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Abstract

The classical results by McClelland (1971) and Koolen & Molu-
ton (2001) provide upper bounds for graph energy in terms of num-
ber of vertices (n) and number of edges (m). Recently, in MATCH
Commun. Math. Comput. Chem. 79 (2018) and 91 (2024), new
such (n,m)-type bounds were communicated. In this paper, we
analyze these bounds and find that one is identical to the Koolen–
Moulton bound, whereas the other is inferior to it.

1 Introduction

Throughout this paper G denotes a simple connected graph possessing n

vertices and m edges. The energy of G, denoted by E(G), is the sum of

absolute values of the eigenvalues of the adjacency matrix of G. Details

and additional references on the mathematical theory of graph energy can

be found in the book [8], whereas on its chemical origin and applications

in the book [5] and the survey [4].

One of the earliest results on graph energy is the (n,m)-type upper

bound

E(G) ≤
√
2mn
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discovered in 1971 by McClelland [9]. Thirty years later, Koolen and

Moulton succeeded to find a better such bound [6], namely

E(G) ≤ 2m

n
+

√√√√(n− 1)

[
2m−

(
2m

n

)2
]
. (1)

For bipartite graphs, the above bound can be additionally sharpened as [7]:

E(G) ≤ 4m

n
+

√√√√(n− 2)

[
2m− 2

(
2m

n

)2
]
. (2)

Until quite recently, these were the only known (n,m)-type upper bounds

for graph energy [8]. Few years ago, in the paper [1], a new such bound

was reported, namely:

E(G) ≤ 2 +
√
(n− 1)(2m− 4) (3)

which (according to [1]) would hold only for connected unicyclic graphs.

Eventually, the same group of authors [2], extended Eq. (3) to all con-

nected graphs, except trees, as:

E(G) ≤ 2k +
√

(n− 1)(2n+ 2k − 6) (4)

where k = m − n + 1 is the cyclomatic number of G (= number of inde-

pendent cycles); k = 1 for unicyclic graphs, k = 2 for bicyclic graphs, etc.

In [2], it was assumed that k ≥ 1, i.e., trees (k = 0) were excluded.

In what follows, we examine the inequalities (3) and (4) and establish

a number of their weak points.

2 Unicyclic graphs, k = 1

For connected unicyclic graphs, m = n. If we take this condition into

account, then Eq. (1), after a minute calculation, reduces to Eq. (3).

Thus we arrive at:
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Observation 1. Eq. (3) is identical to the Koolen–Moulton bound, as

applied to unicyclic graphs.

It is really surprising that the authors of [1] did not notice the above

fact. Not only that they quote the paper [6], but (correctly) state the

Koolen–Moulton bound (i.e., Eq. (1)) on the bottom of page 288. (On the

next page, they also state Eq. (2), incorrectly.)

For the authors’ comfort: The bound (3), when applied to connected

unicyclic graphs, is correct.

3 Polycyclic graphs, k ≥ 2

If k ≥ 2, then it is easy to show that the right-hand side of (4) is greater

than the right-hand side of (1). Note first that

2m

n
= 2 + 2

k − 1

n
.

For k = 2, 3, 4, 5, 6, 7, the value of n is at least 4,4,5,5,5,6, respectively.

Then by direct checking we get

2 + 2
k − 1

n
< 2k . (5)

For larger values of n, the validity of (5) is evident.

Next,

2m− 2

(
2m

n

)2

= 2n+ 2k − 2−
(
2 + 2

k − 1

n

)2

= 2n+ 2k − 6− 8
k − 1

n
− 4

(
k − 1

n

)2

and therefore

2m− 2

(
2m

n

)2

< 2n+ 2k − 6 . (6)
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Bearing in mind the inequalities (5) and (6), we conclude that

2m

n
+

√√√√(n− 1)

[
2m−

(
2m

n

)2
]
< 2k +

√
(n− 1)(2n+ 2k − 6)

holds for all values of m and n that graphs with k ≥ 2 may have. This

leads to:

Observation 2. For all connected polycyclic graphs (k ≥ 2), the upper

bound Eq. (4) for graph energy is weaker than the Koolen–Moulton bound,

Eq. (1).

In other words, the (n,m)-type upper bound Eq. (4), reported in [2],

is valueless.

Although the expression in Eq. (3) was claimed to hold only for k = 1,

we could try to apply it also for larger values of k. By numerical testing

we arrived at:

Observation 3. For all connected polycyclic graphs (k ≥ 2), the upper

bound Eq. (3) for graph energy is weaker than the Koolen–Moulton bound,

Eq. (1).

4 Trees, k = 0

In both papers [1] and [2], it was indicated that the inequalities (3) and

(4) do not hold for k = 0, i.e., cannot be applied to trees. Neverthe-

less, we checked these inequalities also for trees, and obtained somewhat

unexpected results.

Trees are bipartite graphs. Therefore, for estimating the energy of

trees, also Eq. (2) may be applied (which necessarily gives better results

than Eq. (1)).

In Table 1 are presented the results of Eqs. (1)–(4), calculated for

n-vertex trees.

Among n-vertex trees, the path Pn has the greatest energy [3]. There-

fore, for comparative purposes, in Table 1 also the E(Pn)-values are in-

cluded.
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n E(Pn) Eq. (1) Eq. (2) Eq. (3) Eq. (4)

2 2.0000 2.0000 2.0000 – –

3 2.8284 3.4415 3.3333 2.0000 0.0000

4 4.4721 4.8541 4.7321 4.4495 2.4495

5 5.4641 6.2648 6.1394 6.0000 4.0000

6 6.9879 7.6759 7.5497 7.4772 5.4772

7 8.0547 9.0877 8.9614 8.9282 6.9282

8 9.5175 10.5000 10.3739 10.3666 8.3666

9 10.6275 11.9127 11.7868 11.7980 9.7980

10 12.0533 13.3256 13.2000 13.2250 11.2250

11 13.1915 14.7388 14.6134 14.6491 12.6491

12 14.5925 16.1521 16.0270 16.0712 14.0712

13 15.7505 17.5656 17.4407 17.4919 15.4919

14 17.1335 18.9792 18.8544 18.9115 16.9115

15 18.3063 20.3928 20.2683 20.3303 18.3303

16 19.6759 21.8065 21.6822 21.7484 19.7484

17 20.8601 23.2203 23.0961 23.1660 21.1660

18 22.2191 24.6341 24.5101 24.5832 22.5832

19 23.4124 26.0480 25.9240 26.0000 24.0000

20 24.7630 27.4619 27.3381 27.4165 25.4165

21 25.9637 28.8758 29.7521 28.8328 26.8328

22 27.3073 30.2898 30.1661 30.2489 28.2489

23 28.5141 31.7037 31.5802 31.6648 29.6648

24 29.8519 33.1177 32.9943 33.0805 31.0805

25 31.0639 34.5318 34.4084 34.4962 32.4962

Table 1. Results of Eqs. (1)–(4), applied to n-vertex trees, compared to

the energy of the respective path, E(Pn). For some values of n, Eqs. (3)

and (4) produce impossible values, smaller than E(Pn); these are indicated

by italics. For some values of n, Eqs. (3) and (4) yield upper bounds for

energy better than Koolen–Moulton’s; these are indicated by boldface.
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Our calculations point out a remarkable feature of Eq. (4):

Observation 4. For sufficiently large values of n (in fact, for n ≥ 15),

the upper bound Eq. (4) for the energy of trees is sharper than the Koolen–

Moulton bounds, Eqs. (1) and (2).

When considering (m,n)-type upper bounds for the energy of trees,

one must note that the best such bond is [8]

E(G) ≤ E(Pn) =



2

sin π
2(n+1)

− 2 if n is even

2 cos π
2(n+1)

sin π
2(n+1)

− 2 if n is odd.

(7)

Therefore, in the case of trees, the quest for other such bounds happens

to be to a great deal pointless.

5 Concluding remarks

The present analysis shows that the (n,m)-type upper bounds for graph

energy, reported in [1,2], either duplicate an earlier known result (in case of

unicyclic graphs) or are inferior to earlier known results (in case of bicyclic,

tricyclic, tetracyclic, . . . , graphs). Only in the case of trees, for sufficiently

large values of n, the bound (4) slightly outruns those by Koolen and

Moulton, Eqs. (1) and (2), but – of course – is weaker than the bound (7).

Therefore, as before, the Koolen–Moulton estimates (1) and (2) remain

the best known (n,m)-type upper bounds for graph energy.
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