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Abstract

A lower bound is given for the ultimate energy, which is applica-
ble to all graph energies. The extremal characterization is provided
for the energy and Laplacian energy when the graph is connected.

1 Introduction

Let x = (21, ...,2,) be an arbitrary n-tuple of real numbers, and let T be
their arithmetic mean, where n is a positive integer. Then the ultimate

energy associated with x is defined as
UE=UE(x) =Y |z —1|.
i=1

UE was defined by Gutman [3] without any relation to a graph, to a matrix,
or even to a polynomial.

We consider simple graphs. Let G be a graph of order n with vertex set
V(G). Let M(G) be an n x n real symmetric matrix associated to G. Let
A (M) > - > X\, (M) be the eigenvalues of M (G). Then the M-energy of
G is defined as UE((A (M), ..., A\ (M))). For u,v € V(G), u ~ v means
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that u and v are adjacent in G. The adjacency matrix of G is the n x n

symmetric matrix A(G) = (uw)u,vev(a), Where

1 ifu~wo,
auv - .
0 otherwise.

The spectrum of G is the spectrum of A(G). Denote by p1 > -+ > p, the
eigenvalues of G. For u € V(G), denote by dg(u) the degree of v in G. The
Laplacian matrix of G is the n xn symmetric matrix L(G) = (fuv)u,vev(a)
where
dy, ifu=wo,
lbyw =4 =1 ifu~w,

0 otherwise.

The Laplacian matrix of a graph is positive semi-definite. The Laplacian
spectrum of a graph G is just the spectrum of L(G). Denote by g > -+ >
1, the Laplacian eigenvalues of G. It is known that p,, = 0. The energy
of a graph G, denoted by E(G), is defined as the A-energy of G, see [7].
That is,

E@G)=)_ ol
k=1

The Laplacian energy of G, denoted by LE(QG), is defined as the L-energy
of G, see [5]. That is,

LE(G) = |u;—dl,
i=1

where d is the average degree of G, i.e., d = 22 with m = |E(G)|. Both
energy and Laplacian energy have been studied extensively, see Gutman
and Furtula [4].

Denote by Var(x) the variance of the numbers 1, ..., z, and by P(x)

the polynomial []? ;(z — z;). Gutman established the following bounds
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for UE,

\/nVar(x) + n(n — D|P@[2/" < UE(x)

< \/n(n — 1)Var(x) + n|P(z)|?/",

which then hold for any other energy as well.

In this paper, we give a lower on UE, its special forms for energy and
Laplacian energy are known. However, there is no complete characteriza-
tion for connected graphs that attain the respective bound. We fill this

gap by giving a complete characterization.

2 Preliminaries

We need some lemmas in the proofs.

Lemma 1. [11] A connected graph has ezxactly one positive eigenvalue if

and only if it is a complete multipartite graph.

Denote by Ky, ... n, the complete s-partite graph whose partite sizes
are ni,...,ns, where s > 2. It is easy to see that there are exactly s
different rows in A(K,,, . n,), so its rank is s. Thus, if n > s, then 0 is
a A-eigenvalue of K,,, .., with multiplicity n — s. This follows also from

n. given in [1].

~~~~

Lemma 2. [1, Interlacing Theorem for Complete Multipartite Graphs]
Suppose that G = Ky, .. n, with s > 2 and 2221 nE =n.
(i) G has ezactly s — 1 negative integers pn—si2, ..., pn such that

Ny < —pPp_st2 SN2 < —pp_s13 <Nz <o <ng_ < —pp <N

(ii) If the sequence nq,...,ns contains t different numbers ny = p; <

- < pt, then G has a negative eigenvalue in each of the internals of

(plap2)a sy (ptfhpt)-

Lemma 3. [8] Let G be a connected graph with diameter D. Suppose that
G has exactly k distinct Laplacian eigenvalues. Then D 4+ 1 < k.
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Lemma 4. [2,8] Let G be a graph of order n with minimum degree §. If
G is not a complete graph, then p,_1 <9.
3 A lower bound for ultimate energy

The inequality in the following lemma has been given in the book [10,
p. 346], but it was not mentioned when the equality holds there. For

completeness, we give a proof here.

Lemma 5. Ify,...,y, are real numbers such that
n n
Dl =1and >y =0,
k=1 k=1
then for real numbers aq,. .., an,

> o

k=1

)—l

= gl o mig, o) .

with equality if and only if ar = maxi<i<n a;, Mini<ij<p a; whenever yi, #

0.

Proof. Assume that a; > -+ > a,. As >_;_, yxr = 0, one has

n

Z akYk

k=1

n

Z(Qak —a; —an)y

k=1

N
N)\H

n
<5 12ak — ax — anl[yx|
k=1

with equality if and only if (2ax, — a1 — a,)yx and (2a; — a1 — ay,)y; have
the same sign for all kK and j with 1 < k < j <n. Asa, < ar < a1, we
have |2ar — a1 — an| < a1 — a, with equality if and only if ax = a; or

ap =an. As Y p_, lyx| =1, one has

Z aky
k=1

PR 1
<3 > (a1 — an)lyk| = a1 —an)
k=1

with equality if and only if ar = a1 or ax = a, whenever y, # 0, and

(2ar, — a1 — an)yr and (2a; — a1 — ay,)y; have the same sign whenever
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Yk, y; 7 0 with 1 < k < j < n. Note that if a = a1 or ar = a,, whenever
yr # 0, then 2a; — a1 — ap = a1 — an,an — a1, s0 (2a; — a1 — a,)yi and
(2a; — a1 — an)y; have the same sign whenever yi,y; # 0 with 1 < k <
j < n. Thus, (1) follows and equality holds in (1) if and only if a = a; or

ar = a, whenever y; # 0 with 2 < k <n — 1. |
Theorem 1. Let x = (z1,...,x,), where not all x1,...,x, are equal.
Then on V.

UE(x) > n Var(x) (2)

T maxi<p<n Tk — MiNy<p<y Tk
with equality if and only if x;, = maxi<;<n x; when z, > T and x =
min;<;<n £; when xp <T.

Proof. For k=1,...,n,let a =z —T. Then UE(x) = >, _, |ak|. Now,
fork=1,...,n,let yp = Note that

ay
UE(x)"

Dyl =1and Y gy, =0.
k=1 k=1

By Lemma 5,
= _xr—z _1 )
2o =g < 3, o i, )
or
UE(x) > 2 e (2 —T)°

T maxi<ip<n Tk — minlgkgn Tk
2nVar(x)

. )
maxj<ig<n Tk — MINj<k<n Tk

so (2) follows and equality holds if and only if zx = maxj<;<, z; when

> 7 and xp = minj<;<, T; When zj < 7. [ |

4 Lower bounds for energy

Apply Theorem 1 to the energy of a graph, we have
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Theorem 2. Let G be a graph on n vertices with m > 1 edges. Then

B(G) > 2
P1 — Pn

(3)

with equality when G is connected if and only if G is a complete bipartite

graph or a reqular complete multipartite graph.

Inequality (3) was recently reported in [6], where a sufficient condition
(i.e. G is a complete graph or a regular complete bipartite graph) is given
for which the equality is attained. Here, a different proof is given with a

complete characterization of the equality when G is connected.

Proof of Theorem 2. By Theorem 1,

B(G) > 23 Pk __4m
T pP1—Pn P1— Pn

with equality if and only if
pr = p1 if pi >0 (4)

and
P = pn if pi < 0. (5)

Suppose that G is connected.

Suppose that the equality holds in (3). Then, by Perron-Frobenius the-
orem, p; is simple. From (4), G possesses exactly one positive eigenvalue,
so G is a complete s-partite graph for some s with 2 < s < n by Lemma 1.

If s = n, then G is regular. Suppose that 3 < s < n—1. It follows from
(5) that all negative eigenvalues are equal. So G possesses exactly three
distinct eigenvalues, apart from the largest eigenvalue and 0 of multiplicity
n — s, the s — 1 negative eigenvalues p,,—s42,...,p, are all equal, which
we denote by p. Assume that G = K, . n,, where n; < .-+ < ng and
n =73 1_, k. By Lemma 2(i),

n <—p<nyg<—p<ng<---<ng_g < —p< . (6)

If n; <mjpq for i =1or i =s—1, then Lemma 2(ii) implies there is an
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eigenvalue in the interval (n;,n;1+1), contradicting (6). Therefore, n; = na,
ns—1 = ns and from (6), ny = --- = ns. That is, G is regular.

Conversely, suppose that G is a complete bipartite graph or a regular
complete s-partite graph with s > 3. If G is a complete bipartite graph,
then py = —p, and p; =0 for i = 2,...,n — 1, so we have (4) and (5),
implying that equality holds in (3). Suppose that G is a regular complete
s-partite graph with s > 3. Then the largest eigenvalue of G is the degree
of any vertex, that is n — %, and 0 is an eigenvalue of G with multiplicity

n

n — s, and the least eigenvalue of G is —Zi:? = —2 of multiplicity s — 1.

Thus, (4) and (5) hold, so (3) becomes an equality. |

Theorem 3. Let G be a bipartite graph on n vertices with m edges, where
n >4 and m > 1. Suppose that ps > 0. Then
2m — p?

E(G) > 2p1 + (7)

P2

with equality when G is connected if and only if G has four or five distinct

eigenvalues.

Proof. Note that E(G) = 2p; + ZZ;QI |pr|. For k = 2,...,n —1, let

Yk = ﬁ Then

n—1 n—1
D lykl=1and >y =0.
k=2 k=2

By Theorem 1,
E(G) > 2p1 + 2m — pi
P2
with equality if and only if pr, = p2 when pr > 0 with k£ > 2 and pr = —p2
when pr < 0 with k <n —1.
If G is connected, then p; > pa, so equality holds in (7) if and only if

G has four or five distinct eigenvalues. |
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5 Lower bounds for Laplacian energy

The (first) Zagreb index of a graph G is defined as Z(G) = 3, cv () dZ,(u).
Apply Theorem 1 to the Laplacian energy of a graph, we have

Theorem 4. Let G be a graph with n vertices and m > 1 edges. Then

2 4m?

LEG) > — (Z(G) +2m — m) 8)
H1 n

with equality when G is connected if and only if G is a reqular complete

multipartite graph.

Inequality (8) has been already given by Milovanovi¢ et al. [9], where
it was pointed out that equality holds if G is a complete graph or a regular
complete bipartite graph. For completeness, a proof is included with a

characterization for the equality case when G is connected.

Proof of Theorem 4. By Theorem 1, (8) follows and equality holds in (8)

if and only if pr = w1 if pr > QT’” and pr = fn if pr < 27—7:‘

Suppose that G is connected. Then p,_1 > pu, = 0.

Suppose that the equality holds in (8). If 277” is not a Laplacian eigen-
value of G, then G has exactly two distinct Laplacian eigenvalues p; and
0, so we have by Lemma 3 that GG is a complete graph. Suppose that

27’” is a Laplacian eigenvalue of G. Then G is not a complete graph and

Pp—1 = 277" By Lemma 4, G is regular of degree p; = 277” The Laplacian

eigenvalues are

pL—pPp =2 p1—p2>p1—p1=0.

So p1 — p2 = 277", ie., po = 0. By Lemma 1, G is a complete s-partite
graph with 2 <s<n—1.

Conversely, suppose that G is a regular complete multipartite graph.
If G is a complete graph, then px = n for k = 1,...,n — 1, so equality
holds in (8). Otherwise, G is a complete s-partite graph for some s with
2 < s <n-—1. As G is regular, its spectrum consists p1, 0 with multiplicity

n—s, and a negative eigenvalue say a with multiplicity s—1. So ux = p—a
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fork=1,...,s—1and uy = p; for k=s,...,n— 1. Thus, equality holds
in (8). |

For a graph G with n vertices, it is known that p; < n with equality if
and only if the complement of G is not connected. So from Theorem 4 we
arrive at the following conclusion: If G a graph with n vertices and m > 1

edges, then
2
LE@) > % (Z(G) +om — 4’:)

with equality when G is connected if and only if G is a regular complete

multipartite graph.
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