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Abstract

For a square matrixM , its energy E(M) is the sum of its singular
values. Let H be a k-uniform hypergraph, and let B(H) be the
incidence matrix of H. The incidence energy BE(H) of H is the
energy of B(H).

Let T n,d be the set of k-uniform hypertrees of order n and size
r with diameter 3 ≤ d ≤ r− 1. In this article, the k-uniform hyper-
trees with minimum incidence energy over T n,d are characterized.
In addition, we have obtained the incidence energy of a hyperstar,
and determined which hyperstar has the maximum and minimum
incidence energy among all hyperstars with n vertices.

1 Introduction

In spectral graph theory, the structure of a graph is studied through

the eigenvalues/eigenvectors of matrices associated with them. Many re-

searchers around the world, motivated by this theory, have defined some

matrices associated with hypergraph, aiming to develop a spectral hy-

pergraph theory. In 2012, Cooper and Dutle [5] proposed the study of

hypergraphs by means of the adjacency tensor. It is known, however, that

to obtain eigenvalues of tensors has a high computational and theoretical
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cost. Perhaps for this reason, recently, some authors have renewed the in-

terest to study the matrix representations of a hypergraph, as for example

in [1, 3, 6, 9, 11,12].

Let H = (V (H) , E (H)) be a hypergraph with vertex set V (H) and

hyperedge set E(H), where E(H) ⊆ 2V (H) and 2V (H) stands for the power

set of V (H). A hypergraph H is k-uniform if |e| = k for every e ∈ E(H).

Especially, 2-uniform hypergraph is the ordinary graph. The distance be-

tween two vertices in a connected hypergraph is the length of the shortest

walk connecting these two vertices. The diameter of a connected hyper-

graph is the largest distance between two of its vertices. A connected

and acyclic hypergraph is called a hypertree. For a k-uniform hyper-

tree H = (V (H) , E (H)) of order n = |V (H)| and size t = |E(H)|, if

there exists a vertex v satisfying v ∈ e for any e ∈ E(H), H is called

a hyperstar with the center v, denoted it by Sn,t. For convenience, let

[n] = {1, 2, . . . , n}. Let E(v) = {e |v ∈ e ∈ E(H)} , d(v) = |E(v)| is the de-
gree of v. A vertices and edges alternating sequence P = v0e1v1e2 · · · epvp
is a path if vi−1, vi ∈ ei, and all vi and ei are distinct for i ∈ [p]. If d(vi) = 2

for i ∈ [p − 1], and the other vertices in V (P) are 1-degree vertices, then

P is a loose path. An edge e is called a pendent edge if e contains exactly

k − 1 1-degree vertices. A path P = v0e1v1e2 · · · epvp is called pendent

path if d(v0) ≥ 3, d(vi) = 2 for i ∈ [p− 1] and the others vertices in V (P)

are 1-degree vertices. For a hypergraph H, the subdivision graph S(H) is

obtained by adding a new vertex ve and making it adjacent to all vertices

of e for each edge of H. Let T n,d be the set of k-uniform hypertrees of

order n and size r with diameter 2 ≤ d ≤ r. Obviously, T ∈ T n,2 is the hy-

perstar, and T ∈ T n,r is a loose path. In the following we let 3 ≤ d ≤ r−
1. Let T (n, d;n1

1, . . . , n
k−1
1 , n1

2, . . . , n
k−1
2 , . . . , n1

d−2, . . . , n
k−1
d−2, n

1
d−1) ∈ T n,d

be a hypercaterpillar obtained from a path v10e1v
1
1e2 · · · edv1d by adding

nj
i (nj

i ≥ 0) pendent edges to vji , where ei =
{
v1i−1, v

2
i−1, . . . v

k−1
i−1 , v

1
i

}
(2 ≤ i ≤ d− 1).

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G). The adjacency matrix of G, denoted by A(G), is an n× n ma-

trix (aij) in which aij = 1 if vivj ∈ E(G), and aij = 0 otherwise. The

characteristic polynomial of A(G), denoted by ϕA(G,λ) = |λI −A(G)|,
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is called the characteristic polynomial of G. The n roots of the equation

ϕA(G,λ) = 0, denoted by λ1(G), λ2(G), . . . , λn(G), are called the eigen-

values of G. The energy E(G) of G is defined [7] as

E(G) =

n∑
i=1

|λi(G)|.

If G is a bipartite graph, then its characteristic polynomial is

ϕ(G) =

[n2 ]∑
k=0

(−1)
k
b2kx

n−2k,

where b0 = 1 and b2k ≥ 0. If G = T is a tree, then b2k = m(T, k) for all

k = 1, . . . ,
[
n
2

]
, where m(T, k) equals to the number of k-matchings of T

(see [8]). For two bipartite graphs G1 and G2, we define G1 ⪯ G2 if and

only if b2k(G1) ≤ b2k(G2) for all k = 1, . . . ,
[
n
2

]
. Moreover, if there exists

a k such that b2k(G1) < b2k(G2), we write G1 ≺ G2. The following result

was proven (see [8]).

G1 ⪯ G2 ⇒ E(G1) ≤ E(G2),

G1 ≺ G2 ⇒ E(G1) < E(G2). (1)

In 2007, Nikiforov ( [10]) extended the concept of graph energy to

matrices. For a square matrix M , its energy E(M) is defined as the sum

of its singular values. Let B(H) = (b(v, e))|V (H)|×|E(H)| be the incidence

matrix of a k-uniform hypergraph H, where b(v, e) = 1 if v ∈ e, and

b(v, e) = 0 otherwise. Following the definition of Nikiforov, the authors

in [4] defined the energy of B(H) as the incidence energy BE(H) of H,

and proposed the relation

BE(H) =
1

2
E(As), (2)

where As is the adjacent matrix of S(H).

On this basis, the authors of [12] obtained the lower and upper bounds

on BE(H) for k-uniform hypertrees and characterized their corresponding
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extremal hypergraphs. Motivated by the above research, in this paper, we

characterized the k-uniform hypertrees with the minimum incidence energy

in T n,d. In addition, we have studied a particular class of hypergraphs and

determined which hyperstar has maximum and minimum incidence energy

among this class.

2 The minimum incidence energy of k-uni-

form hypertrees with give diameter

Lemma 1 ( [4]). If u and v are two adjacent vertices of a graph G and

e = uv, then for k ≥ 1,

(i) m(G, k) = m(G− e, k) +m(G− u− v, k − 1);

(ii) If v is a pendent vertex, then m(G, k) = m(G−v, k)+m(G−u−v, k−1).

Let G be a k-uniform hypertree and e0 = {v1, v2, . . . , vk} be an edge

which is not belonging to G. Let G1 be the hypertree obtained by identi-

fying vk of e0 and a vertex w of G, denote the new vertex vk. Let H1 be

a hypertree obtained from G1 by attaching some pendent edges at some

vertices of e0. Let e11, . . . , e1t be the edges attaching at v1, and let H2 be

the hypertree obtained from H1 by moving the pendent edges attaching

at v1 to vk, as shown in Figure 1. Let H3 be the hypertree obtained from

H1 by deleting the vertices in V (S(m−1)t+1,t)−v1 and adding a loose path

of length t at v1, as shown in Figure 2.

G vk

e0

v2 v1

e11 e1t

G vk

e0

v2 v1

e11 e1t

H1 H2

Figure 1. The hypergraphs H1 and H2.

Lemma 2 ( [12]). Let H1 and H2 be the hypertrees as shown in Figure

2.1. Then BE(H1) > BE(H2).
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G vk

e0

v2 v1

e11 e1t

G vk

e0

v2 v1

e11

e12e13e1t

H1 H3

Figure 2. The hypergraphs H1 and H3.

Lemma 3 ( [12]). Let H1 and H3 be the hypertrees as shown in Figure

2.2. Then BE(H3) > BE(H1).

Let G1 and G2 be two k-uniform hypertrees and P = v0e1v1e2v2 be a

path of length 2, which is not belonging to G1 and G2, ei =
{
vi−1, v

2
i−1, . . . ,

vk−1
i−1 , vi

}
. Let G3 be the hypertree obtained by identifying v0 of e1 and

a vertex w of G1, denote the new vertex v0, and identifying v2 of e2 and

a vertex u of G2, denote the new vertex v2. Let H4 be a hypertree ob-

tained from G3 by attaching some pendent edges at some vertices of e1.

Let e11, . . . , e1t be the edges attaching at v20 and e21, . . . , e2s be the edges

attaching at v1. Let H5 be the hypertree obtained from H4 by moving the

pendent edges attaching at v20 to v1, depicted in Figure 3.

G1 v0
v20

e11 e1t

v1

e21 e2s

v2
G2 G1 v0

v20

v1

e21 e2s

e11 e1t

v2
G2

H4 H5

Figure 3. The hypergraphs H4 and H5.

Lemma 4. Let H4 and H5 be the hypertrees as shown in Figure 2.3.

Then BE(H4) > BE(H5).

Proof. By (1.2), BE(H4) =
1
2E (S(H4)) and BE(H5) =

1
2E (S(H5)). Now

we only compare S(H4) with S(H5), where S(H4) and S(H5) are shown

in Figure 4.
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S(G1) v0 e1

v20

v20

e11 e1t

v1

e21

e21

e11

e2s

e2s

e1t

e2 v2
S(G2)

S(G1) v0 e1 v1 e2 v2
S(G2)

S(H4)

S(H5)

Figure 4. The graphs S(H4) and S(H5).

It is obvious to see that

S(H4)−v20 −e11 ∼= S(H4)−v20e11−v20 −e12 ∼= · · · ∼= S(H4)−
t−1⋃
i=1

v20e1i−v20 −e1t,

S(H4)−
t⋃

i=1

v20e1i − v1 − e21 ∼= S(H4)−
t⋃

i=1

v20e1i − v1e21 − v1 − e22

∼= · · · ∼= S(H4)−
t⋃

i=1

v20e1i −
s−1⋃
j=1

v1e1j − v1 − e2s,

S(H5)− v1 − e11 ∼= S(H5)− v1e11 − v1 − e12

∼= · · · ∼= S(H5)−
t⋃

i=1

v1e1i −
s−1⋃
j=1

v1e2j − v1 − e2s,

S(H4)−
t⋃

i=1

v20e1i −
s⋃

j=1

v1e1j ∼= S(H5)−
t⋃

i=1

v1e1i −
s⋃

j=1

v1e2i,

S(H4)−
t⋃

i=1

v20e1i − v1 − e21 ∼= S(H5)− v1 − e11.
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Further by a direct calculation, for ℓ ≥ 1, we have

m (S(H4), ℓ) = m
(
S(H4)− v20e11, ℓ

)
+m

(
S(H4)− v20 − e11, ℓ− 1

)
= m

(
S(H4)− v20e11 − v20e12, ℓ

)
+m

(
S(H4)− v20e11 − v20 − e12, ℓ− 1

)
+m

(
S(H4)− v20 − e11, ℓ− 1

)
= · · ·

= m

(
S(H4)−

t⋃
i=1

v20e1i, ℓ

)
+ tm

(
S(H4)− v20 − e11, ℓ− 1

)
,

and

m

(
S(H4)−

t⋃
i=1

v20e1i, ℓ

)

=m

(
S(H4)−

t⋃
i=1

v20e1i − v1e21, ℓ

)

+m

(
S(H4)−

t⋃
i=1

v20e1i − v1 − e21, ℓ− 1

)

=m

(
S(H4)−

t⋃
i=1

v20e1i − v1e21 − v1e22, ℓ

)

+m

(
S(H4)−

t⋃
i=1

v20e1i − v1e11−v1 − e22, ℓ− 1

)

+m

(
S(H4)−

t⋃
i=1

v20e1i − v1 − e21, ℓ− 1

)
= · · ·

=m

S(H4)−
t⋃

i=1

v20e1i −
s⋃

j=1

v1e2j , ℓ


+ sm

(
S(H4)−

t⋃
i=1

v20e1i − v1 − e21, ℓ− 1

)
.
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Then

m (S(H4), ℓ) =m

S(H4)−
t⋃

i=1

v20e1i −
s⋃

j=1

v1e1j , ℓ


+ sm

(
S(H4)−

t⋃
i=1

v20e1i − v1 − e21, ℓ− 1

)
+ tm

(
S(H4)− v20 − e11, ℓ− 1

)
,

and

m (S(H5), ℓ) =m (S(H5)− v1e11, ℓ) +m (S(H5)− v1 − e11, ℓ− 1)

=m (S(H5)− v1e11 − v1e12, ℓ)

+m (S(H5)− v1e11 − v1 − e12, ℓ− 1)

+m (S(H5)− v1 − e11, ℓ− 1)

= · · ·

=m

S(H5)−
t⋃

i=1

v1e1i −
s⋃

j=1

v1e2i, ℓ


+ (s+ t)m (S(H5)− v1 − e11, ℓ− 1) .

If ℓ = 1, then m (S(H4), ℓ)−m (S(H5), ℓ) = 0. If ℓ ≥ 2, since S(H5)−
v1 − e11 ⊂ S(H4)− v20 − e11, then

m (S(H4), ℓ)−m (S(H5), ℓ)

=t
(
m
(
S(H4)− v20 − e11, ℓ− 1

)
−m (S(H5)− v1 − e11, ℓ− 1)

)
> 0.

Thus BE(H4) > BE(H5). The lemma holds.

Let G be a k-uniform hypertree with vertex set V (G) and hyperedge

set E(G), and let P = v0e1v1e2 · · · e2p+1v2p+2 be a path of length 2p + 1

(p ≥ 1), which is not belonging to G, and ei =
{
vi−1, v

2
i−1, . . . v

k−1
i−1 , vi

}
.

Let G1 be the hypertree obtained by identifying v0 of e1 and a vertex w

of G, denote the new vertex v0. Let H6 be a hypertree obtained from

G1 by attaching ni ≥ 0 pendent edges at vi (1 ≤ i ≤ p+ 1). There exists
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k ∈ {1, 2, . . . , p} such that nk ̸= 0 if E (G) = ∅. Let e11, . . . , e1s (s ≥ 0) be

the edges attaching at vp, and let e21, . . . , e2t (t ≥ 1) be the edges attaching

at vp+1. Let H7 be the hypertree obtained from H6 by moving the pendent

edges attaching at vp+1 to vp, depicted in Figure 5.

G v0 v1 vp

e11 e1s

vp+1

e21 e2t

v2p+1

H6

G v0 v1 vp

e11 e1s

e21 e2t

vp+1 v2p+1

H7

Figure 5. The hypergraphs H6 and H7.

Lemma 5. Let H6 and H7 be the hypertrees as shown in Figure 2.5.

Then BE(H6) > BE(H7).

Proof. By (1.2), BE(H6) =
1
2E (S(H6)) and BE(H7) =

1
2E (S(H7)). Now

we only compare S(H6) with S(H7), where S(H6) and S(H7) are shown

in Figure 6.

S(G) v0
v1 vp

e11 e1s

vp+1

e21 e2t

v2p+1

S(H6)

S(G) v0
v1 vp

e11 e1s

e21 e2t vp+1 v2p+1

S(H7)

Figure 6. The graphs S(H6) and S(H7).
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It is obvious to see that

S(H6)− vp+1 − e21 ∼= S(H6)− vp+1e21 − vp+1 − e22

∼= · · · ∼= S(H6)−
t−1⋃
i=1

vp+1e2i − vp+1 − e2t,

S(H6)−
t⋃

i=1

vp+1e2i − vp − e11 ∼= S(H6)−
t⋃

i=1

vp+1e2i − vpe11 − vp − e22

∼= · · · ∼= S(H6)−
t⋃

i=1

vp+1e2i −
s−1⋃
j=1

vpe1j − vp − e1s,

S(H7)− vp − e11 ∼= S(H7)− vpe11 − vp − e12

∼= · · · ∼= S(H7)−
s⋃

i=1

vpe1i −
t−1⋃
j=1

vpe2j − vp − e2t,

S(H6)−
t⋃

i=1

vp+1e2i −
s⋃

j=1

vpe1j ∼= S(H7)−
t⋃

i=1

vpe2i −
s⋃

j=1

vpe1j ,

S(H6)−
t⋃

i=1

vp+1e2i − vp − e11 ∼= S(H7)− vp − e11.

By a direct calculation, for ℓ ≥ 1, we have

m (S(H6), ℓ) = m (S(H6)− vp+1e21, ℓ) +m (S(H6)− vp+1 − e21, ℓ− 1)

= m (S(H6)− vp+1e21 − vp+1e22, ℓ)

+m (S(H6)− vp+1e21 − vp+1 − e22, ℓ− 1)

+m (S(H6)− vp+1 − e21, ℓ− 1)

= · · ·

= m

(
S(H6)−

t⋃
i=1

vp+1e2i, ℓ

)
+ tm (S(H6)− vp+1 − e21, ℓ− 1) ,
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and

m

(
S(H6)−

t⋃
i=1

vp+1e2i, ℓ

)

=m

(
S(H6)−

t⋃
i=1

vp+1e2i − vpe11, ℓ

)

+m

(
S(H6)−

t⋃
i=1

vp+1e2i − vp − e11, ℓ− 1

)

=m

(
S(H6)−

t⋃
i=1

vp+1e2i − vpe11 − vpe12, ℓ

)

+m

(
S(H6)−

t⋃
i=1

vp+1e2i − vpe11−vp − e12, ℓ− 1

)

+m

(
S(H6)−

t⋃
i=1

vp+1e2i − vp − e11, ℓ− 1

)
= · · ·

=m

S(H6)−
t⋃

i=1

vp+1e2i −
s⋃

j=1

vpe1j , ℓ


+ sm

(
S(H6)−

t⋃
i=1

vp+1e2i − vp − e11, ℓ− 1

)
.

Then

m (S(H6), ℓ) = m

S(H6)−
t⋃

i=1

vp+1e2i −
s⋃

j=1

vpe1j , ℓ


+ sm

(
S(H6)−

t⋃
i=1

vp+1e2i − vp − e11, ℓ− 1

)
+ tm (S(H6)− vp+1 − e21, ℓ− 1) ,

and

m (S(H7), ℓ) = m (S(H7)− vpe11, ℓ) +m (S(H7)− vp − e11, ℓ− 1)
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= m (S(H7)− vpe11 − vpe12, ℓ)

+m (S(H7)− vpe11 − vp − e12, ℓ− 1)

+m (S(H7)− vp − e11, ℓ− 1)

= · · ·

= m

S(H7)−
t⋃

i=1

vpe2i −
s⋃

j=1

vpe1j , ℓ


+ (s+ t)m (S(H7)− vp − e11, ℓ− 1) .

So

m (S(H6), ℓ)−m (S(H7), ℓ)

=t (m (S(H6)− vp+1 − e21, ℓ− 1)−m (S(H7)− vp − e11, ℓ− 1)) .

We consider two cases.

Case 1. E (G) ̸= ∅.
Let A be the graph as shown in Figure 7. By repeatedly utilizing the

Lemma 1 (i), it can be concluded that

S(G) v0

︸︷︷︸k − 2

Figure 7. The graph A.

m (S(H6)− vp+1 − e21, ℓ− 1)−m (S(H7)− vp − e11, ℓ− 1)

≥m

(
S(G) ∪

(
p+1∑
i=1

ni

)
Sk ∪ Sk−1, ℓ− 2p

)

−m

(
A ∪

((
p+1∑
i=1

ni

)
− 1

)
Sk ∪ Sk−1, ℓ− 2p

)
.

Note that m (S(H6), ℓ) − m (S(H7), ℓ) ≥ 0 for any ℓ, and there exists
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ℓ = 2p + 2 such that m (S(H6), ℓ) − m (S(H7), ℓ) > 0. Then BE(H6) >

BE(H7).

Case 2. E (G) = ∅ and there exists k ∈ {1, 2, . . . , p} such that nk ̸= 0.

By repeatedly utilizing the Lemma 1(i), it can be concluded that

m (S(H6)− vp+1 − e21, ℓ− 1)−m (S(H7)− vp − e11, ℓ− 1)

>m

((
p+1∑
i=1

ni

)
Sk ∪ Sk−1, ℓ− 2p

)
−m

((
p+1∑
i=1

ni

)
Sk ∪ Sk−1, ℓ− 2p

)
=0.

Note that m (S(H6), ℓ)−m (S(H7), ℓ) ≥ 0 for any ℓ, and when ℓ = 2p+1,

m (S(H6), ℓ) −m (S(H7), ℓ) > 0. Then BE(H6) > BE(H7). The lemma

holds.

Theorem 1. Let T ∈ T n,d with 3 ≤ d ≤ r − 1.

(i) If d is even, then

BE(T (n, d; 0, . . . , 0︸ ︷︷ ︸
(d−2)(k−1)

2

, r − d, 0, . . . , 0︸ ︷︷ ︸
(d−2)(k−1)

2

)) ≤ BE(T ),

with the equation holds if and only if T ∼= T (n, d; 0, . . . , 0︸ ︷︷ ︸
(d−2)(k−1)

2

, r−d, 0, . . . , 0︸ ︷︷ ︸
(d−2)(k−1)

2

).

(ii) If d is odd, then

BE(T (n, d; 0, . . . , 0︸ ︷︷ ︸
(d−3)(k−1)

2

, r − d, 0, . . . , 0︸ ︷︷ ︸
(d−1)(k−1)

2

)) ≤ BE(T ),

with the equation holds if and only if T ∼= T (n, d; 0, . . . , 0︸ ︷︷ ︸
(d−3)(k−1)

2

, r−d, 0, . . . , 0︸ ︷︷ ︸
(d−1)(k−1)

2

).

Proof. Let T ∈ T n,d with 3 ≤ d ≤ r − 1. If T is not a hypercaterpillar,

then by Lemmas 2 and 3, there is a hypercaterpillar T ′ ∈ T n,d such that

BE(T ′) > BE(T ). By Lemmas 4 and 5, the theorem holds.
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3 The incidence energy of a hyperstar

In this section, we will obtain the incidence energy of a hyperstar, and

determine which hyperstar has the maximum and minimum incidence en-

ergy among all hyperstars with n vertices. The definition of a power graph

was introduced in [3] as follows:

Definition 1. Let G = (V,E) be a graph and let k ≥ 2 be an integer.

We define the power graph Gk as the k-graph with the following vertex set

and edge set

V
(
Gk
)
= V (G) ∪

( ⋃
e∈E(G)

ςe

)
and E

(
Gk
)
= {e ∪ ςe : e ∈ E(G)},

where ςe =
{
ve1, . . . , v

e
k−2

}
for each edge e ∈ E(G).

We define a hyperstar as a power graph of a star. A generalization of

the join operation was introduced in [2] as follows:

Definition 2. Consider a family of k-graphs, F = {G1, . . . , Gk}, where
each graph Gi has order ni for i = 1, . . . , k, and H is a graph with V (H) =

{v1, . . . , vk}. Each vertex vi ∈ V (H) is assigned to the graph Gi ∈ F . The

H-join of G1, . . . , Gk is the graph G = H[G1, . . . , Gk] such that V (G) =
k⋃

i=1

V (Gi) and edge set:

E (G) =

(
k⋃

i=1

E (Gi)

)
∪

 ⋃
uw∈E(H)

{ij : i ∈ V (Gu), j ∈ V (Gw)}

 .

The spectrum of the H-join of regular graphs was characterized in

[2]. Let H be a graph with k vertices without isolated vertices. Let

G1, . . . , Gk be a sequence of k disjoint arbitrary pj-regular graphs of orders

nj , j = 1, . . . , k. Let G = H[G1, . . . , Gk]. For j = 1, . . . , k, we use Aj to

denote the adjacency matrices of Gj . Let A(H) = (δij) be the adjacency
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matrix of H. Define

Ĝ =


p1 δ12

√
n1n2 · · · δ1k

√
n1nk

δ12
√
n1n2 p2 · · · δ2k

√
n2nk

...
...

. . .
...

δ1k
√
n1nk · · · δk−1,k

√
nk−1nk pk

 . (3)

Theorem 2 ( [2]). For j = 1, . . . , k, let Gj be a pj-regular graph of order

nj with spectrum σGi
. If G = H[G1, . . . , Gk], and Ĝ is as defined in (3.1),

then

σ(G) = σĜ ∪

 k⋃
j=1

(
σGj\ {pj}

) .

Theorem 3. Let Sn be the star on n vertices. If k ≥ 2 is an integer,

then

BE
(
(Sn)

k
)
=

√
k + n− 2 + (n− 2)

√
k − 1.

Proof. By (1.2), BE
(
(Sn)

k
)
= 1

2E
(
S
(
(Sn)

k
))

. Now we only calculate

E
(
S
(
(Sn)

k
))

. Let H0 be the tree formed by attaching a vertex to all

pendent vertex of the star Sn. The adjacency matrix of AH0
, takes the

form

AH0
=

(
An Bn×(n−1)

Bn×(n−1)
T O

)
,

where

An =



0 1 1 · · · 1 1

1 0 0 · · · 0 0

1 0 0 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · 0 0

1 0 0 · · · 0 0


, Bn×(n−1) =



0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1


.

Useing the above notation,

S
(
(Sn)

k
)
= H0

K1, . . . ,K1︸ ︷︷ ︸
n

, K̄k−1, . . . , K̄k−1︸ ︷︷ ︸
n−1

 . (4)
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By the identification in (3.2), the cardinality is

ni =

{
1, if i = 1, . . . , n,

k − 1, if i = n+ 1, . . . , 2n− 1,

and the regularity pi is equal to zero for 1 ≤ i ≤ 2n − 1. Hence by applying

Theorem 2 to S
(
(Sn)

k
)
, we obtain

σA(S((Sn)k)) =
{
0[(n−1)(k−2)]

}
∪ σC2n−1 ,

where C2n−1 =

(
An

√
k − 1Bn×(n−1)√

k − 1Bn×(n−1)
T O

)
.

Further by a direct calculation, we have

σC2n−1 =

{
0,
√
k + n− 2,−

√
k + n− 2,

√
k − 1

[n−2]
,
(
−
√
k − 1

)[n−2]
}
.

Thus BE
(
(Sn)

k
)
= 1

2
E
(
S
(
(Sn)

k
))

=
√
k + n− 2 + (n− 2)

√
k − 1.

Corollary. If S is a hyperstar with t ≥ 2 vertices, then

√
t = BE

(
(S2)

t
)
≤ BE (S) ≤ BE (St) = t+

√
t− 2.

Proof. Let S be a hyperstar with t ≥ 2 vertices. Then there are 2 ≤
n ≤ t and 2 ≤ k ≤ t such that S = (Sn)

k
. In this way, we have that

t = (n− 1)(k − 1) + 1, and so n = t−1
k−1 + 1. Therefore

BE (S) =
√

t− 1

k − 1
+ k − 1 +

t− 1√
k − 1

−
√
k − 1.

Consider the function f : [2, t] → R, defined by

f(x) =

√
t− 1

x− 1
+ x− 1 +

t− 1√
x− 1

−
√
x− 1.

Computing its derivatives, we obtain



149

f ′(x) = −
(x− 1)(x+ t− 2)

√
x2−2x+t

x−1 + (−x2 + 2x+ t− 2)
√
x− 1

2(x− 1)
5
2

√
x2−2x+t

x−1

≤ (t− 3)
√
x− 1

2(x− 1)
5
2

√
x2−2x+t

x−1

.

If t > 4, then f ′(x) < 0 for all x ∈ [2, t], and f(x) is an increasing function.

If t = 3 or t = 2, then S = (S2)
t
. Hence the result follows.
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