∼= Sn. This result is also shown in [10].
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Corollary 3.2. [27] Let n ≥ 5 and T ∈ Tn. If I(x, y) = ex
α+yα

(α ≥ 1),

we have

TI(T ) ≤ (n− 1)e(1+(n−1)α),

with equality if and only if T ∼= Sn.

By Theorem 1.2 we have the following corollaries.

Corollary 3.3. Let n ≥ 5 and T ∈ Tn\{Sn}. If I(x, y) = xα+yα (α ≥ 1),

we have

TI(T ) ≤ n− 2 + 2α+1 + (n− 2)α+1,

with equality if and only if T ∼= S1,n−3.

Corollary 3.4. Let n ≥ 5 and T ∈ Tn\{Sn}. If I(x, y) = ex
α+yα

(α ≥ 1),

we have

TI(T ) ≤ en−2+2α+1+(n−2)α+1

,

with equality if and only if T ∼= S1,n−3.

In particular, if α = 1, then we have TI(T ) ≤ en+2+(n−2)2 , with equal-

ity if and only if T ∼= CSn,n−2. This result is also shown in [22].

By Theorem 1.3 we have the following corollaries.

Corollary 3.5. Let n ≥ 5 and T ∈ Tn. If I(x, y) = xα + yα (α ≥ 1), we

have

TI(T ) ≥ 2(1 + 2α) + (n− 3)2α+1,

with equality if and only if T ∼= Pn.

Corollary 3.6. [27] Let n ≥ 5 and T ∈ Tn. If I(x, y) = ex
α+yα

(α ≥ 1),

we have

TI(T ) ≥ e2(1+2α)+(n−3)2α+1

,

with equality if and only if T ∼= Pn.

By Theorem 1.4 we have the following corollaries.

Corollary 3.7. Let n ≥ 5 and T ∈ Tn\{Pn}. If I(x, y) = xα+yα (α ≥ 1),

we have

TI(T ) ≥ 3 + (2n− 9)2α + 3α+1,
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with equality if and only if T ∼= Pn,3.

Corollary 3.8. Let n ≥ 5 and T ∈ Tn\{Pn}. If I(x, y) = ex
α+yα

(α ≥ 1),

we have

TI(T ) ≥ e3+(2n−9)2α+3α+1

,

with equality if and only if T ∼= Pn,3.

In particular, if α = 1, then we have TI(T ) ≥ e4n−6, with equality if

and only if T ∼= Pn,3. This result is also shown in [22].
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[20] D. Vukičević, J. Durdević, Bond additive modeling 10. Upper and
lower bounds of bond incident degree indices of catacondensed fluo-
ranthenes, Chem. Phys. Lett. 515 (2011) 186–189.

https://doi.org/10.1007/s10910-023-01542-z
https://doi.org/10.1007/s10910-023-01542-z


164

[21] C. Xu, B. Horoldagva, L. Buyantogtokh, The exponential second Za-
greb index of (n,m)-graphs, Mediterr. J. Math. 20 (2023) 181.

[22] L. Yang, Y. Zhu, The second-minimum and second-maximum values
of exponential Zagreb indices among trees, Discr. Math. Algorithms
Appl. 15 (2023) 2250064.

[23] Y. Yao, M. Liu, F. Belardo, C. Yang, Unified extremal results of topo-
logical indices and spectral invariants of graphs, Discr. Appl. Math.
271 (2019) 218–232.

[24] Y. Yao, M. Liu, K. C. Das, Y. Ye, Some extremal results for vertex-
degree-based invariants, MATCH Commun. Math. Comput. Chem.
81 (2019) 325–344.

[25] Y. Yao, M. Liu, X. Gu, Unified extremal results for vertex-degree-
based graph invariants with given diameter, MATCH Commun. Math.
Comput. Chem. 82 (2019) 699–714.

[26] M. Zeng, H. Deng, An open problem on the exponential of the second
Zagreb index, MATCH Commun. Math. Comput. Chem. 85 (2021)
367–373.

[27] M. Zeng, H. Deng, Tree with the extremal value of exponential the
forgotten index, EasyChair, preprint (2021).

[28] R. Zheng, X. Guan, X. Jin, Extremal trees and unicyclic graphs with
respect to spectral radius of weighted adjacency matrices with prop-
erty P ∗, J. Appl. Math. Compt. 69 (2023) 2573–2594.

[29] W. Zhou, S. Pang, M. Liu, A. Ali, On bond incident degree indices
of connected graphs with fixed order and number of pendent vertices,
MATCH Commun. Math. Comput. Chem. 88 (2022) 625–642.


	Introduction
	Background
	Main results
	Preliminaries

	Proofs of Theorems 1.1-1.4
	Applications

