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Abstract

Let Gσ be the graph obtained from a simple graph G of order n
by adding σ self-loops, one self-loop at each vertex in S ⊆ V (G). Let
λ1(Gσ), λ2(Gσ), . . . , λn(Gσ) be the eigenvalues of Gσ. The energy

of Gσ, denoted by E (Gσ), is defined as E (Gσ) =
n∑

i=1

∣∣λi(Gσ)− σ
n

∣∣.
In this paper, using various analytic inequalities and previously es-
tablished results, we derive several new lower and upper bounds on
E (Gσ).

1 Introduction

Let Gσ be the graph obtained from the simple graph G, which has n

vertices and m edges, by attaching σ self-loops, one self-loop at each vertex

in S ⊆ V (G).

The adjacency matrix A(Gσ) = (aij)n×n of Gσ is a square and sym-

metric matrix of order n. The (i, j)-element is defined as:
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(aij)n×n =



1, if vertices vi and vj are adjacent;

0, if vertices vi and vj are not adjacent;

1, if i = j and vi has a loop;

0, if i = j and vi has no loop.

Since A(Gσ) is a real and symmetric matrix, all its eigenvalues are real.

We denote the eigenvalues of A(Gσ) as λ1, λ2, . . . , λn, with λ1 ≥ λ2 ≥
. . . ≥ λn. All eigenvalues of a graph Gσ with each respective algebraic

multiplicity give the spectrum of Gσ, denoted by Spec(Gσ). The largest

absolute value of the graph eigenvalues is called the spectral radius. The

energy of Gσ was recently defined [15] as:

E (Gσ) =

n∑
i=1

∣∣∣λi −
σ

n

∣∣∣ .
In 1978, Gutman [12] introduced the concept of graph energy, denoted

as E (G), for a graph G. Graph energy is a vital topological indicator used

to approximate the total energy of π-electrons in conjugated hydrocarbons

and plays a significant role in chemistry. Graph energy has been applied

to various areas, including mathematics and mathematical chemistry [5,6,

16,17].

Self-loop graphs have been found to play a significant role in the math-

ematical study of heteroconjugated molecules [13–15]. In 2022, Gutman et

al. introduced the concept of graph energy with self-loops, which carries

distinct chemical significance [15]. Notably, several results regarding the

energy of self-loop graphs have been obtained [2, 15,18,24].

The complete graph of order n is denoted by Kn and the complete

bipartite graph with parts M and N with sizes m and n, is denoted as

Km,n. In [2], Akbari et al. established a necessary and sufficient condi-

tion for the bipartiteness of a connected graph G, involving the spectra

Spec(Gσ) and Spec(Gσ̄), where Gσ̄ is the the graph obtained from G, by

attaching σ̄ self-loops, one self-loop at each vertex in V (G)\S. In [2], it

was also proven that E (Gσ) ≥ E (G) when G is bipartite. Additionally,

they derived an upper bound for λ1(Gσ) and determined the spectra of
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Spec ((Kn)σ) and Spec((Km,n)σ) for all n,m ≥ 1.

In [18], Jovanović et al. presented a set of graphs that disproves the

conjecture that for all simple graphs G, E (Gσ) > E (G), where 1 ≤ σ ≤
n− 1 [15]. In [24], the authors obtained graphs such that E (Gσ) = E (G)

and 1 ≤ σ ≤ n − 1. More on topological indices with self-loops refer

to [3, 4, 25].

In this paper, we introduce novel lower and upper bounds for the energy

of graphs with self-loops.

Before proceeding further, we introduce some necessary notation. The

maximum degree of a graph G, denoted by ∆(G) = ∆, is the degree of

the vertex with the greatest number of edges incident to it. The minimum

degree of a graph G, denoted by δ(G) = δ, is the degree of the vertex with

the least number of edges incident to it. The graph spread of G, denoted

by s(G), is the maximum absolute difference between any two eigenvalues

of the adjacency matrix of G.

2 Lower bounds for the energy of graphs

with self-loops

In this section, we establish lower bounds for E (Gσ) based on the k-th

spectral moment. Additionally, we derive lower bounds for E (Gσ) that

are dependent on the parameters n, m, σ, δ, and ∆. Finally, by employing

analytic inequalities and previously established results, we will provide

lower bounds for E (Gσ) linked to the graph spread (s(G)) and the spectral

radius (λ1) of the graph.

There are known lower bounds of graph energy E (G) associated with

the k-th spectral moment Mk(G) [8,19,27]. In a similar manner to Mk(G),

we define the k-th spectral moment of a self-loop graphGσ with eigenvalues

λ1, λ2, . . . , λn as

Mk(Gσ) =

n∑
i=1

λk
i .

Specifically, for k = 1, 2, according to [15], we have the following lemma:

Lemma 1. [15] Let Gσ be a graph of order n with m edges and σ self-loops,
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and let λ1, λ2, . . . , λn be its eigenvalues. Then,

M1(Gσ) =

n∑
i=1

λi = σ ; M2(Gσ) =

n∑
i=1

λ2
i = 2m+ σ .

Lemma 2. [10] Let ai, bi, pi, and qi be sequences of nonnegative real num-

bers, and α, β > 1 with 1
α + 1

β = 1. Then, the following inequality holds:

α

n∑
i=1

qi

n∑
i=1

pib
β
i + β

n∑
i=1

pi

n∑
i=1

qia
α
i ≥ αβ

n∑
i=1

pibi

n∑
i=1

qiai .

Lemma 3. [10] Let ai, bi, ci and di are sequences of real numbers and

pi, qi are nonnegative for i = 1, 2, . . . , n. Then, the following inequality is

valid

n∑
i=1

pia
2
i

n∑
i=1

qib
2
i +

n∑
i=1

pic
2
i

n∑
i=1

qid
2
i ≥ 2

n∑
i=1

piaici

n∑
i=1

qibidi .

Theorem 1. Let Gσ be a self-loop graph with m edges, n vertices and σ

self-loops. Let λ1, λ2 . . . , λn be the eigenvalues of Gσ. Then,

Mk(Gσ) ≥
k

2
(2m+ σ)− (

k

2
− 1)n ,

where k ∈ Z+ and k ≥ 3.

Proof. Using Lemma 2, for i = 1, 2, . . . , n, let α = k
2 , β = k

k−2 , ai =

λ2
i , bi = pi = qi = 1. Then,

k

2

n∑
i=1

1 ·
n∑

i=1

1 +
k

k − 2

n∑
i=1

1 ·
n∑

i=1

λk
i ≥ k2

2(k − 2)

n∑
i=1

1 ·
n∑

i=1

λ2
i

k

2
n2 +

k

k − 2
n

n∑
i=1

λk
i ≥ k2

2(k − 2)
n(2m+ σ)

n∑
i=1

λk
i ≥ k

2
(2m+ σ)− (

k

2
− 1)n .
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By setting σ = 0, it can be extended to simple graphs, leading to the

following corollary.

Corollary 1. Let G be a simple graph with n vertices and m edges. Let

λ1, λ2 . . . , λn be the eigenvalues of G. Then

Mk(G) ≥ km− k − 2

2
n ,

where k ∈ Z+ and k ≥ 3.

Remark 1. If k = 2, by the above two results, we have M2(Gσ) ≥ 2m+σ,

and M2(G) ≥ 2m. Noting that in this case our bounds in Theorem 1 and

Corollary 1 are sharp.

Theorem 2. Let Gσ be a self-loop graph with m edges, n vertices and σ

self-loops. Let λ1, λ2 . . . , λn be the eigenvalues of Gσ. Let k be even and

k ≥ 2. Then,

(1) Mk(Gσ) ≥
√

(k + 2)2 − 8

8
(2m+ σ)2 +

(k − 2)2

8
n2 − k2 − 4

4
(2m+ σ)n ;

(2) Mk(Gσ) ≥
√

k2

8
(2m+ σ)2 +

k2 − 8k + 8

8
n2 − k2 − 4k

4
(2m+ σ)n .

Proof. By applying Lemma 3 and Theorem 1.

(1) For i = 1, 2, . . . , n, let pi = qi = λ2
i , ai = bi = λ

k−2
2

i , ci = di = 1.

Then

(
n∑

i=1

λk
i

)2

+

(
n∑

i=1

λ2
i

)2

≥ 2

(
n∑

i=1

λ
k+2
2

i

)2

. That is

(
n∑

i=1

λk
i

)2

+ (2m+ σ)2 ≥ 2

(
k + 2

4
(2m+ σ)− k − 2

4
n

)2

Thus, we get

n∑
i=1

λk
i ≥

√
(k2 + 4k − 4)

8
(2m+ σ)2 +

(k − 2)2

8
n2 − k2 − 4

4
(2m+ σ)n .

(2) For i = 1, 2, . . . , n, let pi = qi = ci = di = 1, ai = bi = λ
k
2
i . Then
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n∑

i=1

λk
i

)2

+
n∑

i=1

1 ·
n∑

i=1

1 ≥ 2

(
n∑

i=1

λ
k
2
i

)2

. That is

(
n∑

i=1

λk
i

)2

+ n2 ≥ 2

(
k

4
(2m+ σ)− k − 4

4
n

)2

.

Then, we get

n∑
i=1

λk
i ≥

√
k2

8
(2m+ σ)2 +

k2 − 8k + 8

8
n2 − k2 − 4k

4
(2m+ σ)n .

Setting σ = 0, it can be extended to simple graphs.

Corollary 2. For a simple graph G with m edges and n vertices, where

λ1, λ2 . . . , λn are the eigenvalues of G, and assuming that k is even and

k ≥ 2. Then,

(1) Mk(G) ≥
√

k2 + 4k − 4

2
m2 +

(k − 2)2

8
n2 − k2 − 4

2
mn ;

(2) Mk(G) ≥
√

k2

2
m2 +

k2 − 8k + 8

8
n2 − k2 − 4k

2
mn .

Remark 2. If k = 2, then (1) in Theorem 2 and Corollary 2 simplifies

to M2(Gσ) ≥ 2m + σ and M2(G) ≥ 2m, indicating that our bounds are

sharp in this scenario.

Lemma 4. [27] Let a1, a2, ..., ah be positive real numbers, where h > 1.

And let r, s, t be the non-negative real numbers, such that 4r = s + t + 2.

Then [
h∑

i=1

(ai)
r

]4
≤

(
h∑

i=1

ai

)2

·
h∑

i=1

(ai)
s ·

h∑
i=1

(ai)
t
.

If (s, t) ̸= (1, 1), then equality holds if and only if a1 = a2 = · · · = ah.

Theorem 3. Let Gσ be a self-loop graph, and let r, s, and t be even, such

that 4r = s+ t+ 2. Then, we have the inequality:
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E (Gσ) ≥
Mr(Gσ)

2√
Mt(Gσ) ·Ms(Gσ)

+ σ − 2hσ

n
,

where h is the number of nonzero eigenvalues in Gσ.

Before proceeding to the proof, we recall the following useful absolute

value inequalities. For any real numbers a and b, it holds: |a| − |b| ≤
|a− b| ≤ |a|+ |b|. Applying these inequalities to E (Gσ), we get:

n∑
i=1

|λi| − σ =

n∑
i=1

(
|λi| −

σ

n

)
≤

n∑
i=1

∣∣∣λi −
σ

n

∣∣∣ = E (Gσ)

≤
n∑

i=1

(
|λi|+

σ

n

)
=

n∑
i=1

|λi|+ σ .

Proof. Let λ1, λ2, · · · , λn be the eigenvalues of Gσ, and suppose that

λj1 ≥ λj2 ≥ · · ·λjh are the nonzero eigenvalues of Gσ. Since Gσ has at

least one edge, we have λj1 = λ1 > 0 and λjh = λn < 0. Using Lemma

4 for the positive numbers ai = |λji|, i = 1, 2, · · · , h, and noting that r is

even, we have,
h∑

i=1

(ai)
r =

h∑
i=1

|λji|r =
h∑

i=1

λr
ji = Mr(Gσ), and then

Mr(Gσ)
4 ≤

(
h∑

i=1

|λji|

)2

·Ms(Gσ) ·Mt(Gσ) .

Furthermore,

h∑
i=1

∣∣∣λji −
σ

n

∣∣∣+ (n− h)σ

n
≥

h∑
i=1

|λji| −
hσ

n
+

(n− h)σ

n

≥ Mr(Gσ)
2√

Ms(Gσ) ·Mt(Gσ)
− hσ

n
+

(n− h)σ

n
.

That is

E (Gσ) ≥
Mr(Gσ)

2√
Mt(Gσ) ·Ms(Gσ)

+ σ − 2hσ

n
.

Apply Theorem 3 to (s, t) = (2, 4), we have the following corollary.
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Corollary 3. Let Gσ be a graph of order n with m edges and σ self-loops.

Let h be the number of nonzero eigenvalues of Gσ. Then

E (Gσ) ≥ (2m+ σ)

√
2m+ σ

M4(Gσ)
+ σ − 2hσ

n
.

By the following lemma, we will obtain a (n,m, σ)-type lower bound

for E (Gσ).

Lemma 5. [15] Let Gσ be a graph of order n with m edges and σ self-loops.

Let λ1, λ2 · · ·λn be its eigenvalues. Then,

n∑
i=1

∣∣∣λi −
σ

n

∣∣∣2 = 2m+ σ − σ2

n
.

Theorem 4. Let Gσ be a graph of order n with m edges and σ self-loops.

Then,

E (Gσ) ≥
√

2m+ σ − σ2

n
.

Proof. Let λ1, λ2, · · · , λn be the eigenvalues of Gσ.

E (Gσ)
2 =

(
n∑

i=1

∣∣∣λi −
σ

n

∣∣∣)2

≥
n∑

i=1

∣∣∣λi −
σ

n

∣∣∣2 = 2m+ σ − σ2

n
.

Hence, E (Gσ) ≥
√
2m+ σ − σ2

n .

In order to prove Lemma 7, we need the following lemma.

Lemma 6. [7] Let y = (y1, y2, . . . , yn)
t in Cn then

n∑
i=1

|yi| ≤

√√√√n

n∑
i=1

|yi|2 .

Equality holds if and only if |y1| = · · · = |yn| =
√

1
n

n∑
i=1

|y2i |.

The inequality of next Lemma will be used in the proof of Theorem 5.
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Lemma 7. Let Gσ be a self-loop graph with m edges, n vertices and σ

self-loops. Let λ1, λ2, . . . , λn be the eigenvalues of Gσ. Then,

n∑
i=1

|λi| ≤
√

n(2m+ σ) .

Proof. By applying Lemma 6, we have

n∑
i=1

|λi| ≤

√√√√n

n∑
i=1

|λi|2 =
√
n(2m+ σ) .

Lemma 8. [22] Let y = (yi) and b = (bi), i = 1, 2, . . . , n, be real number

sequences such that
n∑

i=1

|yi| = 1, and
n∑

i=1

yi = 0. Then,

∣∣∣∣∣
n∑

i=1

biyi

∣∣∣∣∣ ≤ 1

2

(
max
1≤i≤n

(bi)− min
1≤i≤n

(bi)

)
.

Theorem 5. Let Gσ be a self-loop graph with m edges, n vertices and

σ self-loops. Let d1, d2, . . . , dn be the degree of vertices in Gσ and δ =

min
1≤i≤n

di, ∆ = max
1≤i≤n

di. Then,

E (Gσ) ≥
4σ
n (m+ σ)− 2∆

√
n(2m+ σ)

∆− δ
.

Proof. Let λ1, λ2, · · · , λn be the eigenvalues of Gσ. Set bi = di and

yi =
λi− σ

n
n∑

i=1
|λi− σ

n |
for each i = 1, 2, . . . , n. Using the fact

n∑
i=1

λi = σ, we obtain

n∑
i=1

yi =

n∑
i=1

λi−σ

n∑
i=1

|λi− σ
n |

= 0,
n∑

i=1

|yi| =
n∑

i=1
|λi− σ

n |
n∑

i=1
|λi− σ

n |
= 1, and

n∑
i=1

di = 2(m + σ).

By using Lemma 8, we have

∣∣∣∣∣
n∑

i=1

biyi

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

σ
n

n∑
i=1

di

n∑
i=1

|λi − σ
n |

−

n∑
i=1

diλi

n∑
i=1

|λi − σ
n |

∣∣∣∣∣∣∣∣ ≤
1

2
(∆− δ) .
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Since

∣∣∣∣ n∑
i=1

diλi

∣∣∣∣ ≤ n∑
i=1

|diλi| ≤ ∆
n∑

i=1

|λi| and applying Lemma 7, we have

∣∣∣∣∣∣∣∣
σ
n

n∑
i=1

di

n∑
i=1

|λi − σ
n |

−

n∑
i=1

diλi

n∑
i=1

|λi − σ
n |

∣∣∣∣∣∣∣∣ ≥
σ
n

n∑
i=1

di

n∑
i=1

|λi − σ
n |

−

∣∣∣∣∣∣∣∣
n∑

i=1

diλi

n∑
i=1

|λi − σ
n |

∣∣∣∣∣∣∣∣
≥

σ
n2(m+ σ)

E (Gσ)
−

∆
√

n(2m+ σ)

E (Gσ)
.

Combining two inequalities above, we have

E (Gσ) ≥
4σ
n (m+ σ)− 2∆

√
n(2m+ σ)

∆− δ
.

The spread of a complex matrix A is defined as the diameter of its

spectrum: s(A) = max
i,j

|λi − λj | = λ1 − λn. If A is the adjacency matrix

of Gσ, then s(A) = s(Gσ).

Theorem 6. Let G be a simple connected graph with m edges, n vertices.

Let Gσ be a graph obtained from G by attaching σ self-loops. Then,

E (Gσ) ≥
4m+ 2σ − 2σ2

n

s(Gσ)
.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of Gσ. Using Lemma 8, we

set bi = λi and yi =
λi− σ

n∑
|λi− σ

n | for each i = 1, 2, . . . , n. Since
n∑

i=1

λ2
i =

2m+ σ, we get

∣∣∣∣∣
n∑

i=1

biyi

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

n∑
i=1

λ2
i − σ

nλi

n∑
i=1

|λi − σ
n |

∣∣∣∣∣∣∣∣ ≤
1

2

(
max
1≤i≤n

(bi)− min
1≤i≤n

(bi)

)
=

1

2
s(Gσ) .
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Furthermore,∣∣∣∣∣∣∣∣
n∑

i=1

λ2
i − σ

n

n∑
i=1

λi

n∑
i=1

|λi − σ
n |

∣∣∣∣∣∣∣∣ ≥
n∑

i=1

λ2
i

n∑
i=1

|λi − σ
n |

−

∣∣∣∣σn n∑
i=1

λi

∣∣∣∣
n∑

i=1

|λi − σ
n |

=
2m+ σ − σ2

n

E (Gσ)
.

Combining two inequalities above, we have E (Gσ) ≥
4m+ 2σ − 2σ2

n

s(Gσ)
.

Lemma 9. Let Gσ be a graph of order n with m edges and σ self-loops.

Then,

s(Gσ) ≤ λ1 +
√
2m+ σ − λ2

1 ≤
√
2(2m+ σ) .

Proof. Since
n∑

i=1

λ2
i = 2m + σ, we have λ2

1 + λ2
n ≤ 2m + σ. That is

−
√
2m+ σ − λ2

1 ≤ λn ≤
√
2m+ σ − λ2

1. Then,

s(Gσ) = λ1 − λn ≤ λ1 +
√

2m+ σ − λ2
1 .

Now we consider the function F (x) = x +
√
2m+ σ − x2, where x <

√
2m+ σ. By taking its first derivation, we can find that F (x) takes the

maximum value
√

2(2m+ σ), when x is equal to
√

2m+σ
2 . Thus s(Gσ) ≤√

2(2m+ σ).

Combining Theorem 6 and Lemma 9, we immediately obtain the fol-

lowing consequence.

Corollary 4. For any connected self-loop graph Gσ with m edges and σ

self-loops, we have

E (Gσ) ≥
4m+ 2σ − 2σ2

n

λ1 +
√

2m+ σ − λ2
1

;

E (Gσ) ≥
√
2(2m+ σ − σ2

n )
√
2m+ σ

.

Lemma 10. [9] Let ai and bi be the real numbers satisfy rai ≤ bi ≤ Rai,
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for all i = 1, 2, . . . , n. Then,

n∑
i=1

b2i + rR

n∑
i=1

a2i ≤ (r +R)

n∑
i=1

aibi .

Equality holds if and only if either bi = rai or bi = Rai, for all i =

1, 2, . . . , n.

Theorem 7. Let G be a simple graph with n vertices and m edges. Let

Gσ be a self-loop graph obtained from G by attaching σ self-loops. Then,

E (Gσ) ≥
2m+ σ − nλ1

√
2m+ σ − λ2

1 − 2σ2

n

λ1 +
√
2m+ σ − λ2

1

− σ.

Proof. Applying Lemma 10, setting r = λn − σ
n , R = λ1 + σ

n , bi =∣∣λi − σ
n

∣∣ , ai = 1, for i = 1, 2, . . . , n, we have

n∑
i=1

∣∣∣λi −
σ

n

∣∣∣2 + (λn − σ

n
)(λ1 +

σ

n
)

n∑
i=1

1 ≤ (λn + λ1)

n∑
i=1

∣∣∣λi −
σ

n

∣∣∣ .
Recall that

n∑
i=1

∣∣λi − σ
n

∣∣2 = 2m+ σ − σ2

n . Then,

2m+ σ − 2σ2

n
+ nλ1λn + σ(λn − λ1) ≤ (λ1 + λn)E (Gσ).

Since −
√
2m+ σ − λ2

1 ≤ λn ≤
√
2m+ σ − λ2

1, we get

E (Gσ) ≥
2m+ σ − 2σ2

n − nλ1

√
2m+ σ − λ2

1

λ1 +
√
2m+ σ − λ2

1

− σ.

3 Upper bounds for the energy of graphs

with self-loops

In this section, we present new upper bounds for E (Gσ) that are dependent

on the parameters n, m, σ, and ∆.
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For simple graphs G, there are numerous known results regarding the

spectral radius λ1(G). In the case of λ1(Gσ), several new bounds for

λ1(Gσ) have been provided as follows [2].

Lemma 11. [2] Let G be a connected graph of order n and size m. Then,

λ1(Gσ) ≥
2m

n
+

σ

n
.

Lemma 12. [2] Let Gσ be a self-loop graph of order n. Then,

λ1(Gσ) ≤ △(G) + 1 ≤ n .

Moreover, λ1(Gσ) = n if and only if Gσ = (Kn)n, the complete graph

with n self-loops.

By the above two lemmas and the Cauchy-Schwarz inequality, we will

obtain some upper bounds of E (Gσ).

Theorem 8. Let G be a connected graph of order n and size m with

maximum degree ∆. Let Gσ be the graph obtained from G by attaching σ

self-loops. Then,

E (Gσ) ≤

√
(n− 1)

(
2m+ σ − 4m2 + 4mσ + 2σ2

n2
+

2σ

n
(∆ + 1− σ

2
)

)
+∆+

n− σ

n
.

Proof. Suppose that λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of Gσ. By

the Cauchy-Schwarz inequality, we get(
n∑

i=2

∣∣∣λi −
σ

n

∣∣∣)2

≤ (n− 1)

n∑
i=2

∣∣∣λi −
σ

n

∣∣∣2 .

By Lemma 5, we have

n∑
i=2

∣∣∣λi −
σ

n

∣∣∣2 = 2m+σ− σ2

n
−
∣∣∣λ1 −

σ

n

∣∣∣2 = 2m+σ−λ2
1+2

σ

n
λ1−

(1 + n)σ2

n2
.
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Applying Lemmas 11, 12, we have

E (Gσ) =

n∑
i=1

∣∣∣λi −
σ

n

∣∣∣
≤

√
(n− 1)

(
2m+ σ − λ2

1 + 2
σ

n
λ1 −

(1 + n)σ2

n2

)
+
∣∣∣λ1 −

σ

n

∣∣∣
≤

√
(n− 1)

(
2m+ σ − 4m2 + 4mσ + 2σ2

n2
+ 2

σ

n
(∆ + 1− σ

2
)

)
+∆+

n− σ

n
.

Theorem 9. Let G be a connected graph of order n with m edges and

maximum degree ∆. Let Gσ be the graph obtained from G by attaching σ

self-loops. Then,

E (Gσ) ≤ ∆+ 1 +
(n− 2)σ

n
+

√
(n− 1)

(
2m+ σ − (2m+ σ)2

n2

)
.

Proof. Suppose that λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of Gσ. By

the Cauchy-Schwarz inequality and Lemma 1,(
n∑

i=2

|λi|

)2

≤ (n− 1)

n∑
i=2

|λi|2 = (n− 1)(2m+ σ − λ2
1) .

Immediately, we have

E (Gσ) = |λ1 −
σ

n
|+

n∑
i=2

|λi −
σ

n
|

≤ ∆+ 1− σ

n
+
√
(n− 1)(2m+ σ − λ2

1) +
(n− 1)σ

n

≤ ∆+ 1 +
(n− 2)σ

n
+

√
(n− 1)

(
2m+ σ − (2m+ σ)2

n2

)
.

The inequality in the next lemma will be used in the proof of Theorem 10.

Lemma 13. [26] Let A = (aij) be an n×n nonnegative symmetric matrix
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with positive row sums d1, d2, . . . , dn. Then,

λ1(A) ≥

√√√√ n∑
i=1

d2i

n

with equality if and only if A is regular or semiregular.

Theorem 10. Let Gσ be a self-loop graph with n vertices, m edges and σ

self-loops. Let λ1 be the maximum eigenvalue of Gσ. Then,

λ1 ≥ 2(m+ σ)

n
− 1.

Proof. Let A be the adjacency matrix of Gσ. Let A
′
= A + In with

positive row sums c1, c2, . . . , cn. Let d1, d2, . . . , dn be the degree of vertices

in Gσ. By applying Lemma 6, we have
n∑

i=1

|di| ≤
√

n
n∑

i=1

d2i . That is

2(m+ σ) ≤
√
n

n∑
i=1

d2i . Thus, we get

n∑
i=1

d2i ≥ 4(m+ σ)2

n
.

Then, using Lemma 13, we obtain

λ1(A
′
) ≥

√√√√ n∑
i=1

c2i

n
≥

√√√√ n∑
i=1

d2i

n
≥ 2(m+ σ)

n
.

What’s more, λ1(A
′
) = λ1(A) + 1. Combining inequalities above, we get

λ1(A) ≥ 2(m+ σ)

n
− 1 .

Now we will give two (n,m, σ)-type upper bounds for E (Gσ).

Theorem 11. Let Gσ be a self-loop graph with n vertices, m edges and σ
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self-loops. Then,

E (Gσ) ≤

√
n2 + (2m+ σ − σ2

n )2

2
.

Proof. Let ai = bi = qi = pi = 1 and ci = di = |λi − σ
n |, i = 1, 2, . . . , n.

By Lemma 3, we have

n∑
i=1

1

n∑
i=1

1 +

(
n∑

i=1

|λi −
σ

n
|2
)2

≥ 2

(
n∑

i=1

|λi −
σ

n
|

)2

n2 +

(
2m+ σ − σ2

n

)2

≥ 2E (Gσ)
2

E (Gσ) ≤

√
n2 + (2m+ σ − σ2

n )2

2
.

Theorem 12. Let Gσ be a self-loop graph with n vertices, m edges and σ

self-loops. Then,

E (Gσ) ≤
2m+ σ − σ2

n + n

2
.

Proof. Applying Lemma 3, for i = 1, 2, . . . , n, let ai =
∣∣λi − σ

n

∣∣ , bi = pi =

qi = ci = di = 1. Then,

n∑
i=1

∣∣∣λi −
σ

n

∣∣∣2 · n∑
i=1

1 +

n∑
i=1

1 ·
n∑

i=1

1 ≥ 2

n∑
i=1

∣∣∣λi −
σ

n

∣∣∣ · n∑
i=1

1(
2m+ σ − σ2

n

)
n+ n2 ≥ 2nE (Gσ)

E (Gσ) ≤
2m+ σ − σ2

n + n

2
.
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[16] I. Gutman, T. Soldatović, (n,m)-Type approximations for total π-
electron energy of benzenoid hydrocarbons, MATCH Commun. Math.
Comput. Chem. 44 (2001) 169–182.

[17] X. Hu, H. Liu, New upper bounds for the Hückel energy of graph,
MATCH Commun. Math. Comput. Chem. 66 (2011) 863–878.
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