New Bounds on the Energy of Graphs with Self-Loops

Jianping Liu ${ }^{a}$, Yingni Chen ${ }^{a}$, Darko Dimitrov ${ }^{b}$, Jinsong Chen ${ }^{a, *}$
${ }^{a}$ School of Mathematics and Statistics, Fuzhou University Fuzhou, P. R. China
${ }^{b}$ Faculty of Information Studies, Novo Mesto, Slovenia Ljping010@163.com, yn115999@163.com, darko.dimitrov11@gmail.com, fzu_cjs@126.com

(Received October 16, 2023)

Abstract

Let G_{σ} be the graph obtained from a simple graph G of order n by adding σ self-loops, one self-loop at each vertex in $S \subseteq V(G)$. Let $\lambda_{1}\left(G_{\sigma}\right), \lambda_{2}\left(G_{\sigma}\right), \ldots, \lambda_{n}\left(G_{\sigma}\right)$ be the eigenvalues of G_{σ}. The energy of G_{σ}, denoted by $\mathscr{E}\left(G_{\sigma}\right)$, is defined as $\mathscr{E}\left(G_{\sigma}\right)=\sum_{i=1}^{n}\left|\lambda_{i}\left(G_{\sigma}\right)-\frac{\sigma}{n}\right|$. In this paper, using various analytic inequalities and previously established results, we derive several new lower and upper bounds on $\mathscr{E}\left(G_{\sigma}\right)$.

1 Introduction

Let G_{σ} be the graph obtained from the simple graph G, which has n vertices and m edges, by attaching σ self-loops, one self-loop at each vertex in $S \subseteq V(G)$.

The adjacency matrix $A\left(G_{\sigma}\right)=\left(a_{i j}\right)_{n \times n}$ of G_{σ} is a square and symmetric matrix of order n. The (i, j)-element is defined as:

[^0]\[

\left(a_{i j}\right)_{n \times n}= $$
\begin{cases}1, & \text { if vertices } v_{i} \text { and } v_{j} \text { are adjacent } \\ 0, & \text { if vertices } v_{i} \text { and } v_{j} \text { are not adjacent } \\ 1, & \text { if } i=j \text { and } v_{i} \text { has a loop } \\ 0, & \text { if } i=j \text { and } v_{i} \text { has no loop }\end{cases}
$$
\]

Since $A\left(G_{\sigma}\right)$ is a real and symmetric matrix, all its eigenvalues are real. We denote the eigenvalues of $A\left(G_{\sigma}\right)$ as $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, with $\lambda_{1} \geq \lambda_{2} \geq$ $\ldots \geq \lambda_{n}$. All eigenvalues of a graph G_{σ} with each respective algebraic multiplicity give the spectrum of G_{σ}, denoted by $\operatorname{Spec}\left(G_{\sigma}\right)$. The largest absolute value of the graph eigenvalues is called the spectral radius. The energy of G_{σ} was recently defined [15] as:

$$
\mathscr{E}\left(G_{\sigma}\right)=\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|
$$

In 1978, Gutman [12] introduced the concept of graph energy, denoted as $\mathscr{E}(G)$, for a graph G. Graph energy is a vital topological indicator used to approximate the total energy of π-electrons in conjugated hydrocarbons and plays a significant role in chemistry. Graph energy has been applied to various areas, including mathematics and mathematical chemistry $[5,6$, $16,17]$.

Self-loop graphs have been found to play a significant role in the mathematical study of heteroconjugated molecules [13-15]. In 2022, Gutman et al. introduced the concept of graph energy with self-loops, which carries distinct chemical significance [15]. Notably, several results regarding the energy of self-loop graphs have been obtained $[2,15,18,24]$.

The complete graph of order n is denoted by K_{n} and the complete bipartite graph with parts M and N with sizes m and n, is denoted as $K_{m, n}$. In [2], Akbari et al. established a necessary and sufficient condition for the bipartiteness of a connected graph G, involving the spectra $\operatorname{Spec}\left(G_{\sigma}\right)$ and $\operatorname{Spec}\left(G_{\bar{\sigma}}\right)$, where $G_{\bar{\sigma}}$ is the the graph obtained from G, by attaching $\bar{\sigma}$ self-loops, one self-loop at each vertex in $V(G) \backslash S$. In [2], it was also proven that $\mathscr{E}\left(G_{\sigma}\right) \geq \mathscr{E}(G)$ when G is bipartite. Additionally, they derived an upper bound for $\lambda_{1}\left(G_{\sigma}\right)$ and determined the spectra of
$\operatorname{Spec}\left(\left(K_{n}\right) \sigma\right)$ and $\operatorname{Spec}\left((K m, n)_{\sigma}\right)$ for all $n, m \geq 1$.
In [18], Jovanović et al. presented a set of graphs that disproves the conjecture that for all simple graphs $G, \mathscr{E}\left(G_{\sigma}\right)>\mathscr{E}(G)$, where $1 \leq \sigma \leq$ $n-1$ [15]. In [24], the authors obtained graphs such that $\mathscr{E}\left(G_{\sigma}\right)=\mathscr{E}(G)$ and $1 \leq \sigma \leq n-1$. More on topological indices with self-loops refer to $[3,4,25]$.

In this paper, we introduce novel lower and upper bounds for the energy of graphs with self-loops.

Before proceeding further, we introduce some necessary notation. The maximum degree of a graph G, denoted by $\Delta(G)=\Delta$, is the degree of the vertex with the greatest number of edges incident to it. The minimum degree of a graph G, denoted by $\delta(G)=\delta$, is the degree of the vertex with the least number of edges incident to it. The graph spread of G, denoted by $s(G)$, is the maximum absolute difference between any two eigenvalues of the adjacency matrix of G.

2 Lower bounds for the energy of graphs with self-loops

In this section, we establish lower bounds for $\mathscr{E}\left(G_{\sigma}\right)$ based on the k-th spectral moment. Additionally, we derive lower bounds for $\mathscr{E}\left(G_{\sigma}\right)$ that are dependent on the parameters n, m, σ, δ, and Δ. Finally, by employing analytic inequalities and previously established results, we will provide lower bounds for $\mathscr{E}\left(G_{\sigma}\right)$ linked to the graph spread $(s(G))$ and the spectral radius $\left(\lambda_{1}\right)$ of the graph.

There are known lower bounds of graph energy $\mathscr{E}(G)$ associated with the k-th spectral moment $M_{k}(G)[8,19,27]$. In a similar manner to $M_{k}(G)$, we define the k-th spectral moment of a self-loop graph G_{σ} with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ as

$$
M_{k}\left(G_{\sigma}\right)=\sum_{i=1}^{n} \lambda_{i}^{k}
$$

Specifically, for $k=1,2$, according to [15], we have the following lemma:
Lemma 1. [15] Let G_{σ} be a graph of order n with m edges and σ self-loops,
and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be its eigenvalues. Then,

$$
M_{1}\left(G_{\sigma}\right)=\sum_{i=1}^{n} \lambda_{i}=\sigma ; \quad M_{2}\left(G_{\sigma}\right)=\sum_{i=1}^{n} \lambda_{i}^{2}=2 m+\sigma
$$

Lemma 2. [10] Let a_{i}, b_{i}, p_{i}, and q_{i} be sequences of nonnegative real numbers, and $\alpha, \beta>1$ with $\frac{1}{\alpha}+\frac{1}{\beta}=1$. Then, the following inequality holds:

$$
\alpha \sum_{i=1}^{n} q_{i} \sum_{i=1}^{n} p_{i} b_{i}^{\beta}+\beta \sum_{i=1}^{n} p_{i} \sum_{i=1}^{n} q_{i} a_{i}^{\alpha} \geq \alpha \beta \sum_{i=1}^{n} p_{i} b_{i} \sum_{i=1}^{n} q_{i} a_{i}
$$

Lemma 3. [10] Let a_{i}, b_{i}, c_{i} and d_{i} are sequences of real numbers and p_{i}, q_{i} are nonnegative for $i=1,2, \ldots, n$. Then, the following inequality is valid

$$
\sum_{i=1}^{n} p_{i} a_{i}^{2} \sum_{i=1}^{n} q_{i} b_{i}^{2}+\sum_{i=1}^{n} p_{i} c_{i}^{2} \sum_{i=1}^{n} q_{i} d_{i}^{2} \geq 2 \sum_{i=1}^{n} p_{i} a_{i} c_{i} \sum_{i=1}^{n} q_{i} b_{i} d_{i}
$$

Theorem 1. Let G_{σ} be a self-loop graph with m edges, n vertices and σ self-loops. Let $\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}$ be the eigenvalues of G_{σ}. Then,

$$
M_{k}\left(G_{\sigma}\right) \geq \frac{k}{2}(2 m+\sigma)-\left(\frac{k}{2}-1\right) n
$$

where $k \in \mathbb{Z}^{+}$and $k \geq 3$.
Proof. Using Lemma 2, for $i=1,2, \ldots, n$, let $\alpha=\frac{k}{2}, \beta=\frac{k}{k-2}, a_{i}=$ $\lambda_{i}^{2}, b_{i}=p_{i}=q_{i}=1$. Then,

$$
\begin{aligned}
\frac{k}{2} \sum_{i=1}^{n} 1 \cdot \sum_{i=1}^{n} 1+\frac{k}{k-2} \sum_{i=1}^{n} 1 \cdot \sum_{i=1}^{n} \lambda_{i}^{k} & \geq \frac{k^{2}}{2(k-2)} \sum_{i=1}^{n} 1 \cdot \sum_{i=1}^{n} \lambda_{i}^{2} \\
\frac{k}{2} n^{2}+\frac{k}{k-2} n \sum_{i=1}^{n} \lambda_{i}^{k} & \geq \frac{k^{2}}{2(k-2)} n(2 m+\sigma) \\
\sum_{i=1}^{n} \lambda_{i}^{k} & \geq \frac{k}{2}(2 m+\sigma)-\left(\frac{k}{2}-1\right) n
\end{aligned}
$$

By setting $\sigma=0$, it can be extended to simple graphs, leading to the following corollary.

Corollary 1. Let G be a simple graph with n vertices and m edges. Let $\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}$ be the eigenvalues of G. Then

$$
M_{k}(G) \geq k m-\frac{k-2}{2} n
$$

where $k \in \mathbb{Z}^{+}$and $k \geq 3$.
Remark 1. If $k=2$, by the above two results, we have $M_{2}\left(G_{\sigma}\right) \geq 2 m+\sigma$, and $M_{2}(G) \geq 2 m$. Noting that in this case our bounds in Theorem 1 and Corollary 1 are sharp.

Theorem 2. Let G_{σ} be a self-loop graph with m edges, n vertices and σ self-loops. Let $\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}$ be the eigenvalues of G_{σ}. Let k be even and $k \geq 2$. Then,
(1) $M_{k}\left(G_{\sigma}\right) \geq \sqrt{\frac{(k+2)^{2}-8}{8}(2 m+\sigma)^{2}+\frac{(k-2)^{2}}{8} n^{2}-\frac{k^{2}-4}{4}(2 m+\sigma) n}$;
(2) $M_{k}\left(G_{\sigma}\right) \geq \sqrt{\frac{k^{2}}{8}(2 m+\sigma)^{2}+\frac{k^{2}-8 k+8}{8} n^{2}-\frac{k^{2}-4 k}{4}(2 m+\sigma) n}$.

Proof. By applying Lemma 3 and Theorem 1.
(1) For $i=1,2, \ldots, n$, let $p_{i}=q_{i}=\lambda_{i}^{2}, a_{i}=b_{i}=\lambda_{i}^{\frac{k-2}{2}}, c_{i}=d_{i}=1$. Then $\left(\sum_{i=1}^{n} \lambda_{i}^{k}\right)^{2}+\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right)^{2} \geq 2\left(\sum_{i=1}^{n} \lambda_{i}^{\frac{k+2}{2}}\right)^{2}$. That is

$$
\left(\sum_{i=1}^{n} \lambda_{i}^{k}\right)^{2}+(2 m+\sigma)^{2} \geq 2\left(\frac{k+2}{4}(2 m+\sigma)-\frac{k-2}{4} n\right)^{2}
$$

Thus, we get

$$
\sum_{i=1}^{n} \lambda_{i}^{k} \geq \sqrt{\frac{\left(k^{2}+4 k-4\right)}{8}(2 m+\sigma)^{2}+\frac{(k-2)^{2}}{8} n^{2}-\frac{k^{2}-4}{4}(2 m+\sigma) n}
$$

(2) For $i=1,2, \ldots, n$, let $p_{i}=q_{i}=c_{i}=d_{i}=1, a_{i}=b_{i}=\lambda_{i}^{\frac{k}{2}}$. Then
$\left(\sum_{i=1}^{n} \lambda_{i}^{k}\right)^{2}+\sum_{i=1}^{n} 1 \cdot \sum_{i=1}^{n} 1 \geq 2\left(\sum_{i=1}^{n} \lambda_{i}^{\frac{k}{2}}\right)^{2}$. That is

$$
\left(\sum_{i=1}^{n} \lambda_{i}^{k}\right)^{2}+n^{2} \geq 2\left(\frac{k}{4}(2 m+\sigma)-\frac{k-4}{4} n\right)^{2}
$$

Then, we get

$$
\sum_{i=1}^{n} \lambda_{i}^{k} \geq \sqrt{\frac{k^{2}}{8}(2 m+\sigma)^{2}+\frac{k^{2}-8 k+8}{8} n^{2}-\frac{k^{2}-4 k}{4}(2 m+\sigma) n}
$$

Setting $\sigma=0$, it can be extended to simple graphs.
Corollary 2. For a simple graph G with m edges and n vertices, where $\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}$ are the eigenvalues of G, and assuming that k is even and $k \geq 2$. Then,

$$
\begin{aligned}
& \text { (1) } M_{k}(G) \geq \sqrt{\frac{k^{2}+4 k-4}{2} m^{2}+\frac{(k-2)^{2}}{8} n^{2}-\frac{k^{2}-4}{2} m n} \\
& \text { (2) } M_{k}(G) \geq \sqrt{\frac{k^{2}}{2} m^{2}+\frac{k^{2}-8 k+8}{8} n^{2}-\frac{k^{2}-4 k}{2} m n}
\end{aligned}
$$

Remark 2. If $k=2$, then (1) in Theorem 2 and Corollary 2 simplifies to $M_{2}\left(G_{\sigma}\right) \geq 2 m+\sigma$ and $M_{2}(G) \geq 2 m$, indicating that our bounds are sharp in this scenario.

Lemma 4. [27] Let $a_{1}, a_{2}, \ldots, a_{h}$ be positive real numbers, where $h>1$. And let r, s, t be the non-negative real numbers, such that $4 r=s+t+2$. Then

$$
\left[\sum_{i=1}^{h}\left(a_{i}\right)^{r}\right]^{4} \leq\left(\sum_{i=1}^{h} a_{i}\right)^{2} \cdot \sum_{i=1}^{h}\left(a_{i}\right)^{s} \cdot \sum_{i=1}^{h}\left(a_{i}\right)^{t}
$$

If $(s, t) \neq(1,1)$, then equality holds if and only if $a_{1}=a_{2}=\cdots=a_{h}$.
Theorem 3. Let G_{σ} be a self-loop graph, and let r, s, and t be even, such that $4 r=s+t+2$. Then, we have the inequality:

$$
\mathscr{E}\left(G_{\sigma}\right) \geq \frac{M_{r}\left(G_{\sigma}\right)^{2}}{\sqrt{M_{t}\left(G_{\sigma}\right) \cdot M_{s}\left(G_{\sigma}\right)}}+\sigma-\frac{2 h \sigma}{n}
$$

where h is the number of nonzero eigenvalues in G_{σ}.
Before proceeding to the proof, we recall the following useful absolute value inequalities. For any real numbers a and b, it holds: $|a|-|b| \leq$ $|a-b| \leq|a|+|b|$. Applying these inequalities to $\mathscr{E}\left(G_{\sigma}\right)$, we get:

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\lambda_{i}\right|-\sigma=\sum_{i=1}^{n}\left(\left|\lambda_{i}\right|-\frac{\sigma}{n}\right) & \leq \sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|=\mathscr{E}\left(G_{\sigma}\right) \\
& \leq \sum_{i=1}^{n}\left(\left|\lambda_{i}\right|+\frac{\sigma}{n}\right)=\sum_{i=1}^{n}\left|\lambda_{i}\right|+\sigma
\end{aligned}
$$

Proof. Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be the eigenvalues of G_{σ}, and suppose that $\lambda_{j 1} \geq \lambda_{j 2} \geq \cdots \lambda_{j h}$ are the nonzero eigenvalues of G_{σ}. Since G_{σ} has at least one edge, we have $\lambda_{j 1}=\lambda_{1}>0$ and $\lambda_{j h}=\lambda_{n}<0$. Using Lemma 4 for the positive numbers $a_{i}=\left|\lambda_{j i}\right|, i=1,2, \cdots, h$, and noting that r is even, we have, $\sum_{i=1}^{h}\left(a_{i}\right)^{r}=\sum_{i=1}^{h}\left|\lambda_{j i}\right|^{r}=\sum_{i=1}^{h} \lambda_{j i}^{r}=M_{r}\left(G_{\sigma}\right)$, and then

$$
M_{r}\left(G_{\sigma}\right)^{4} \leq\left(\sum_{i=1}^{h}\left|\lambda_{j i}\right|\right)^{2} \cdot M_{s}\left(G_{\sigma}\right) \cdot M_{t}\left(G_{\sigma}\right)
$$

Furthermore,

$$
\begin{aligned}
\sum_{i=1}^{h}\left|\lambda_{j i}-\frac{\sigma}{n}\right|+\frac{(n-h) \sigma}{n} & \geq \sum_{i=1}^{h}\left|\lambda_{j i}\right|-\frac{h \sigma}{n}+\frac{(n-h) \sigma}{n} \\
& \geq \frac{M_{r}\left(G_{\sigma}\right)^{2}}{\sqrt{M_{s}\left(G_{\sigma}\right) \cdot M_{t}\left(G_{\sigma}\right)}}-\frac{h \sigma}{n}+\frac{(n-h) \sigma}{n} .
\end{aligned}
$$

That is

$$
\mathscr{E}\left(G_{\sigma}\right) \geq \frac{M_{r}\left(G_{\sigma}\right)^{2}}{\sqrt{M_{t}\left(G_{\sigma}\right) \cdot M_{s}\left(G_{\sigma}\right)}}+\sigma-\frac{2 h \sigma}{n}
$$

Apply Theorem 3 to $(s, t)=(2,4)$, we have the following corollary.

Corollary 3. Let G_{σ} be a graph of order n with m edges and σ self-loops. Let h be the number of nonzero eigenvalues of G_{σ}. Then

$$
\mathscr{E}\left(G_{\sigma}\right) \geq(2 m+\sigma) \sqrt{\frac{2 m+\sigma}{M_{4}\left(G_{\sigma}\right)}}+\sigma-\frac{2 h \sigma}{n}
$$

By the following lemma, we will obtain a (n, m, σ)-type lower bound for $\mathscr{E}\left(G_{\sigma}\right)$.

Lemma 5. [15] Let G_{σ} be a graph of order n with m edges and σ self-loops. Let $\lambda_{1}, \lambda_{2} \cdots \lambda_{n}$ be its eigenvalues. Then,

$$
\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|^{2}=2 m+\sigma-\frac{\sigma^{2}}{n}
$$

Theorem 4. Let G_{σ} be a graph of order n with m edges and σ self-loops. Then,

$$
\mathscr{E}\left(G_{\sigma}\right) \geq \sqrt{2 m+\sigma-\frac{\sigma^{2}}{n}}
$$

Proof. Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be the eigenvalues of G_{σ}.

$$
\mathscr{E}\left(G_{\sigma}\right)^{2}=\left(\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|\right)^{2} \geq \sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|^{2}=2 m+\sigma-\frac{\sigma^{2}}{n}
$$

Hence, $\quad \mathscr{E}\left(G_{\sigma}\right) \geq \sqrt{2 m+\sigma-\frac{\sigma^{2}}{n}}$.
In order to prove Lemma 7, we need the following lemma.
Lemma 6. [7] Let $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{t}$ in \mathbb{C}^{n} then

$$
\sum_{i=1}^{n}\left|y_{i}\right| \leq \sqrt{n \sum_{i=1}^{n}\left|y_{i}\right|^{2}}
$$

Equality holds if and only if $\left|y_{1}\right|=\cdots=\left|y_{n}\right|=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}^{2}\right|}$.
The inequality of next Lemma will be used in the proof of Theorem 5 .

Lemma 7. Let G_{σ} be a self-loop graph with m edges, n vertices and σ self-loops. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of G_{σ}. Then,

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right| \leq \sqrt{n(2 m+\sigma)}
$$

Proof. By applying Lemma 6, we have

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right| \leq \sqrt{n \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}}=\sqrt{n(2 m+\sigma)}
$$

Lemma 8. [22] Let $y=\left(y_{i}\right)$ and $b=\left(b_{i}\right), i=1,2, \ldots, n$, be real number sequences such that $\sum_{i=1}^{n}\left|y_{i}\right|=1$, and $\sum_{i=1}^{n} y_{i}=0$. Then,

$$
\left|\sum_{i=1}^{n} b_{i} y_{i}\right| \leq \frac{1}{2}\left(\max _{1 \leq i \leq n}\left(b_{i}\right)-\min _{1 \leq i \leq n}\left(b_{i}\right)\right)
$$

Theorem 5. Let G_{σ} be a self-loop graph with m edges, n vertices and σ self-loops. Let $d_{1}, d_{2}, \ldots, d_{n}$ be the degree of vertices in G_{σ} and $\delta=$ $\min _{1 \leq i \leq n} d_{i}, \quad \Delta=\max _{1 \leq i \leq n} d_{i}$. Then,

$$
\mathscr{E}\left(G_{\sigma}\right) \geq \frac{4 \frac{\sigma}{n}(m+\sigma)-2 \Delta \sqrt{n(2 m+\sigma)}}{\Delta-\delta}
$$

Proof. Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be the eigenvalues of G_{σ}. Set $b_{i}=d_{i}$ and $y_{i}=\frac{\lambda_{i}-\frac{\sigma}{n}}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}$ for each $i=1,2, \ldots, n$. Using the fact $\sum_{i=1}^{n} \lambda_{i}=\sigma$, we obtain
$\sum_{i=1}^{n} y_{i}=\frac{\sum_{i=1}^{n} \lambda_{i}-\sigma}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}=0, \quad \sum_{i=1}^{n}\left|y_{i}\right|=\frac{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}=1$, and $\sum_{i=1}^{n} d_{i}=2(m+\sigma)$.
By using Lemma 8, we have

$$
\left|\sum_{i=1}^{n} b_{i} y_{i}\right|=\left|\frac{\frac{\sigma}{n} \sum_{i=1}^{n} d_{i}}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}-\frac{\sum_{i=1}^{n} d_{i} \lambda_{i}}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}\right| \leq \frac{1}{2}(\Delta-\delta)
$$

Since $\left|\sum_{i=1}^{n} d_{i} \lambda_{i}\right| \leq \sum_{i=1}^{n}\left|d_{i} \lambda_{i}\right| \leq \Delta \sum_{i=1}^{n}\left|\lambda_{i}\right|$ and applying Lemma 7, we have

$$
\begin{aligned}
\left|\frac{\frac{\sigma}{n} \sum_{i=1}^{n} d_{i}}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}-\frac{\sum_{i=1}^{n} d_{i} \lambda_{i}}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}\right| & \geq \frac{\frac{\sigma}{n} \sum_{i=1}^{n} d_{i}}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}-\left|\frac{\sum_{i=1}^{n} d_{i} \lambda_{i}}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}\right| \\
& \geq \frac{\frac{\sigma}{n} 2(m+\sigma)}{\mathscr{E}\left(G_{\sigma}\right)}-\frac{\Delta \sqrt{n(2 m+\sigma)}}{\mathscr{E}\left(G_{\sigma}\right)}
\end{aligned}
$$

Combining two inequalities above, we have

$$
\mathscr{E}\left(G_{\sigma}\right) \geq \frac{4 \frac{\sigma}{n}(m+\sigma)-2 \Delta \sqrt{n(2 m+\sigma)}}{\Delta-\delta}
$$

The spread of a complex matrix A is defined as the diameter of its spectrum: $s(A)=\max _{i, j}\left|\lambda_{i}-\lambda_{j}\right|=\lambda_{1}-\lambda_{n}$. If A is the adjacency matrix of G_{σ}, then $s(A)=s\left(G_{\sigma}\right)$.

Theorem 6. Let G be a simple connected graph with m edges, n vertices. Let G_{σ} be a graph obtained from G by attaching σ self-loops. Then,

$$
\mathscr{E}\left(G_{\sigma}\right) \geq \frac{4 m+2 \sigma-2 \frac{\sigma^{2}}{n}}{s\left(G_{\sigma}\right)}
$$

Proof. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of G_{σ}. Using Lemma 8, we set $b_{i}=\lambda_{i}$ and $y_{i}=\frac{\lambda_{i}-\frac{\sigma}{n}}{\sum\left|\lambda_{i}-\frac{\sigma}{n}\right|}$ for each $i=1,2, \ldots, n$. Since $\sum_{i=1}^{n} \lambda_{i}^{2}=$ $2 m+\sigma$, we get

$$
\left|\sum_{i=1}^{n} b_{i} y_{i}\right|=\left|\sum_{i=1}^{n} \frac{\lambda_{i}^{2}-\frac{\sigma}{n} \lambda_{i}}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}\right| \leq \frac{1}{2}\left(\max _{1 \leq i \leq n}\left(b_{i}\right)-\min _{1 \leq i \leq n}\left(b_{i}\right)\right)=\frac{1}{2} s\left(G_{\sigma}\right)
$$

Furthermore,

$$
\left|\frac{\sum_{i=1}^{n} \lambda_{i}^{2}-\frac{\sigma}{n} \sum_{i=1}^{n} \lambda_{i}}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}\right| \geq \frac{\sum_{i=1}^{n} \lambda_{i}^{2}}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}-\frac{\left|\frac{\sigma}{n} \sum_{i=1}^{n} \lambda_{i}\right|}{\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|}=\frac{2 m+\sigma-\frac{\sigma^{2}}{n}}{\mathscr{E}\left(G_{\sigma}\right)}
$$

Combining two inequalities above, we have $\mathscr{E}\left(G_{\sigma}\right) \geq \frac{4 m+2 \sigma-2 \frac{\sigma^{2}}{n}}{s\left(G_{\sigma}\right)}$.
Lemma 9. Let G_{σ} be a graph of order n with m edges and σ self-loops. Then,

$$
s\left(G_{\sigma}\right) \leq \lambda_{1}+\sqrt{2 m+\sigma-\lambda_{1}^{2}} \leq \sqrt{2(2 m+\sigma)}
$$

Proof. Since $\sum_{i=1}^{n} \lambda_{i}^{2}=2 m+\sigma$, we have $\lambda_{1}^{2}+\lambda_{n}^{2} \leq 2 m+\sigma$. That is $-\sqrt{2 m+\sigma-\lambda_{1}^{2}} \leq \lambda_{n} \leq \sqrt{2 m+\sigma-\lambda_{1}^{2}}$. Then,

$$
s\left(G_{\sigma}\right)=\lambda_{1}-\lambda_{n} \leq \lambda_{1}+\sqrt{2 m+\sigma-\lambda_{1}^{2}}
$$

Now we consider the function $F(x)=x+\sqrt{2 m+\sigma-x^{2}}$, where $x<$ $\sqrt{2 m+\sigma}$. By taking its first derivation, we can find that $F(x)$ takes the maximum value $\sqrt{2(2 m+\sigma)}$, when x is equal to $\sqrt{\frac{2 m+\sigma}{2}}$. Thus $s\left(G_{\sigma}\right) \leq$ $\sqrt{2(2 m+\sigma)}$.

Combining Theorem 6 and Lemma 9, we immediately obtain the following consequence.

Corollary 4. For any connected self-loop graph G_{σ} with m edges and σ self-loops, we have

$$
\begin{aligned}
\mathscr{E}\left(G_{\sigma}\right) & \geq \frac{4 m+2 \sigma-2 \frac{\sigma^{2}}{n}}{\lambda_{1}+\sqrt{2 m+\sigma-\lambda_{1}^{2}}} \\
\mathscr{E}\left(G_{\sigma}\right) & \geq \frac{\sqrt{2}\left(2 m+\sigma-\frac{\sigma^{2}}{n}\right)}{\sqrt{2 m+\sigma}}
\end{aligned}
$$

Lemma 10. [9] Let a_{i} and b_{i} be the real numbers satisfy $r a_{i} \leq b_{i} \leq R a_{i}$,
for all $i=1,2, \ldots, n$. Then,

$$
\sum_{i=1}^{n} b_{i}^{2}+r R \sum_{i=1}^{n} a_{i}^{2} \leq(r+R) \sum_{i=1}^{n} a_{i} b_{i}
$$

Equality holds if and only if either $b_{i}=r a_{i}$ or $b_{i}=R a_{i}$, for all $i=$ $1,2, \ldots, n$.

Theorem 7. Let G be a simple graph with n vertices and m edges. Let G_{σ} be a self-loop graph obtained from G by attaching σ self-loops. Then,

$$
\mathscr{E}\left(G_{\sigma}\right) \geq \frac{2 m+\sigma-n \lambda_{1} \sqrt{2 m+\sigma-\lambda_{1}^{2}}-\frac{2 \sigma^{2}}{n}}{\lambda_{1}+\sqrt{2 m+\sigma-\lambda_{1}^{2}}}-\sigma .
$$

Proof. Applying Lemma 10, setting $r=\lambda_{n}-\frac{\sigma}{n}, R=\lambda_{1}+\frac{\sigma}{n}, b_{i}=$ $\left|\lambda_{i}-\frac{\sigma}{n}\right|, a_{i}=1$, for $i=1,2, \ldots, n$, we have

$$
\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|^{2}+\left(\lambda_{n}-\frac{\sigma}{n}\right)\left(\lambda_{1}+\frac{\sigma}{n}\right) \sum_{i=1}^{n} 1 \leq\left(\lambda_{n}+\lambda_{1}\right) \sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|
$$

Recall that $\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|^{2}=2 m+\sigma-\frac{\sigma^{2}}{n}$. Then,

$$
2 m+\sigma-\frac{2 \sigma^{2}}{n}+n \lambda_{1} \lambda_{n}+\sigma\left(\lambda_{n}-\lambda_{1}\right) \leq\left(\lambda_{1}+\lambda_{n}\right) \mathscr{E}\left(G_{\sigma}\right)
$$

Since $-\sqrt{2 m+\sigma-\lambda_{1}^{2}} \leq \lambda_{n} \leq \sqrt{2 m+\sigma-\lambda_{1}^{2}}$, we get

$$
\mathscr{E}\left(G_{\sigma}\right) \geq \frac{2 m+\sigma-\frac{2 \sigma^{2}}{n}-n \lambda_{1} \sqrt{2 m+\sigma-\lambda_{1}^{2}}}{\lambda_{1}+\sqrt{2 m+\sigma-\lambda_{1}^{2}}}-\sigma
$$

3 Upper bounds for the energy of graphs with self-loops

In this section, we present new upper bounds for $\mathscr{E}\left(G_{\sigma)}\right.$ that are dependent on the parameters n, m, σ, and Δ.

For simple graphs G, there are numerous known results regarding the spectral radius $\lambda_{1}(G)$. In the case of $\lambda_{1}\left(G_{\sigma}\right)$, several new bounds for $\lambda_{1}\left(G_{\sigma}\right)$ have been provided as follows [2].

Lemma 11. [2] Let G be a connected graph of order n and size m. Then,

$$
\lambda_{1}\left(G_{\sigma}\right) \geq \frac{2 m}{n}+\frac{\sigma}{n}
$$

Lemma 12. [2] Let G_{σ} be a self-loop graph of order n. Then,

$$
\lambda_{1}\left(G_{\sigma}\right) \leq \triangle(G)+1 \leq n
$$

Moreover, $\lambda_{1}\left(G_{\sigma}\right)=n$ if and only if $G_{\sigma}=\left(K_{n}\right)_{n}$, the complete graph with n self-loops.

By the above two lemmas and the Cauchy-Schwarz inequality, we will obtain some upper bounds of $\mathscr{E}\left(G_{\sigma}\right)$.

Theorem 8. Let G be a connected graph of order n and size m with maximum degree Δ. Let G_{σ} be the graph obtained from G by attaching σ self-loops. Then,

$$
\begin{aligned}
\mathscr{E}\left(G_{\sigma}\right) \leq & \sqrt{(n-1)\left(2 m+\sigma-\frac{4 m^{2}+4 m \sigma+2 \sigma^{2}}{n^{2}}+\frac{2 \sigma}{n}\left(\Delta+1-\frac{\sigma}{2}\right)\right)} \\
& +\Delta+\frac{n-\sigma}{n}
\end{aligned}
$$

Proof. \quad Suppose that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are the eigenvalues of G_{σ}. By the Cauchy-Schwarz inequality, we get

$$
\left(\sum_{i=2}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|\right)^{2} \leq(n-1) \sum_{i=2}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|^{2}
$$

By Lemma 5, we have
$\sum_{i=2}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|^{2}=2 m+\sigma-\frac{\sigma^{2}}{n}-\left|\lambda_{1}-\frac{\sigma}{n}\right|^{2}=2 m+\sigma-\lambda_{1}^{2}+2 \frac{\sigma}{n} \lambda_{1}-\frac{(1+n) \sigma^{2}}{n^{2}}$.

Applying Lemmas 11, 12, we have

$$
\begin{aligned}
\mathscr{E}\left(G_{\sigma}\right)= & \sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right| \\
\leq & \sqrt{(n-1)\left(2 m+\sigma-\lambda_{1}^{2}+2 \frac{\sigma}{n} \lambda_{1}-\frac{(1+n) \sigma^{2}}{n^{2}}\right)}+\left|\lambda_{1}-\frac{\sigma}{n}\right| \\
\leq & \sqrt{(n-1)\left(2 m+\sigma-\frac{4 m^{2}+4 m \sigma+2 \sigma^{2}}{n^{2}}+2 \frac{\sigma}{n}\left(\Delta+1-\frac{\sigma}{2}\right)\right)} \\
& +\Delta+\frac{n-\sigma}{n} .
\end{aligned}
$$

Theorem 9. Let G be a connected graph of order n with m edges and maximum degree Δ. Let G_{σ} be the graph obtained from G by attaching σ self-loops. Then,

$$
\mathscr{E}\left(G_{\sigma}\right) \leq \Delta+1+\frac{(n-2) \sigma}{n}+\sqrt{(n-1)\left(2 m+\sigma-\frac{(2 m+\sigma)^{2}}{n^{2}}\right)} .
$$

Proof. Suppose that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are the eigenvalues of G_{σ}. By the Cauchy-Schwarz inequality and Lemma 1,

$$
\left(\sum_{i=2}^{n}\left|\lambda_{i}\right|\right)^{2} \leq(n-1) \sum_{i=2}^{n}\left|\lambda_{i}\right|^{2}=(n-1)\left(2 m+\sigma-\lambda_{1}^{2}\right) .
$$

Immediately, we have

$$
\begin{aligned}
\mathscr{E}\left(G_{\sigma}\right) & =\left|\lambda_{1}-\frac{\sigma}{n}\right|+\sum_{i=2}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right| \\
& \leq \Delta+1-\frac{\sigma}{n}+\sqrt{(n-1)\left(2 m+\sigma-\lambda_{1}^{2}\right)}+\frac{(n-1) \sigma}{n} \\
& \leq \Delta+1+\frac{(n-2) \sigma}{n}+\sqrt{(n-1)\left(2 m+\sigma-\frac{(2 m+\sigma)^{2}}{n^{2}}\right)}
\end{aligned}
$$

The inequality in the next lemma will be used in the proof of Theorem 10.
Lemma 13. [26] Let $A=\left(a_{i j}\right)$ be an $n \times n$ nonnegative symmetric matrix
with positive row sums $d_{1}, d_{2}, \ldots, d_{n}$. Then,

$$
\lambda_{1}(A) \geq \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}}
$$

with equality if and only if A is regular or semiregular.
Theorem 10. Let G_{σ} be a self-loop graph with n vertices, m edges and σ self-loops. Let λ_{1} be the maximum eigenvalue of G_{σ}. Then,

$$
\lambda_{1} \geq \frac{2(m+\sigma)}{n}-1
$$

Proof. Let A be the adjacency matrix of G_{σ}. Let $A^{\prime}=A+I_{n}$ with positive row sums $c_{1}, c_{2}, \ldots, c_{n}$. Let $d_{1}, d_{2}, \ldots, d_{n}$ be the degree of vertices in G_{σ}. By applying Lemma 6 , we have $\sum_{i=1}^{n}\left|d_{i}\right| \leq \sqrt{n \sum_{i=1}^{n} d_{i}^{2}}$. That is $2(m+\sigma) \leq \sqrt{n \sum_{i=1}^{n} d_{i}^{2}}$. Thus, we get

$$
\sum_{i=1}^{n} d_{i}^{2} \geq \frac{4(m+\sigma)^{2}}{n}
$$

Then, using Lemma 13, we obtain

$$
\lambda_{1}\left(A^{\prime}\right) \geq \sqrt{\frac{\sum_{i=1}^{n} c_{i}^{2}}{n}} \geq \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}} \geq \frac{2(m+\sigma)}{n}
$$

What's more, $\lambda_{1}\left(A^{\prime}\right)=\lambda_{1}(A)+1$. Combining inequalities above, we get

$$
\lambda_{1}(A) \geq \frac{2(m+\sigma)}{n}-1
$$

Now we will give two (n, m, σ)-type upper bounds for $\mathscr{E}\left(G_{\sigma}\right)$.
Theorem 11. Let G_{σ} be a self-loop graph with n vertices, m edges and σ
self-loops. Then,

$$
\mathscr{E}\left(G_{\sigma}\right) \leq \sqrt{\frac{n^{2}+\left(2 m+\sigma-\frac{\sigma^{2}}{n}\right)^{2}}{2}}
$$

Proof. Let $a_{i}=b_{i}=q_{i}=p_{i}=1$ and $c_{i}=d_{i}=\left|\lambda_{i}-\frac{\sigma}{n}\right|, i=1,2, \ldots, n$. By Lemma 3, we have

$$
\begin{aligned}
\sum_{i=1}^{n} 1 \sum_{i=1}^{n} 1+\left(\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|^{2}\right)^{2} & \geq 2\left(\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|\right)^{2} \\
n^{2}+\left(2 m+\sigma-\frac{\sigma^{2}}{n}\right)^{2} & \geq 2 \mathscr{E}\left(G_{\sigma}\right)^{2} \\
\mathscr{E}\left(G_{\sigma}\right) & \leq \sqrt{\frac{n^{2}+\left(2 m+\sigma-\frac{\sigma^{2}}{n}\right)^{2}}{2}}
\end{aligned}
$$

Theorem 12. Let G_{σ} be a self-loop graph with n vertices, m edges and σ self-loops. Then,

$$
\mathscr{E}\left(G_{\sigma}\right) \leq \frac{2 m+\sigma-\frac{\sigma^{2}}{n}+n}{2}
$$

Proof. Applying Lemma 3, for $i=1,2, \ldots, n$, let $a_{i}=\left|\lambda_{i}-\frac{\sigma}{n}\right|, b_{i}=p_{i}=$ $q_{i}=c_{i}=d_{i}=1$. Then,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right|^{2} \cdot \sum_{i=1}^{n} 1+\sum_{i=1}^{n} 1 \cdot \sum_{i=1}^{n} 1 & \geq 2 \sum_{i=1}^{n}\left|\lambda_{i}-\frac{\sigma}{n}\right| \cdot \sum_{i=1}^{n} 1 \\
\left(2 m+\sigma-\frac{\sigma^{2}}{n}\right) n+n^{2} & \geq 2 n \mathscr{E}\left(G_{\sigma}\right) \\
\mathscr{E}\left(G_{\sigma}\right) & \leq \frac{2 m+\sigma-\frac{\sigma^{2}}{n}+n}{2}
\end{aligned}
$$

References

[1] S. Akbari, M. Ghahremani, M. A. Hosseinzadeh, S. K. Ghezelahmad, H. Rasouli, A. Tehranian, A lower bound for graph energy in terms of minimum and maximum degrees, MATCH Commun. Math. Comput. Chem. 86 (2021) 549-558.
[2] S. Akbari, H. A. Menderj, M. H. Ang, J. Lim, Z. C. Ng, Some results on spectrum and energy of graphs with loops, Bull. Malays. Math. Sci. Soc. 46 (2023) \#94.
[3] D. V. Anchan, S. D'Souza, H. J. Gowtham, P. G. Bhat, Laplacian energy of a graph with self-loops, MATCH Commun. Math. Comput. Chem. 90 (2023) 247-258.
[4] D. V. Anchan, S. D'Souza, H. J. Gowtham, P. G. Bhat, Sombor energy of a graph with self-loops, MATCH Commun. Math. Comput. Chem. 90 (2023) 773-786.
[5] V. Consonni, R. Todeschini, New spectral index for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008) 3-14.
[6] D. Cvetković, I. Gutman(Eds.), Selected Topic on Application of Graph Spectra, Math. Institute SANU, Belgrade, 2011.
[7] M. A. A. de Freitas, M. Robbiano, A. S. Bonifacio, An improved upper bound of the energy of some graphs and matrices, MATCH Commun. Math. Comput. Chem. 74 (2015) 307-320.
[8] J. A. de la Peña, L. Mendoza, J. Rada, Comparing momenta and π-electron energy of benzenoid molecules, Discr. Math. 302 (2005) 77-84.
[9] J. B. Diaz, F. T. Metcalf, Strong forms of a class of inequalities of G. Pólya-G. Szegó and L. V. Kantorovich, Bull. Am. Math. Soc. 69 (1963) 415-418.
[10] S. S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, J. Ineq. Pure Appl. Math. 4 (2003) 1-142.
[11] S. Filipovski, R. Jajcay, New upper bounds for the energy and spectral radius of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 335-343.
[12] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz 103 (1978) 1-22.
[13] I. Gutman, Topological studies on heteroconjugated molecules, Theor. Chim. Acta 50 (1979) 287-297.
[14] I. Gutman, Topological studies on heteroconjugated molecules, VI, Alternant systems with two heteroatoms, Z. Naturforsch. A 45 (1990) 1085-1089.
[15] I. Gutman, I. Redžepović, B. Furtula, A. M. Sahal, Energy of graphs with self-loops, MATCH Commun. Math. Comput. Chem. 87 (2022) 645-652.
[16] I. Gutman, T. Soldatović, (n, m)-Type approximations for total π electron energy of benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 44 (2001) 169-182.
[17] X. Hu, H. Liu, New upper bounds for the Hückel energy of graph, MATCH Commun. Math. Comput. Chem. 66 (2011) 863-878.
[18] I. M. Jovanović, E. Zogić, E. Glogić, On the conjecture related to the energy of graphs with self-loops, MATCH Commun. Math. Comput. Chem. 89 (2023) 479-488.
[19] X. Li, Y. Shi, I. Gutman, Graph energy, Springer, New York, 2012.
[20] X. Ma, A low bound on graph energy in terms of minimum degree, MATCH Commun. Math. Comput. Chem. 81 (2019) 393-404.
[21] I. Ž. Milovanović, E. I. Milovanović, A. Zakić, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 179-182.
[22] D. S. Mitrinović, Analytic Inequalities, Springer, Berlin, 1970.
[23] M. R. Oboudi, Bounds for energy of matrices and energy of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 377-384.
[24] K. M. Popat, K. R. Shingala, Some new results on energy of graphs with self loops, J. Math. Chem. 61 (2023) 1462-1469.
[25] U. Preetha P, M. Suresh, E. Bonyah, On the spectrum, energy and Laplacian energy of graphs with self-loops, Heliyon 9 (2023) \#e17001.
[26] B. Zhou, On the spectral radius of nonnegative matrices, Australas. J. Comb. 22 (2000) 301-306.
[27] B. Zhou, I. Gutman, J. A. de la Peña, J. Rada, L. Mendoza, On spectral moments and energy of graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 183-191.

[^0]: *Corresponding author. This work was supported by the National Natural Science Foundation of China (No.12171089).

