
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 91 (2024) 741–767

ISSN: 0340–6253

doi: 10.46793/match.91-3.741R

Optimization Problems for Variable Randić
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Abstract

A large number of graph invariants of the form
∑

uv F (du, dv)
are studied in mathematical chemistry, where uv denotes the edge
of the graph G connecting the vertices u and v, and du is the de-
gree of the vertex u. Among them the variable Randić type lodeg
index RLIa, with F (du, dv) = logadu logadv, for a > 0, was found
to have applicative properties. The aim of this paper is to obtain
new inequalities for the variable Randić type lodeg index, and to
characterize graphs extremal with respect to them. In particular,
some of the open problems posed by Vukičević are solved in this
paper; we characterize graphs with maximum and minimum values
of the RLIa index, for every a > 0, in the following sets of graphs
with n vertices: graphs, connected graphs, graphs with fixed mini-
mum degree, connected graphs with fixed minimum degree, graphs
with fixed maximum degree, and connected graphs with fixed max-
imum degree. Also, our results can be applied to a large class of
topological indices of the form

∑
uv∈E(G) F (du, dv), as variable sum

lodeg index and variable inverse sum lodeg index, solving some of
the open problems posed by Vukičević.
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1 Introduction

Topological indices are parameters associated with chemical compounds

that associate the chemical structure with several physical, chemical or

biological properties. These indices play an important role in mathematical

chemistry, especially regarding quantitative structure-activity relationship

(QSAR) and the quantitative structure–property relationship (QSPR).

A family of degree–based topological indices, named Adriatic indices,

was put forward in [21, 22]. Twenty of them were selected as significant

predictors. One of them, the Randić type lodeg index, RLI, was singled

out in [21] as a significant predictor of heat capacity at T constant. This

index is defined as

RLI(G) =
∑

uv∈E(G)

log du log dv,

where uv denotes the edge of the graph G connecting the vertices u and

v, and du is the degree of the vertex u.

We study here the properties of the variable Randić type lodeg index

defined, for each a ∈ R+, as

RLIa(G) =
∑

uv∈E(G)

logadu log
adv.

Note that RLI1 is the Randić type lodeg index RLI.

The idea behind the variable molecular descriptors is that the variables

are determined during the regression so that the standard error of estimate

for a particular studied property is as small as possible (see, e.g., [16]).

The aim of this paper is to obtain new inequalities for the variable

Randić type lodeg index, and to characterize graphs extremal with re-

spect to them. Also, we want to remark that many previous results on

topological indices are proved for connected graphs, but our inequalities

hold for both connected and non-connected graphs.

In particular, we characterize the graphs with maximum and minimum

values of the RLIa index, for every a > 0, in the following sets of graphs

with n vertices: graphs, connected graphs, graphs with a fixed minimum
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degree, connected graphs with a fixed minimum degree, graphs with a

fixed maximum degree, and connected graphs with a fixed maximum de-

gree. These results solve the problems (1), (7) and (8) stated by Vukičević

in [24], for every value of the parameter a. We can use these results for de-

tecting chemical compounds that could satisfy desirable properties. Hence,

extremal graphs should correspond to molecules with a extremal value of

a desired property since there exists a property well correlated with this

descriptor for some values of a, in particular, a = 1.

Hollas [6] generalized several known indices to BID(G), defined as

BID(G) =
∑

uv∈E(G)

F (du, dv).

In some literature, BID(G) was called the bond incident degree index [1],

[18] or the connectivity function [18], [25] of G. See [13, 14] for recent

results on BID indices. Also, our results can be applied to this class of

topological indices. In particular, we solve these optimization problems

for the variable inverse sum lodeg index

ISLa(G) =
∑

uv∈E(G)

1

logadu + logadv
,

with a < 0, and for the variable sum lodeg index

SLIa(G) =
∑

uv∈E(G)

(
logadu + logadv

)
,

with a > 0. These optimization problems for the variable inverse sum

lodeg index and the variable sum lodeg index also appear in [24] as open

problems.

The variable inverse sum lodeg index is used in the prediction of heat

capacity at constant P and of total surface area for octane isomers [21], [23].

The variable sum lodeg index is used in the prediction of octanol-water

partition coefficient for octane isomers [21].

Furthermore, our results can be applied to:
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• variable inverse sum deg index (with a < 0)

ISDa(G) =
∑

uv∈E(G)

1

dau + dav
,

• variable sum exdeg index (with a > 1)

SEIa(G) =
∑

uv∈E(G)

(
adu + adv

)
,

• variable first Zagreb index (with a > 1)

Ma
1 (G) =

∑
uv∈E(G)

(
da−1
u + da−1

v

)
(first Zagreb and Forgotten indices are particular cases),

• variable second Zagreb index (with a > 0)

Ma
2 (G) =

∑
uv∈E(G)

(dudv)
a ,

• variable sum connectivity index (with a > 0)

χa(G) =
∑

uv∈E(G)

(du + dv)
a ,

• first and second Gourava indices [7]

GO1(G) =
∑

uv∈E(G)

(du+dv+dudv) , GO2(G) =
∑

uv∈E(G)

(du+dv)dudv ,

• first and second hyper-Gourava indices [8]

HGO1(G) =
∑

uv∈E(G)

(
du + dv + dudv

)2
,

HGO2(G) =
∑

uv∈E(G)

(
(du + dv)dudv

)2
,
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•, the Gutman-Milovanović index [11]

Mα,β(G) =
∑

uv∈E(G)

(dudv)
α(du + dv)

β ,

which is a natural generalization of Zagreb indices.

Throughout this paper, G = (V (G), E(G)) denotes an undirected finite

simple (without multiple edges and loops) graph without isolated vertices.

We denote by n, ∆ and δ the cardinality of the set of vertices of G, its

maximum degree and its minimum degree, respectively. Thus, we have

1 ≤ δ ≤ ∆ < n.

2 Some extremal problems

on general indices

Let I be any topological index defined as

I(G) =
∑

uv∈E(G)

F (du, dv), (1)

where F (x, y) is any non-negative symmetric function F : Z+ × Z+ →
[0,∞).

We say that the index I defined by (1) belongs to F1 if F is a positive

function that is strictly increasing in each variable. Also, we say that

I ∈ F2 if F (1, y) = 0 for each y ∈ Z+, F (x, y) is a strictly increasing

function for each x, y ≥ 2 in each variable, and also F (x, y) > 0 when

x, y ≥ 2.

Considering the index I in these classes allows to study many indices

in a unified way.

It is clearly more difficult to work with indices in F2 than with indices

in F1.

Note that I ∈ F2 for:

• F (x, y) = logax logay with a > 0 (variable Randić type lodeg index),



746

• F (x, y) = (logax + logay)−1 with a < 0 (variable inverse sum lodeg

index).

Also, it is clear that I ∈ F1 for:

• F (x, y) = (xa + ya)−1 with a < 0 (variable inverse sum deg index),

• F (x, y) = logax + logay with a > 0 (variable sum lodeg index, for

graphs without isolated edges),

• F (x, y) = ax + ay with a > 1 (variable sum exdeg index),

• F (x, y) = xa−1 + ya−1 with a > 1 (variable first Zagreb index),

• F (x, y) = (xy)a with a > 0 (variable second Zagreb index),

• F (x, y) = (x+ y)a with a > 0 (variable sum connectivity index),

• F (x, y) = x + y + xy and F (x, y) = x2y + xy2 (first and second

Gourava indices, respectively),

• F (x, y) = (x+ y+ xy)2 and F (x, y) = (x2y+ xy2)2 (first and second

hyper-Gourava indices, respectively),

• F (x, y) = (xy)α(x+ y)β with α, β > 0 (Gutman-Milovanović index).

If 1 ≤ δ < ∆ are integers, we say that a graph G is (∆, δ)-quasi-regular

if there exists v ∈ V (G) with dv = δ and du = ∆ for every u ∈ V (G)\{v};
G is (∆, δ)-pseudo-regular if there exists v ∈ V (G) with dv = ∆ and du = δ

for every u ∈ V (G) \ {v}.
In [4] appears the following result.

Lemma 1. Consider integers 2 ≤ k < n.

(1) If kn is even, then there is a Hamiltonian k-regular graph with n

vertices.

(2) If kn is odd, then there is a connected (k, k−1)-quasi-regular graph

with n vertices and a connected (k + 1, k)-pseudo-regular graph with n

vertices.

Proposition 1. If G is a graph, u, v ∈ V (G) with uv /∈ E(G), and I ∈
F1 ∪ F2, then I(G ∪ {uv}) > I(G).

Proof. Let {x1, . . . , xdu} and {y1, . . . , ydv} be the neighbors of u and v in

G, respectively. If x, y ≥ 1, then

F (x+ 1, y) ≥ F (x, y), (2)
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and we have the strict inequality if y > 1.

We have by (2)

I(G ∪ {uv})− I(G) = F (du + 1, dv + 1)

+

du∑
i=1

(
F (du + 1, dxi

)− F (du, dxi
)
)

+

dv∑
j=1

(
F (dv + 1, dyj

)− F (dv, dyj
)
)

≥ F (du + 1, dv + 1) > 0.

Given an integer n ≥ 2, let G(n) (respectively, Gc(n)) be the set of

graphs (respectively, connected graphs) with n vertices.

Given integers 1 ≤ δ ≤ ∆ < n, let H(n, δ) (respectively, Hc(n, δ)) be

the set of graphs (respectively, connected graphs) with n vertices and min-

imum degree δ, and let I(n,∆) (respectively, Ic(n,∆)) be the set of graphs

(respectively, connected graphs) with n vertices and maximum degree ∆.

Theorem 2. Consider I ∈ F1 ∪ F2 and an integer n ≥ 2.

(1) The only graph that maximizes the I index in Gc(n) or G(n) is the

complete graph Kn.

(2) If a graph minimizes the I index in Gc(n), then it is a tree.

(3) Assume that I ∈ F1. If n is even, then the only graph that mini-

mizes the I index in G(n) is the union of n/2 paths P2. If n is odd, then

the only graph that minimizes the I index in G(n) is the union of (n−3)/2

paths P2 with a path P3.

(4) If I ∈ F2, then the only graph that minimizes the I index in Gc(n)

is the star graph Sn.

(5) If I ∈ F2, then the only graphs that minimize the I index in G(n)
are the unions of star graphs.

Proof. Proposition 1 gives items (1) and (2).

Assume that I ∈ F1 and n is even. Handshaking lemma gives 2m ≥
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nδ ≥ n. For any graph G ∈ G(n), we have

I(G) =
∑

uv∈E(G)

F (du, dv) ≥
∑

uv∈E(G)

F (1, 1) = mF (1, 1) ≥ n

2
F (1, 1),

and the equality in the bound is attained if and only if du = 1 for every

u ∈ V (G), i.e., G is the union of n/2 path graphs P2.

Assume now that I ∈ F1 and n is odd, and consider a graph G ∈ G(n).
If du = 1 for every u ∈ V (G), then handshaking lemma gives 2m = n, a

contradiction since n is odd. Thus, there exists a vertex w with dw ≥ 2.

Handshaking lemma gives 2m ≥ (n − 1)δ + 2 ≥ n + 1. Denote by N(w)

the set of neighbors of w. We have

I(G) =
∑

u∈N(w)

F (du, dw) +
∑

uv∈E(G),u,v ̸=w

F (du, dv)

≥
∑

u∈N(w)

F (1, 2) +
∑

uv∈E(G),u,v ̸=w

F (1, 1)

≥ 2F (1, 2) + (m− 2)F (1, 1)

≥ 2F (1, 2) +
(n+ 1

2
− 2

)
F (1, 1)

= 2F (1, 2) +
n− 3

2
F (1, 1),

and the equality in the bound is attained if and only if du = 1 for every

u ∈ V (G) \ {w}, and dw = 2. Therefore, G is the union of (n− 3)/2 path

graphs P2 and a path graph P3.

Assume that I ∈ F2. It is clear that I(G) ≥ 0 for every graph G,

and I(G) = 0 if and only if F (du, dv) = 0 for every uv ∈ E(G), i.e.,

min{du, dv} = 1 for every uv ∈ E(G), and this holds if and only if G is a

union of star graphs. This proves items (4) and (5).

Corollary 1. Let G be a graph with n vertices and I ∈ F1 ∪ F2.

(1) Then

I(G) ≤ 1

2
n(n− 1)F (n− 1, n− 1),

and the equality in the bound is attained if and only if G is the complete

graph Kn.
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(2) If I ∈ F1 and n is even, then

I(G) ≥ 1

2
nF (1, 1),

and the equality in the bound is attained if and only if G is the union of

n/2 path graphs P2.

(3) If I ∈ F1 and n is odd, then

I(G) ≥ 1

2
(n− 3)F (1, 1) + 2F (1, 2) ,

and the equality in the bound is attained if and only if G is the union of

(n− 3)/2 path graphs P2 and a path graph P3.

(4) If I ∈ F2, then

I(G) ≥ 0,

and the equality in the bound is attained if and only if G is a union of star

graphs.

Proof. Theorem 2 gives

I(G) ≤ I(Kn) =
∑

uv∈E(Kn)

F (du, dv) =
1

2
n(n− 1)F (n− 1, n− 1),

and the equality in the bound is attained if and only if G is the complete

graph Kn. This gives item (1).

Also, the argument in the proof of Theorem 2 gives directly the other

items.

Given integers 1 ≤ δ ≤ n, denote by Kδ
n the n-vertex graph with

maximum and minimum degrees n− 1 and δ, respectively, obtained from

the complete graph Kn−1 and an additional vertex v in the following way:

Fix δ vertices u1, . . . , uδ ∈ V (Kδ
n) and let V (Kδ

n) = V (Kn−1) ∪ {v} and

E(Kδ
n) = E(Kn−1) ∪ {u1v, . . . , uδv}.

Theorem 3. Consider I ∈ F1 ∪ F2 and integers 1 ≤ δ < n.

(1) Then the only graph in Hc(n, δ) that maximizes the I index is Kδ
n.

(2) If δ ≥ 2 and δn is even, then the only graphs in Hc(n, δ) that

minimize the I index are the connected δ-regular graphs.
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(3) If δ ≥ 2 and δn is odd, then the only graphs in Hc(n, δ) that mini-

mize the I index are the connected (δ + 1, δ)-pseudo-regular graphs.

Proof. Given a graph G ∈ Hc(n, δ) \ {Kδ
n}, fix any vertex u ∈ V (G) with

du = δ. Since

G ̸= G ∪ {vw : v, w ∈ V (G) \ {u} and vw /∈ E(G)} = Kδ
n,

Proposition 1 gives I(Kδ
n) > I(G). This proves item (1).

Denote by m the cardinality of the set E(G). Handshaking lemma

gives 2m ≥ nδ.

Since du ≥ δ for every u ∈ V (G), we have

I(G) =
∑

uv∈E(G)

F (du, dv) ≥
∑

uv∈E(G)

F (δ, δ) = mF (δ, δ) ≥ 1

2
nδF (δ, δ),

and, since δ ≥ 2, the equality in the bound is attained if and only if du = δ

for every u ∈ V (G), i.e., G is regular.

If δn is even, then Lemma 1 gives that there is a connected δ-regular

graph with n vertices. Hence, the only graphs in Hc(n, δ) that minimize

the I index are the connected δ-regular graphs.

If δn is odd, then handshaking lemma gives that there is no regular

graph. Hence, there exists a vertex w with dw ≥ δ + 1. Handshaking

lemma gives 2m ≥ (n− 1)δ + δ + 1 = nδ + 1. Denote by N(w) the set of

neighbors of w. We have

I(G) =
∑

u∈N(w)

F (du, dw) +
∑

uv∈E(G),u,v ̸=w

F (du, dv)

≥
∑

u∈N(w)

F (δ, δ + 1) +
∑

uv∈E(G),u,v ̸=w

F (δ, δ)

≥ (δ + 1)F (δ, δ + 1) + (m− δ − 1)F (δ, δ)

≥ (δ + 1)F (δ, δ + 1) +
(nδ + 1

2
− δ − 1

)
F (δ, δ),

and, since δ ≥ 2, the equality in the bound is attained if and only if du = δ

for every u ∈ V (G) \ {w}, and dw = δ + 1. Lemma 1 gives that there

is a connected (δ + 1, δ)-pseudo-regular graph with n vertices. Therefore,
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the only graphs in Hc(n, δ) that minimize the I index are the connected

(δ + 1, δ)-pseudo-regular graphs.

Remark. If we replaceHc(n, δ) withH(n, δ) everywhere in the statement of

Theorem 3, then the argument in its proof gives that the same conclusion

holds if we remove everywhere the word “connected”.

Theorem 3 and Remark 2 have the following consequence.

Corollary 2. Let G be a graph with n vertices and minimum degree δ,

and I ∈ F1 ∪ F2.

(1) Then

I(G) ≤ 1

2
(n− δ − 1)(n− δ − 2)F (n− 2, n− 2) + δF (δ, n− 1)

+
1

2
δ(δ − 1)F (n− 1, n− 1) + δ(n− δ − 1)F (n− 2, n− 1),

and the equality in the bound is attained if and only if G is Kδ
n.

(2) If δn is even, then

I(G) ≥ 1

2
nδF (δ, δ),

and the equality in the bound is attained if and only if G is δ-regular.

(3) If δn is odd, then

I(G) ≥ 1

2

(
δ(n− 2)− 1

)
F (δ, δ) + (δ + 1)F (δ, δ + 1),

and the equality in the bound is attained if and only if G is (δ + 1, δ)-

pseudo-regular graphs.

For any odd natural number ∆ and i = 1, 2, define F∆
i as the set of

indices I ∈ Fi such that the function

F ∗(k) := k F (∆, k)− 1

2
k F (∆,∆)

is strictly increasing for 1 ≤ k ≤ ∆− 1.

Theorem 4. Consider I ∈ F1 ∪ F2 and integers 2 ≤ ∆ < n.
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(1) If ∆n is even, then the only graphs that maximize the I index in

Ic(n,∆) are the connected ∆-regular graphs.

(2) If ∆n is odd and I ∈ F∆
1 ∪F∆

2 , then the only graphs that maximize

the I index in Ic(n,∆) are the connected (∆,∆− 1)-quasi-regular graphs.

(3) If a graph minimizes the I index in Ic(n,∆), then it is a tree.

Proof. Denote by m the cardinality of the set E(G). Handshaking lemma

gives 2m ≤ n∆. Since du ≤ ∆ for every u ∈ V (G), We have

I(G) =
∑

uv∈E(G)

F (du, dv) ≤
∑

uv∈E(G)

F (∆,∆) = mF (∆,∆) ≤ 1

2
n∆F (∆,∆),

and the equality in the bound is attained if and only if du = ∆ for every

u ∈ V (G).

If ∆n is even, then Lemma 1 gives that there is a connected ∆-regular

graph with n vertices. Hence, the only graphs in Ic(n,∆) that maximize

the I index are the connected ∆-regular graphs.

If ∆n is odd, then handshaking lemma gives that there is no regular

graph in Ic(n,∆). Let G ∈ Ic(n,∆). Hence, there exists a vertex w with

minimum degree δ = dw ≤ ∆− 1. Then 2m ≤ ∆(n− 1) + δ. We have

I(G) =
∑

u∈N(w)

F (du, dw) +
∑

uv∈E(G),u,v ̸=w

F (du, dv)

≤
∑

u∈N(w)

F (∆, δ) +
∑

uv∈E(G),u,v ̸=w

F (∆,∆)

= δ F (∆, δ) + (m− δ)F (∆,∆)

≤ δ F (∆, δ) +
1

2

(
∆(n− 1)− δ

)
F (∆,∆)

= F ∗(δ) +
1

2
∆(n− 1)F (∆,∆),

and the equality in the bound is attained if and only if du = ∆ for every

u ∈ V (G) \ {w}, and dw = δ.

If I ∈ F∆
1 ∪ F∆

2 , then F ∗(k) is strictly increasing for 1 ≤ k ≤ ∆ − 1
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and

I(G) ≤ F ∗(δ) +
1

2
∆(n− 1)F (∆,∆) ≤ F ∗(∆− 1) +

1

2
∆(n− 1)F (∆,∆)

= (∆− 1)F (∆,∆− 1) +
∆(n− 2) + 1

2
F (∆,∆),

and the equality in the bound is attained if and only if du = ∆ for every

u ∈ V (G)\{w}, and dw = ∆−1. Lemma 1 gives that there is a connected

(∆,∆−1)-quasi-regular graph with n vertices. Therefore, the only graphs

in Ic(n, δ) that maximize the I index are the connected (∆,∆− 1)-quasi-

regular graphs.

Given any graph G ∈ Ic(n,∆) which is not a tree, fix any vertex

u ∈ V (G) with du = ∆. Since G is not a tree, there exists a cycle C in

G. Since C has at least three edges, there exists vw ∈ E(G) ∩ C such

that u /∈ {v, w}. Thus, G \ {vw} ∈ Ic(n,∆) and Proposition 1 gives

I(G) > I(G\{vw}). By iterating this argument, we obtain that if a graph

minimizes the I index in Ic(n,∆), then it is a tree.

Let us denote by S∗
∆+1 the star graph S∆+1 with an additional edge

attached to a vertex of degree 1 in S∆+1.

Theorem 5. Consider I ∈ F1 ∪ F2 and integers 2 ≤ ∆ < n.

(1) If ∆n is even, then the only graphs that maximize the I index in

I(n,∆) are the ∆-regular graphs.

(2) If ∆n is odd and I ∈ F∆
1 ∪F∆

2 , then the only graphs that maximize

the I index in I(n,∆) are the (∆,∆− 1)-quasi-regular graphs.

(3) If I ∈ F1 and n−∆ is odd, then the only graph that minimizes the

I index in I(n,∆) is the union of the star graph S∆+1 and (n−∆− 1)/2

path graphs P2.

(4) If I ∈ F1 and n = ∆+ 2, then the only graph that minimizes the I

index in I(n,∆) is S∗
∆+1.

(5) If I ∈ F1, n ≥ ∆+ 4 and n−∆ is even, then the only graphs that

minimize the I index in I(n,∆) are either:

(a) the union of the star graph S∆+1, (n−∆− 4)/2 path graphs P2

and a path graph P3 when F (1,∆) + F (1, 2) < F (2,∆) + F (1, 1),
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(b) the union of S∗
∆+1 and (n − ∆ − 2)/2 path graphs P2 when

F (1,∆) + F (1, 2) > F (2,∆) + F (1, 1),

(c) or both of them when F (1,∆) + F (1, 2) = F (2,∆) + F (1, 1).

(6) If I ∈ F2, then the only graphs that minimize the I index in I(n,∆)

are the unions of star graphs.

Proof. The argument in Theorem 4 gives directly items (1) and (2).

Theorem 2 gives directly item (6).

Let G ∈ I(n,∆) and w ∈ V (G) a vertex with dw = ∆.

Assume first that I ∈ F1 and n−∆ is odd. Handshaking lemma gives

2m ≥ n− 1+∆. Note that n− 1+∆ = n−∆+2∆− 1 is even. We have

I(G) =
∑

u∈N(w)

F (du, dw) +
∑

uv∈E(G),u,v ̸=w

F (du, dv)

≥
∑

u∈N(w)

F (1,∆) +
∑

uv∈E(G),u,v ̸=w

F (1, 1)

= ∆F (1,∆) + (m−∆)F (1, 1)

≥ ∆F (1,∆) +
(n− 1 + ∆

2
−∆

)
F (1, 1)

= ∆F (1,∆) +
n−∆− 1

2
F (1, 1),

and the equality in the bound is attained if and only if du = 1 for every

u ∈ V (G)\{w}, i.e., G is the union of the star graph S∆+1 and (n−∆−1)/2

path graphs P2.

Assume now that I ∈ F1 and n = ∆+ 2. Let z ∈ V (G) \N(w) be the

vertex with V (G) = {w, z} ∪ N(w). Choose p ∈ N(z); since z /∈ N(w),

we have p ∈ N(w) and so, dp ≥ 2. Handshaking lemma gives 2m ≥
(n− 2) + ∆+ 2 = n+∆. We have

I(G) =
∑

u∈N(w)

F (du, dw) +
∑

uv∈E(G),u,v ̸=w

F (du, dv)

≥ (∆− 1)F (1,∆) + F (2,∆) + F (1, 2),

and the equality in the bound is attained if and only if du = 1 for every

u ∈ V (G) \ {w, p} and dp = 2, i.e., G is the star graph S∆+1 with an
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additional edge attached to a vertex of degree 1 in S∆+1.

Assume that I ∈ F1, n ≥ ∆ + 4 and n − ∆ is even. If du = 1 for

every u ∈ V (G) \ {w}, then handshaking lemma gives 2m = n − 1 + ∆,

a contradiction since n − 1 + ∆ = n − ∆ + 2∆ − 1 is odd. Thus, there

exists a vertex p ∈ V (G) \ {w} with dp ≥ 2. Handshaking lemma gives

2m ≥ (n− 2) + 2 +∆ = n+∆.

If p /∈ N(w), then

I(G) =
∑

u∈N(w)

F (du, dw) +
∑

u∈N(p)

F (du, dp) +
∑

uv∈E(G),u,v/∈{w,p}

F (du, dv)

≥
∑

u∈N(w)

F (1,∆) +
∑

u∈N(p)

F (1, 2) +
∑

uv∈E(G),u,v/∈{w,p}

F (1, 1)

≥ ∆F (1,∆) + 2F (1, 2) + (m−∆− 2)F (1, 1)

≥ ∆F (1,∆) + 2F (1, 2) +
(n+∆

2
−∆− 2

)
F (1, 1)

= ∆F (1,∆) + 2F (1, 2) +
n−∆− 4

2
F (1, 1),

and the equality in the bound is attained if and only if du = 1 for every

u ∈ V (G) \ {w, p}, and dp = 2, i.e., G is the union of the star graph S∆+1,

(n−∆− 4)/2 path graphs P2 and a path graph P3.

If p ∈ N(w), then

I(G) =
∑

u∈N(w)\{p}

F (du, dw) +
∑

u∈N(p)\{w}

F (du, dp) +
1

dap + daw

+
∑

uv∈E(G),u,v/∈{w,p}

F (du, dv)

≥
∑

u∈N(w)\{p}

F (1,∆) +
∑

u∈N(p)\{w}

F (1, dp) + F (dp,∆)

+
∑

uv∈E(G),u,v/∈{w,p}

F (1, 1)

≥ (∆− 1)F (1,∆) + F (1, 2) + F (2,∆) + (m−∆− 1)F (1, 1)

≥ (∆− 1)F (1,∆) + F (1, 2) + F (2,∆) +
(n+∆

2
−∆− 1

)
F (1, 1)

= (∆− 1)F (1,∆) + F (1, 2) + F (2,∆) +
n−∆− 2

2
F (1, 1).
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and the equality in the bound is attained if and only if du = 1 for every

u ∈ V (G)\{w, p}, and dp = 2, i.e., G is the union of S∗
∆+1 and (n−∆−2)/2

path graphs P2.

This finishes the proof of item (5).

Also, we can state the following inequalities.

Corollary 3. Let G be a graph with n vertices and maximum degree ∆,

and I ∈ F1 ∪ F2.

(1) If ∆n is even, then

I(G) ≤ 1

2
n∆F (∆,∆),

and the equality in the bound is attained if and only if G is a regular graph.

(2) If ∆n is odd and I ∈ F∆
1 ∪ F∆

2 , then

I(G) ≤ (∆− 1)F (∆,∆− 1) +
∆(n− 2) + 1

2
F (∆,∆),

and the equality in the bound is attained if and only if G is a (∆,∆− 1)-

quasi-regular graph.

(3) If I ∈ F1 and n−∆ is odd, then

I(G) ≥ ∆F (1,∆) +
n−∆− 1

2
F (1, 1),

and the equality in the bound is attained if and only if G is the union of

the star graph S∆+1 and (n−∆− 1)/2 path graphs P2.

(4) If I ∈ F1 and n = ∆+ 2, then

I(G) ≥ (∆− 1)F (1,∆) + F (2,∆) + F (1, 2),

and the equality in the bound is attained if and only if G is the star graph

S∆+1 with an additional edge attached to a vertex of degree 1 in S∆+1.
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(5) If I ∈ F1, n ≥ ∆+ 4 and n−∆ is even, then

I(G) ≥ min
{
∆F (1,∆) + 2F (1, 2) +

n−∆− 4

2
F (1, 1),

(∆− 1)F (1,∆) + F (1, 2) + F (2,∆) +
n−∆− 2

2
F (1, 1)

}
.

(6) If I ∈ F2, then

I(G) ≥ 0,

and the equality in the bound is attained if and only if G is the union of

the star graphs.

Proof. The argument in the proof of Theorem 4 gives items (1) and (2),

since the I index of a regular graph is

1

2
n∆F (∆,∆),

and the I index of a (∆,∆− 1)-quasi-regular graph is

(∆− 1)F (∆,∆− 1) +
∆(n− 2) + 1

2
F (∆,∆).

The argument in the proof of Theorem 5 gives directly items (3), (4),

(5) and (6).

Let M be any topological index defined as

M(G) =
∏

uv∈E(G)

f(du, dv), (3)

where f(x, y) is any symmetric function f : Z+ × Z+ → [1,∞).

We say that the indexM defined by (3) belongs toM1 if f : Z+×Z+ →
(1,∞) is a strictly increasing function in each variable. Also, we say that

M ∈ M2 if f(1, y) = 1 for each y ∈ Z+, f(x, y) is a strictly increasing

function in each variable for x, y ≥ 2, and also f(x, y) > 1 when x, y ≥ 2.

Note that M belongs to M1 (respectively, M2,M∆
1 ,M∆

2 ) if and only



758

if

I(G) =
∑

uv∈E(G)

log f(du, dv) = logM(G) (4)

belongs to F1 (respectively, F2,F∆
1 ,F∆

2 ).

Since the logarithmic function is increasing, from the results obtained

for the index I we obtain as a particular case results for the index M

taking F (x, y) = log f(x, y). For example from Theorems 2, 3 and 4 we

obtain respectively the following corollaries.

Corollary 4. Consider M ∈ M1 ∪M2 and an integer n ≥ 2.

(1) The only graph that maximizes the M index in Gc(n) or G(n) is the
complete graph Kn.

(2) If a graph minimizes the M index in Gc(n), then it is a tree.

(3) Assume that M ∈ M1. If n is even, then the only graph that

minimizes the M index in G(n) is the union of n/2 paths P2. If n is odd,

then the only graph that minimizes the M index in G(n) is the union of

(n− 3)/2 paths P2 with a path P3.

(4) If M ∈ M2, then the only graph that minimizes the M index in

Gc(n) is the star graph Sn.

(5) If M ∈ M2, then the only graphs that minimize the M index in

G(n) are the unions of star graphs.

Corollary 5. Consider M ∈ M1 ∪M2 and integers 1 ≤ δ < n.

(1) Then the only graph in Hc(n, δ) that maximizes the M index is Kδ
n.

(2) If δ ≥ 2 and δn is even, then the only graphs in Hc(n, δ) that

minimize the M index are the connected δ-regular graphs.

(3) If δ ≥ 2 and δn is odd, then the only graphs in Hc(n, δ) that mini-

mize the M index are the connected (δ + 1, δ)-pseudo-regular graphs.

Corollary 6. Consider M ∈ M1 ∪M2 and integers 2 ≤ ∆ < n.

(1) If ∆n is even, then the only graphs that maximize the M index in

Ic(n,∆) are the connected ∆-regular graphs.

(2) If ∆n is odd and I ∈ M∆
1 ∪M∆

2 , then the only graphs that maximize

the M index in Ic(n,∆) are the connected (∆,∆−1)-quasi-regular graphs.

(3) If a graph minimizes the M index in Ic(n,∆), then it is a tree.



759

3 Some extremal problems for the variable

Randić type lodeg index

Since I ∈ F2 for F (x, y) = logax logay with a > 0, the results in the

previous section have the following consequences for the variable Randić

type lodeg index.

Since I ∈ F2 for F (x, y) = (logax + logay)−1 with a < 0, we have

similar results for the variable inverse sum lodeg index.

Note that these optimization results appear in [24] as open problems

for these two indices.

The variable Randić type lodeg index is used in the prediction of heat

capacity at constant T and of total surface area for octane isomers [21].

The variable inverse sum lodeg index is used in the prediction of heat

capacity at constant P and of total surface area for octane isomers [21], [23].

We state the theorems just for the variable Randić type lodeg index,

the case of the variable inverse sum lodeg index is similar.

Theorem 6. Consider a > 0 and an integer n ≥ 2.

(1) The only graph that maximizes the RLIa index in Gc(n) or G(n) is
the complete graph Kn.

(2) The only graph that minimizes the RLIa index in Gc(n) is the star

graph Sn.

(3) The only graphs that minimize the RLIa index in G(n) are the

unions of star graphs.

Theorem 7. Let G be a graph with n vertices and a > 0.

(1) Then

RLIa(G) ≤ 1

2
n(n− 1) log2a(n− 1),

and the equality in the bound is attained if and only if G is the complete

graph Kn.

(2) Then

RLIa(G) ≥ 0,

and the equality in the bound is attained if and only if G is a union of star

graphs.
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Theorem 8. Consider a > 0 and integers 1 ≤ δ < n.

(1) Then the only graph in Hc(n, δ) that maximizes the RLIa index is

Kδ
n.

(2) If δ ≥ 2 and δn is even, then the only graphs in Hc(n, δ) that

minimize the RLIa index are the connected δ-regular graphs.

(3) If δ ≥ 2 and δn is odd, then the only graphs in Hc(n, δ) that mini-

mize the RLIa index are the connected (δ + 1, δ)-pseudo-regular graphs.

Remark. Recall that if we replace Hc(n, δ) with H(n, δ) everywhere in

the statement of Theorem 3, then the same conclusion holds if we remove

everywhere the word “connected”.

Theorem 3 and Remark 2 have the following consequence.

Theorem 9. Let G be a graph with n vertices and minimum degree δ, and

a > 0.

(1) Then

RLIa(G) ≤ 1

2
(n− δ − 1)(n− δ − 2) log2a(n− 2) + δ logaδ loga(n− 1)

+
1

2
δ(δ − 1) log2a(n− 1) + δ(n− δ − 1) loga(n− 2) loga(n− 1),

and the equality in the bound is attained if and only if G is Kδ
n.

(2) If δn is even, then

RLIa(G) ≥ 1

2
nδ log2aδ,

and the equality in the bound is attained if and only if G is δ-regular.

(3) If δn is odd, then

RLIa(G) ≥ 1

2

(
δ(n− 2)− 1

)
log2aδ + (δ + 1) logaδ loga(δ + 1),

and the equality in the bound is attained if and only if G is (δ + 1, δ)-

pseudo-regular graphs.

Theorem 10. Consider a > 0 and integers 2 ≤ ∆ < n.

(1) If ∆n is even, then the only graphs that maximize the RLIa index

in Ic(n,∆) are the connected ∆-regular graphs.
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(2) If ∆n is odd and RLIa ∈ F∆
1 ∪ F∆

2 , then the only graphs that

maximize the RLIa index in Ic(n,∆) are the connected (∆,∆− 1)-quasi-

regular graphs.

(3) If a graph minimizes the RLIa index in Ic(n,∆), then it is a tree.

Theorem 11. Consider a > 0 and integers 2 ≤ ∆ < n.

(1) If ∆n is even, then the only graphs that maximize the RLIa index

in I(n,∆) are the ∆-regular graphs.

(2) If ∆n is odd and RLIa ∈ F∆
1 ∪F∆

2 , then the only graphs that max-

imize the RLIa index in I(n,∆) are the (∆,∆− 1)-quasi-regular graphs.

(3) The only graphs that minimize the I index in I(n,∆) are the unions

of star graphs.

Theorem 12. Let G be a graph with n vertices and maximum degree ∆,

and a > 0.

(1) If ∆n is even, then

RLIa(G) ≤ 1

2
n∆ log2a∆,

and the equality in the bound is attained if and only if G is a regular graph.

(2) If ∆n is odd and RLIa ∈ F∆
1 ∪ F∆

2 , then

RLIa(G) ≤ (∆− 1) loga∆ loga(∆− 1) +
1

2

(
∆(n− 2) + 1

)
log2a∆,

and the equality in the bound is attained if and only if G is a (∆,∆− 1)-

quasi-regular graph.

(3) Then

RLIa(G) ≥ 0,

and the equality in the bound is attained if and only if G is the union of

star graphs.
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4 Some extremal problems for the SLIa in-

dex

Let us consider the variable sum lodeg index

SLIa(G) =
∑

uv∈E(G)

(
logadu + logadv

)
.

Note that although F (1, 1) = 0, the function F verifies the other properties

in the definition of the class F1 (F is strictly increasing in each variable and

F > 0 on Z+ ×Z+ \ {(0, 0)}), and it is possible to apply our optimization

results for the functions in F1 also for this F .

We have similar results for the variable inverse sum deg index with

a < 0, the variable sum exdeg index with a > 1, the variable first Zagreb

index with a > 1, the variable second Zagreb index with a > 0, the variable

sum connectivity index with a > 0, the first and second Gourava indices,

the first and second hyper-Gourava indices. Most of these optimization

results are new, but some of them are known: the results for the variable

sum exdeg index appear in [24] and [4], and the results for the inverse sum

deg index appear in [17].

These optimization problems for the variable sum lodeg index also ap-

pear in [24] as open problems.

The variable sum lodeg index is used in the prediction of octanol-water

partition coefficient for octane isomers [21].

Theorem 13. Consider a > 0 and an integer n ≥ 2.

(1) The only graph that maximizes the SLIa index in Gc(n) or G(n) is
the complete graph Kn.

(2) If a graph minimizes the SLIa index in Gc(n), then it is a tree.

(3) If n is even, then the only graph that minimizes the SLIa index in

G(n) is the union of n/2 paths P2. If n is odd, then the only graph that

minimizes the SLIa index in G(n) is the union of (n− 3)/2 paths P2 with

a path P3.

Theorem 14. Let G be a graph with n vertices and a > 0.
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(1) Then

SLIa(G) ≤ n(n− 1) loga(n− 1),

and the equality in the bound is attained if and only if G is the complete

graph Kn.

(2) If n is even, then

SLIa(G) ≥ 0,

and the equality in the bound is attained if and only if G is the union of

n/2 path graphs P2.

(3) If n is odd, then

SLIa(G) ≥ 2 loga2,

and the equality in the bound is attained if and only if G is the union of

(n− 3)/2 path graphs P2 and a path graph P3.

Theorem 15. Consider a > 0 and integers 1 ≤ δ < n.

(1) Then the only graph in Hc(n, δ) that maximizes the SLIa index is

Kδ
n.

(2) If δ ≥ 2 and δn is even, then the only graphs in Hc(n, δ) that

minimize the SLIa index are the connected δ-regular graphs.

(3) If δ ≥ 2 and δn is odd, then the only graphs in Hc(n, δ) that mini-

mize the SLIa index are the connected (δ + 1, δ)-pseudo-regular graphs.

Remark. If we replace Hc(n, δ) with H(n, δ) everywhere in the statement

of Theorem 15, then the same conclusion holds if we remove everywhere

the word “connected”.

Theorem 15 and Remark 4 have the following consequence.

Theorem 16. Let G be a graph with n vertices and minimum degree δ,

and a > 0.

(1) Then

SLIa(G) ≤ (n− δ − 1)(n− δ − 2) loga(n− 2) + δ
(
loga(n− 1) + logaδ

)
+ δ(δ − 1) loga(n− 1) + δ(n− δ − 1)

(
loga(n− 1) + loga(n− 2)

)
,

and the equality in the bound is attained if and only if G is Kδ
n.
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(2) If δn is even, then

SLIa(G) ≥ nδ logaδ,

and the equality in the bound is attained if and only if G is δ-regular.

(3) If δn is odd, then

SLIa(G) ≥
(
δ(n− 2)− 1

)
logaδ + (δ + 1)

(
loga(δ + 1) + logaδ

)
,

and the equality in the bound is attained if and only if G is (δ + 1, δ)-

pseudo-regular graphs.

Theorem 17. Consider a > 0 and integers 2 ≤ ∆ < n.

(1) If ∆n is even, then the only graphs that maximize the SLIa index

in Ic(n,∆) are the connected ∆-regular graphs.

(2) If ∆n is odd and SLIa ∈ F∆
1 ∪ F∆

2 , then the only graphs that

maximize the SLIa index in Ic(n,∆) are the connected (∆,∆− 1)-quasi-

regular graphs.

(3) If a graph minimizes the SLIa index in Ic(n,∆), then it is a tree.

Remark. Note that if F (x, y) = f(x) + f(y) for some function f , then

F (1,∆) + F (1, 2) = 2f(1) + f(∆) + f(2) = F (2,∆) + F (1, 1).

Remark 4 and Theorem 5 have the following consequence.

Theorem 18. Consider a > 0 and integers 2 ≤ ∆ < n.

(1) If ∆n is even, then the only graphs that maximize the SLIa index

in I(n,∆) are the ∆-regular graphs.

(2) If ∆n is odd and SLIa ∈ F∆
1 ∪F∆

2 , then the only graphs that max-

imize the SLIa index in I(n,∆) are the (∆,∆− 1)-quasi-regular graphs.

(3) If n−∆ is odd, then the only graph that minimizes the SLIa index

in I(n,∆) is the union of the star graph S∆+1 and (n − ∆ − 1)/2 path

graphs P2.

(4) If n = ∆ + 2, then the only graph that minimizes the SLIa index

in I(n,∆) is S∗
∆+1.

(5) If n ≥ ∆+4 and n−∆ is even, then the only graphs that minimize

the SLIa index in I(n,∆) are the union of the star graph S∆+1, (n −
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∆− 4)/2 path graphs P2 and a path graph P3, and the union of S∗
∆+1 and

(n−∆− 2)/2 path graphs P2.

Also, we can state the following inequalities.

Theorem 19. Let G be a graph with n vertices and maximum degree ∆,

and a > 0.

(1) If ∆n is even, then

SLIa(G) ≤ n∆ loga∆,

and the equality in the bound is attained if and only if G is a regular graph.

(2) If ∆n is odd and SLIa ∈ F∆
1 ∪ F∆

2 , then

SLIa(G) ≤ (∆− 1)
(
loga(∆− 1) + loga∆

)
+

(
∆(n− 2) + 1

)
loga∆,

and the equality in the bound is attained if and only if G is a (∆,∆− 1)-

quasi-regular graph.

(3) If n−∆ is odd, then

SLIa(G) ≥ ∆ loga∆,

and the equality in the bound is attained if and only if G is the union of

the star graph S∆+1 and (n−∆− 1)/2 path graphs P2.

(4) If n = ∆+ 2, then

SLIa(G) ≥ ∆ loga∆+ 2 loga2,

and the equality in the bound is attained if and only if G is the star graph

S∆+1 with an additional edge attached to a vertex of degree 1 in S∆+1.

(5) If n ≥ ∆+ 4 and n−∆ is even, then

SLIa(G) ≥ ∆ loga∆+ 2 loga2,

and the equality in the bound is attained if and only if G is either the union

of the star graph S∆+1, (n−∆−4)/2 path graphs P2 and a path graph P3,

or the union of S∗
∆+1 and (n−∆− 2)/2 path graphs P2.
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[5] J. C. Hernández, J. M. Rodŕıguez, O. Rosario, J. M. Sigarreta, Ex-
tremal problems on the general Sombor index of a graph, AIMS Math.
7 (2022) 8330–8343.

[6] B. Hollas, The covariance of topological indices that depend on the de-
gree of a vertex, MATCH Commun. Math. Comput. Chem. 54 (2005)
177–187.

[7] V. R. Kulli, The Gourava indices and coindices of graphs, Ann. Pure
Appl. Math. 14 (2017) 33–38.

[8] V. R. Kulli, On hyper-gourava indices and coindices, Int. J. Math.
Arch. 8 (2017) 116–120.

[9] V. R. Kulli, The (a, b)−KA indices of polycyclic aromatic hydrocar-
bons and benzenoid systems, Int. J. Math. Trends Tech. 65 (2019)
115–120.

[10] X. Li, I. Gutman, Mathematical Aspects of Randić Type Molecular
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