
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 91 (2024) 769–778

ISSN: 0340–6253

doi: 10.46793/match.91-3.769C

From Ultimate Energy to Graph Energies

Jin Caia,, Bo Zhoua∗

aSchool of Mathematical Sciences, South China Normal University,

Guangzhou 510631, P. R. China

jincai@m.scnu.edu.cn, zhoubo@scnu.edu.cn

(Received December 8, 2023)

Abstract

A lower bound is given for the ultimate energy, which is applica-
ble to all graph energies. The extremal characterization is provided
for the energy and Laplacian energy when the graph is connected.

1 Introduction

Let x = (x1, . . . , xn) be an arbitrary n-tuple of real numbers, and let x be

their arithmetic mean, where n is a positive integer. Then the ultimate

energy associated with x is defined as

UE = UE(x) =

n∑
i=1

|xi − x|.

UE was defined by Gutman [3] without any relation to a graph, to a matrix,

or even to a polynomial.

We consider simple graphs. Let G be a graph of order n with vertex set

V (G). Let M(G) be an n× n real symmetric matrix associated to G. Let

λ1(M) ≥ · · · ≥ λn(M) be the eigenvalues of M(G). Then the M -energy of

G is defined as UE((λ1(M), . . . , λn(M))). For u, v ∈ V (G), u ∼ v means
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that u and v are adjacent in G. The adjacency matrix of G is the n × n

symmetric matrix A(G) = (auv)u,v∈V (G), where

auv =

1 if u ∼ v,

0 otherwise.

The spectrum of G is the spectrum of A(G). Denote by ρ1 ≥ · · · ≥ ρn the

eigenvalues of G. For u ∈ V (G), denote by dG(u) the degree of u in G. The

Laplacian matrix of G is the n×n symmetric matrix L(G) = (ℓuv)u,v∈V (G),

where

ℓuv =


du if u = v,

−1 if u ∼ v,

0 otherwise.

The Laplacian matrix of a graph is positive semi-definite. The Laplacian

spectrum of a graph G is just the spectrum of L(G). Denote by µ1 ≥ · · · ≥
µn the Laplacian eigenvalues of G. It is known that µn = 0. The energy

of a graph G, denoted by E(G), is defined as the A-energy of G, see [7].

That is,

E(G) =

n∑
k=1

|ρk|.

The Laplacian energy of G, denoted by LE(G), is defined as the L-energy

of G, see [5]. That is,

LE(G) =

n∑
i=1

|µi − d|,

where d is the average degree of G, i.e., d = 2m
n with m = |E(G)|. Both

energy and Laplacian energy have been studied extensively, see Gutman

and Furtula [4].

Denote by Var(x) the variance of the numbers x1, . . . , xn and by P (x)

the polynomial
∏n

i=1(x − xi). Gutman established the following bounds
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for UE,√
nVar(x) + n(n− 1)|P (x)|2/n ≤ UE(x)

≤
√
n(n− 1)Var(x) + n|P (x)|2/n,

which then hold for any other energy as well.

In this paper, we give a lower on UE, its special forms for energy and

Laplacian energy are known. However, there is no complete characteriza-

tion for connected graphs that attain the respective bound. We fill this

gap by giving a complete characterization.

2 Preliminaries

We need some lemmas in the proofs.

Lemma 1. [11] A connected graph has exactly one positive eigenvalue if

and only if it is a complete multipartite graph.

Denote by Kn1,...,ns
the complete s-partite graph whose partite sizes

are n1, . . . , ns, where s ≥ 2. It is easy to see that there are exactly s

different rows in A(Kn1,...,ns
), so its rank is s. Thus, if n > s, then 0 is

a A-eigenvalue of Kn1,...,ns
with multiplicity n− s. This follows also from

the characteristic polynomial of Kn1,...,ns
given in [1].

Lemma 2. [1, Interlacing Theorem for Complete Multipartite Graphs]

Suppose that G = Kn1,...,ns
with s ≥ 2 and

∑s
k=1 nk = n.

(i) G has exactly s− 1 negative integers ρn−s+2, . . . , ρn such that

n1 ≤ −ρn−s+2 ≤ n2 ≤ −ρn−s+3 ≤ n3 ≤ · · · ≤ ns−1 ≤ −ρn ≤ ns

(ii) If the sequence n1, . . . , ns contains t different numbers n1 = p1 <

· · · < pt, then G has a negative eigenvalue in each of the internals of

(p1, p2), . . . , (pt−1, pt).

Lemma 3. [8] Let G be a connected graph with diameter D. Suppose that

G has exactly k distinct Laplacian eigenvalues. Then D + 1 ≤ k.
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Lemma 4. [2, 8] Let G be a graph of order n with minimum degree δ. If

G is not a complete graph, then µn−1 ≤ δ.

3 A lower bound for ultimate energy

The inequality in the following lemma has been given in the book [10,

p. 346], but it was not mentioned when the equality holds there. For

completeness, we give a proof here.

Lemma 5. If y1, . . . , yn are real numbers such that

n∑
k=1

|yk| = 1 and

n∑
k=1

yk = 0,

then for real numbers a1, . . . , an,∣∣∣∣∣
n∑

k=1

akyk

∣∣∣∣∣ ≤ 1

2
( max
1≤i≤n

ak − min
1≤i≤n

ak) (1)

with equality if and only if ak = max1≤i≤n ai,min1≤i≤n ai whenever yk ̸=
0.

Proof. Assume that a1 ≥ · · · ≥ an. As
∑n

k=1 yk = 0, one has∣∣∣∣∣
n∑

k=1

akyk

∣∣∣∣∣ = 1

2

∣∣∣∣∣
n∑

k=1

(2ak − a1 − an)yk

∣∣∣∣∣ ≤ 1

2

n∑
k=1

|2ak − a1 − an||yk|

with equality if and only if (2ak − a1 − an)yk and (2aj − a1 − an)yj have

the same sign for all k and j with 1 ≤ k < j ≤ n. As an ≤ ak ≤ a1, we

have |2ak − a1 − an| ≤ a1 − an with equality if and only if ak = a1 or

ak = an. As
∑n

k=1 |yk| = 1, one has∣∣∣∣∣
n∑

k=1

akyk

∣∣∣∣∣ ≤ 1

2

n∑
k=1

(a1 − an)|yk| =
1

2
(a1 − an)

with equality if and only if ak = a1 or ak = an whenever yk ̸= 0, and

(2ak − a1 − an)yk and (2aj − a1 − an)yj have the same sign whenever
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yk, yj ̸= 0 with 1 ≤ k < j ≤ n. Note that if ak = a1 or ak = an whenever

yk ̸= 0, then 2ak − a1 − an = a1 − an, an − a1, so (2ak − a1 − an)yk and

(2aj − a1 − an)yj have the same sign whenever yk, yj ̸= 0 with 1 ≤ k <

j ≤ n. Thus, (1) follows and equality holds in (1) if and only if ak = a1 or

ak = an whenever yk ̸= 0 with 2 ≤ k ≤ n− 1.

Theorem 1. Let x = (x1, . . . , xn), where not all x1, . . . , xn are equal.

Then

UE(x) ≥ 2nVar(x)

max1≤k≤n xk −min1≤k≤n xk
, (2)

with equality if and only if xk = max1≤i≤n xi when xk > x and xk =

min1≤i≤n xi when xk < x.

Proof. For k = 1, . . . , n, let ak = xk − x. Then UE(x) =
∑n

k=1 |ak|. Now,

for k = 1, . . . , n, let yk = ak

UE(x) . Note that

n∑
k=1

|yk| = 1 and

n∑
k=1

yk = 0.

By Lemma 5,

n∑
k=1

(xk − x)
xk − x

UE(x)
≤ 1

2
( max
1≤k≤n

xk − min
1≤k≤n

xk),

or

UE(x) ≥
2
∑n

k=1(xk − x)2

max1≤k≤n xk −min1≤k≤n xk

=
2nVar(x)

max1≤k≤n xk −min1≤k≤n xk
,

so (2) follows and equality holds if and only if xk = max1≤i≤n xi when

xk > x and xk = min1≤i≤n xi when xk < x.

4 Lower bounds for energy

Apply Theorem 1 to the energy of a graph, we have
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Theorem 2. Let G be a graph on n vertices with m ≥ 1 edges. Then

E(G) ≥ 4m

ρ1 − ρn
(3)

with equality when G is connected if and only if G is a complete bipartite

graph or a regular complete multipartite graph.

Inequality (3) was recently reported in [6], where a sufficient condition

(i.e. G is a complete graph or a regular complete bipartite graph) is given

for which the equality is attained. Here, a different proof is given with a

complete characterization of the equality when G is connected.

Proof of Theorem 2. By Theorem 1,

E(G) ≥
2
∑n

k=1 ρ
2
k

ρ1 − ρn
=

4m

ρ1 − ρn

with equality if and only if

ρk = ρ1 if ρk > 0 (4)

and

ρk = ρn if ρk < 0. (5)

Suppose that G is connected.

Suppose that the equality holds in (3). Then, by Perron-Frobenius the-

orem, ρ1 is simple. From (4), G possesses exactly one positive eigenvalue,

so G is a complete s-partite graph for some s with 2 ≤ s ≤ n by Lemma 1.

If s = n, then G is regular. Suppose that 3 ≤ s ≤ n−1. It follows from

(5) that all negative eigenvalues are equal. So G possesses exactly three

distinct eigenvalues, apart from the largest eigenvalue and 0 of multiplicity

n − s, the s − 1 negative eigenvalues ρn−s+2, . . . , ρn are all equal, which

we denote by ρ. Assume that G = Kn1,...,ns , where n1 ≤ · · · ≤ ns and

n =
∑s

k=1 nk. By Lemma 2(i),

n1 ≤ −ρ ≤ n2 ≤ −ρ ≤ n3 ≤ · · · ≤ ns−1 ≤ −ρ ≤ ns. (6)

If ni < ni+1 for i = 1 or i = s − 1, then Lemma 2(ii) implies there is an
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eigenvalue in the interval (ni, ni+1), contradicting (6). Therefore, n1 = n2,

ns−1 = ns and from (6), n1 = · · · = ns. That is, G is regular.

Conversely, suppose that G is a complete bipartite graph or a regular

complete s-partite graph with s ≥ 3. If G is a complete bipartite graph,

then ρ1 = −ρn and ρi = 0 for i = 2, . . . , n − 1, so we have (4) and (5),

implying that equality holds in (3). Suppose that G is a regular complete

s-partite graph with s ≥ 3. Then the largest eigenvalue of G is the degree

of any vertex, that is n− n
s , and 0 is an eigenvalue of G with multiplicity

n− s, and the least eigenvalue of G is −n−n
s

s−1 = −n
s of multiplicity s− 1.

Thus, (4) and (5) hold, so (3) becomes an equality.

Theorem 3. Let G be a bipartite graph on n vertices with m edges, where

n ≥ 4 and m ≥ 1. Suppose that ρ2 > 0. Then

E(G) ≥ 2ρ1 +
2m− ρ21

ρ2
(7)

with equality when G is connected if and only if G has four or five distinct

eigenvalues.

Proof. Note that E(G) = 2ρ1 +
∑n−1

k=2 |ρk|. For k = 2, . . . , n − 1, let

yk = ρk

E(G)−2ρ1
. Then

n−1∑
k=2

|yk| = 1 and

n−1∑
k=2

yk = 0.

By Theorem 1,

E(G) ≥ 2ρ1 +
2m− ρ21

ρ2

with equality if and only if ρk = ρ2 when ρk > 0 with k ≥ 2 and ρk = −ρ2

when ρk < 0 with k ≤ n− 1.

If G is connected, then ρ1 > ρ2, so equality holds in (7) if and only if

G has four or five distinct eigenvalues.
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5 Lower bounds for Laplacian energy

The (first) Zagreb index of a graph G is defined as Z(G) =
∑

u∈V (G) d
2
G(u).

Apply Theorem 1 to the Laplacian energy of a graph, we have

Theorem 4. Let G be a graph with n vertices and m ≥ 1 edges. Then

LE(G) ≥ 2

µ1

(
Z(G) + 2m− 4m2

n

)
(8)

with equality when G is connected if and only if G is a regular complete

multipartite graph.

Inequality (8) has been already given by Milovanović et al. [9], where

it was pointed out that equality holds if G is a complete graph or a regular

complete bipartite graph. For completeness, a proof is included with a

characterization for the equality case when G is connected.

Proof of Theorem 4. By Theorem 1, (8) follows and equality holds in (8)

if and only if µk = µ1 if µk > 2m
n and µk = µn if µk < 2m

n .

Suppose that G is connected. Then µn−1 > µn = 0.

Suppose that the equality holds in (8). If 2m
n is not a Laplacian eigen-

value of G, then G has exactly two distinct Laplacian eigenvalues µ1 and

0, so we have by Lemma 3 that G is a complete graph. Suppose that
2m
n is a Laplacian eigenvalue of G. Then G is not a complete graph and

µn−1 = 2m
n . By Lemma 4, G is regular of degree ρ1 = 2m

n . The Laplacian

eigenvalues are

ρ1 − ρn ≥ · · · ≥ ρ1 − ρ2 > ρ1 − ρ1 = 0.

So ρ1 − ρ2 = 2m
n , i.e., ρ2 = 0. By Lemma 1, G is a complete s-partite

graph with 2 ≤ s ≤ n− 1.

Conversely, suppose that G is a regular complete multipartite graph.

If G is a complete graph, then µk = n for k = 1, . . . , n − 1, so equality

holds in (8). Otherwise, G is a complete s-partite graph for some s with

2 ≤ s ≤ n−1. As G is regular, its spectrum consists ρ1, 0 with multiplicity

n−s, and a negative eigenvalue say a with multiplicity s−1. So µk = ρ−a
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for k = 1, . . . , s− 1 and µk = ρ1 for k = s, . . . , n− 1. Thus, equality holds

in (8).

For a graph G with n vertices, it is known that µ1 ≤ n with equality if

and only if the complement of G is not connected. So from Theorem 4 we

arrive at the following conclusion: If G a graph with n vertices and m ≥ 1

edges, then

LE(G) ≥ 2

n

(
Z(G) + 2m− 4m2

n

)
with equality when G is connected if and only if G is a regular complete

multipartite graph.
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