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Abstract

The atom-bond connectivity (ABC) index is one of the well-

investigated degree-based topological indices. The atom-bond sum-

connectivity (ABS) index is a modified version of the ABC index,

which was introduced recently. The primary goal of the present

paper is to investigate the difference between the aforementioned

two indices, namely ABS − ABC. It is shown that the difference

ABS−ABC is positive for all graphs of minimum degree at least 2

∗Corresponding author

https://doi.org/10.46793/match.91-3.725A


726

as well as for all line graphs of those graphs of order at least 5 that

are different from the path and cycle graphs. By means of computer

search, the difference ABS −ABC is also calculated for all trees of

order at most 15.

1 Introduction

In this paper we consider finite simple graphs (i.e., graphs without directed,

weighted, and multiple edges, and without self-loops). Let G be such a

graph. In order to avoid trivialities, it will be assumed that G is connected.

Its vertex set is V(G) and its edge set is E(G). The order and size of G

are |V(G)| = n and |E(G)| = m, respectively. By an n-vertex graph, we

mean a graph of order n. The degree du = du(G) of the vertex u ∈ V(G)

is the number of vertices adjacent to u. The edge connecting the vertices

u and v will be denoted by uv. A vertex with degree one is known as a

pendent vertex.

For graph-theoretical terminology and notation used without being de-

fined, we refer the readers to the books [8, 9, 27]

In the early years of mathematical chemistry, Milan Randić invented

a topological index [25] that eventually became one of the most success-

fully applied graph-based molecular structure descriptors [21,22,26]. It is

nowadays called “connectivity index” or “Randić index” and is defined as

R = R(G) =
∑

uv∈E(G)

1√
du dv

.

Much later, Zhou and Trinajstić [28] proposed to consider the variant of

the connectivity index, in which multiplication is replaced by summation,

named “sum-connectivity index”, defined as

SC = SC(G) =
∑

uv∈E(G)

1√
du + dv

.

The same authors examined the relations between R and SC [29].

In 1998, Estrada et al. [12] conceived another modification of the con-
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nectivity index, called “atom-bond-connectivity index”, defined as

ABC = ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

du dv
.

This structure descriptor differs from the original connectivity index by

the term du + dv − 2, which is just the degree of the edge uv (= number

of edges incident to uv).

Soon it was established that the ABC index has valuable applicative

properties [16]. Its mathematical features were also much investigated,

see the recent papers [11, 14, 20], the review [3], and the references cited

therein. Especially intriguing is the fact that the apparently simple prob-

lem of finding the connected n-vertex graph(s) with minimum ABC index

remained unsolved for about a decade [18].

Quite recently, the sum-connectivity analogue of the ABC index was

put forward, defined as

ABS = ABS(G) =
∑

uv∈E(G)

√
du + dv − 2

du + dv

and named “atom-bond sum-connectivity index” [4]. Until now, only a

limited number of properties of the ABS index were determined. In [4],

the authors determined graphs having the minimum/maximum values of

the ABS index among all (i) general graphs (ii) (molecular) trees, with a

fixed order; parallel results for the case of unicyclic graphs were obtained

in the paper [5], where chemical applications of the ABS index were also

reported. (The general ABS index corresponding to the general ABC in-

dex [6,10,13] was also proposed in [5]; besides, see [1,2].) Alraqad et al. [7]

addressed the problem of finding graphs attaining the minimum ABS in-

dex over the class of all trees having given order or/and a fixed number of

pendent vertices. Additional detail about the known mathematical prop-

erties can be found in the recent papers [15,19,23,24].

As well known, if a graph G has components G1 and G2, then ABC(G)

= ABC(G1) + ABC(G2) and ABS(G) = ABS(G1) + ABS(G2). As a

consequence of this, denoting by P2 the graph of order 2 and size 1, the
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following holds.

(a) If G is any graph, and G+ is a graph whose components are G, an ar-

bitrary number of isolated vertices, and an arbitrary number of P2-graphs,

then ABC(G) = ABC(G+) and ABS(G) = ABS(G+).

(b) if G++ is a graph whose components are G, an arbitrary number of

isolated vertices, an arbitrary number of P2-graphs, and an arbitrary num-

ber of cycles of arbitrary size, then ABC(G)− ABS(G) = ABC(G++)−
ABS(G++).

In order to avoid these trivialities, in what follows we consider only con-

nected graphs. An obvious question is how the two closely related struc-

ture descriptors ABC and ABS are related. In this paper, we provide

some answers to this question. More precisely, we prove that the differ-

ence ABS − ABC is positive for all graphs of minimum degree at least

2 as well as for all line graphs of those graphs of order at least 5 that

are different from the path and cycle graphs. We also calculate the differ-

ence ABS − ABC for all trees of order at most 15 by utilizing computer

software.

2 Main Results

We start this section with a simple but notable result that if the minimum

degree of a graph G is at least 2 then the ABS index of G cannot be lesser

than the ABC index of G.

Proposition 2.1. Let G be a connected non-trivial graph of order n, with-

out pendent vertices. Then

ABC(G) ≤ ABS(G).

Equality holds if and only if G ∼= Cn, where Cn is the n-vertex cycle.

Proof. For every edge uv ∈ E(G), note that du dv ≥ du + dv with equality

if and only if du = dv = 2 because min{du, dv} ≥ 2.

If the order of a graph G is one or two, then the equality ABG(G) =
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ABS(G) = 0 holds in a trivial manner.

Proposition 2.2. Let G be a connected graph possessing a vertex x of

degree 2. Construct the graph G⋆ by inserting a new vertex y on an edge

incident to x. Evidently, the degree of y is also 2. Then

ABC(G)−ABS(G) = ABC(G⋆)−ABS(G⋆) . (1)

Proof. Bearing in mind the way in which the graph G⋆ was constructed,

we see that

ABC(G⋆) = ABC(G) +

√
dx + dy − 2

dx dy
= ABC(G) +

1√
2

and

ABS(G⋆) = ABS(G) +

√
dx + dy − 2

dx + dy
= ABS(G) +

1√
2
.

Proposition 2.2 implies that if there is a graph G of order n, possessing

a vertex of degree 2, for which ABC(G) − ABS(G) = Θ, then for any

p ≥ 1 there exist graphs of order n+ p with the same Θ-value.

The situation with graphs possessing pendent vertices is much less sim-

ple. In what follows we present our results pertaining to trees. By means

of computer search we established the following.

Observation 2.3. (a) All trees of order n , 3 ≤ n ≤ 10, have the property

ABC > ABS.

(b) The smallest tree for which ABC < ABS is depicted in Fig. 1. For

n = 11, this tree is unique satisfying ABC < ABS.

(c) For n = 12, 13, 14, and 15, there exist, respectively, 6, 31, 134, and 564

distinct n-vertex trees for which ABC < ABS.

(d) The tree depicted in Fig. 1 possess vertices of degree 2. Therefore,

from Proposition 2.2 it follows that there exist n-vertex trees with property

ABS > ABC for any n ≥ 11.
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Figure 1. The smallest tree for which ABC < ABS.

Observation 2.4. No tree of order n , 3 ≤ n ≤ 15, has the property

ABC = ABS. However, there is a family of four 15-vertex trees, shown

in Fig. 2, whose ABC- and ABS-values are remarkably close. For each

of these trees: ABC ≈ 10.184232 and ABS ≈ 10.184135.

Figure 2. A family of trees with nearly equal ABC- and ABS-values.

Next, we show that the inequality ABS > ABC is satisfied by a rea-

sonably large class of graphs, namely by the line graphs. If G is the

line graph of a connected n-vertex graph K such that 2 ≤ n ≤ 4, then

from the discussion made in the previous part of this section one can di-

rectly obtain the classes of graphs satisfying (i) ABS(G) > ABC(G), (ii)

ABS(G) < ABC(G), (iii) ABS(G) = ABC(G). Consequently, we assume

that n ≥ 5.
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Theorem 2.5. If G is the line graph of a connected n-vertex graph K

such that n ≥ 5 and that K ̸∈ {Pn, Cn}, then ABS(G) > ABC(G).

In order to prove Theorem 2.5, we need some preparations.

A decomposition of a graph G is a class SG of edge-disjoint subgraphs

of G such that ∪S∈SG
E(S) = E(G). By a clique in a graph G, we mean a

maximal complete subgraph of G. A pendent (resp. branching) vertex in

a graph is a vertex of degree 1 (resp. of degree at least 3). By a pendent

edge of a graph, we mean an edge whose one of the end-vertices is pendent

and the other one is non-pendent. for r ≥ 2, a path u1 · · ·ur in a graph is

said to be pendent if min{du1 , dur} = 1, max{du1 , dur} ≥ 3, and dui = 2

for 2 ≤ i ≤ r − 1. If P : u1 · · ·ur is a pendent path in a graph with

dur ≥ 3, we say that P is attached with the vertex ur. Two pendent paths

of a graph are said to adjacent if they have a common (branching) vertex.

For the proof of Theorem 2.5 we need the following well-known result:

Lemma 2.6. [17] A graph G is the line graph of a graph if and only if the

star graph of order 4 is not an induced subgraph of G.

We can now start with the proof of Theorem 2.5.

proof of Theorem 2.5. Since K ̸∼= Pn, the graph G has at least one cycle.

If G is one of the two graphs H1, H2, depicted in Fig. 3, then one can

directly verify that ABS > ABC holds. In what follows, we assume that

G ̸∈ {H1, H2}.

H1 H2

Figure 3. The graphs H1 and H2 mentioned in the proof of Theorem
2.5.

Consider the difference

ABS(G)−ABC(G) =
∑

uv∈E(G)

(√
du + dv − 2

du + dv
−
√

du + dv − 2

du dv

)
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and define a function f of two variables x and y as

f(x, y) =

√
x+ y − 2

x+ y
−
√

x+ y − 2

xy

where y ≥ x ≥ 1 and y ≥ 2. Note that the function f is strictly increasing

(in both x and y). Also, if x and y are integers satisfying the inequalities

y ≥ x ≥ 1 and y ≥ 2, then the inequality f(x, y) < 0 holds if and only if

x = 1. Thus,

−0.129757 ≈ 1√
3
− 1√

2
= f(1, 2) ≤ f(1, y) < 0

for every y ≥ 2. Also,

f(x, y) ≥ f(2, 3) =

√
3

5
− 1√

2
≈ 0.0674899 > f(2, 2) = 0

for y ≥ x ≥ 2 and y ≥ 3. Furthermore, we have f(1, 2) + f(2, y) > 0 for

every y ≥ 5. Thus, if either G has no pendent paths or every pendent path

of G has length at least 2, which is attached with a vertex of degree at

least 5, then ABS(G)−ABC(G) > 0. In the remaining proof, we assume

that G ̸∈ {H1, H2} and that G either has at least one pendent path of

length 1 or it has at least one pendent path of length at least 2, which is

attached with a vertex of degree 3 or 4.

Let H ′ be the graph depicted in Fig. 4, i.e., H ′ is obtained from two

disjoint graphs H1 and H by identifying their vertices z and z′.

Fact 1. If G ∼= H ′, then the sum of the contributions of the edges of H1

in G to the difference ABS(G)−ABC(G) is positive.

It is a well-known fact that the line graph G can be decomposed into

cliques, such that every edge of G lies on exactly one clique and every

non-pendent vertex of G lies on exactly two cliques. Also, by Lemma 2.6,

G contains no pair of adjacent pendent paths/edges and hence the number

of pendent edges/paths of G is at most ⌊ |E(G)|/2⌋. Bearing this in mind,

we decompose G into connected subgraphs G1, . . . , Gk in such a way that
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H1

Hzz′

z′′

H ′

Figure 4. The graphs H1, H, and H′ mentioned in the proof of Theo-
rem 2.5.

every Gi contains at most one pendent path of G, such that:.

(a) if Gi contains a pendent path of G of length 1 such that the branch-

ing vertex (in G) of the considered path has at least one neighbor

of degree 2 in G, then Gi consists of the mentioned path together

with all the edges incident with the branching vertex (in G) of the

mentioned path (for an example, see Fig. 5);

(b) if Gi has a pendent path of length at least 2 in G or if Gi contains

a pendent path of G of length 1 such that the branching vertex (in

G) of the considered path has no neighbor of degree 2 in G, then Gi

consists of the mentioned path together with exactly one additional

edge incident with the branching vertex (in G) of the mentioned path

(for an example, see Fig. 5).

In order to complete the proof, it is enough to show that the contri-

bution of any edge of Gi (in G) to the difference ABS(G) − ABC(G) is

positive. If a subgraph Gi of G contains no pendent vertex of G then

certainly, the contribution of all edges of Gi (in G) to the difference

ABS(G)−ABC(G) is positive.
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T :

L(T ) :

G1 G2 G3 G1 G2 G4G3

(a) (b)

Figure 5. (a) A tree T , its line graph L(T ), and a decomposition of
L(T ) into three connected subgraphs G1, G2, G3. (b) A tree
T , its line graph L(T ), and a decomposition of L(T ) into
four connected subgraphs G1, G2, G3, G4.

Case 1: a subgraph Gi contains a pendent path of G of length 1, such

that the branching vertex (in G) of the considered path has at least one

neighbor of degree 2 in G.

Let P : v1v2 be the pendent path of G contained in Gi, where dv1(G) =

1 and dv2(G) ≥ 3. Note that every neighbor of v2 different from v1 in G

has degree at least dv2(G) − 1 in G. Thus, dv2(G) = 3 in the case under

consideration. Recall that G ̸∈ {H1, H2} (see Fig. 3). Consequently,

Gi
∼= H1 and hence by Fact 1, the contribution of all edges of Gi to the

difference ABS(G)−ABC(G) is positive.

Case 2: a subgraph Gi has a pendent path of G of length 1, such that the

branching vertex (in G) of the considered path has no neighbor of degree

2 in G.

Note that Gi is itself a path in this case. Let Gi : v1v2v
′, where

v1v2 is a pendent path of G, dv1(G) = 1, and dv2(G) ≥ 3. If dv2(G) ≥
4, then the contribution of all edges of Gi to the difference ABS(G) −
ABC(G) is positive because dv′(G) ≥ dv2(G)−1 and f(1, y)+(y−1, y) > 0

for every y ≥ 4. Next, assume that dv2
(G) = 3. Since dv′(G) ≥ 3 in

the considered case, the contribution of all edges of Gi to the difference
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ABS(G)− ABC(G) is again positive because f(1, 3) + f(3, y) > 0 for all

y ≥ 3.

Case 3: a subgraph Gi has a pendent path of length at least 2 in G.

Note that Gi is itself a path. Let Gi : v1v2 · · · vrv′, where v1v2 · · · vr
(r ≥ 3) is a pendent path of G, dv1(G) = 1, and dvr (G) ∈ {3, 4}, because
G has no pendent path of length at least 2, which is attached with a vertex

of degree at least 5 (see the paragraph before Fact 1).

Subcase 3.1: dvr (G) = 3.

The vertex v′ has degree at least 2 and f(1, 2) + f(2, 3) + f(3, y) ≥
f(1, 2)+f(2, 3)+f(2, 3) > 0 for y ≥ 3. Thus, the contribution of all edges

of Gi (in G) to the difference ABS(G)−ABC(G) is positive.

Subcase 3.2: dvr (G) = 4.

In this case, the vertex v′ has degree at least 3 and f(1, 2) + f(2, 4) +

f(4, y) ≥ f(1, 2) + f(2, 4) + f(3, 4) > 0 for y ≥ 4. Thus, the contribution

of all edges of Gi (in G) to the difference ABS(G) − ABC(G) is again

positive.

This completes the proof of Theorem 2.5.

Theorem 2.7. Let G be a connected graph of size m. If the number of

pendent vertices of G is at most ⌊m/2⌋ and the number of vertices of degree

2 in G is zero, then

ABS(G) > ABC(G).

Proof. Define a function f of two variables x and y as

f(x, y) =

√
x+ y − 2

x+ y
−
√

x+ y − 2

xy

where y ≥ x ≥ 1 and y ≥ 3. Note that the function f is strictly increasing

(in both x and y). Also, if x and y are integers satisfying the inequalities

y ≥ x ≥ 1 and y ≥ 3, then the inequality f(x, y) < 0 holds if and only if

x = 1. Thus,

−0.10939 ≈ 1√
2
−
√

2

3
= f(1, 3) ≤ f(1, y) < 0
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for every y ≥ 3. Also,

f(x, y) ≥ f(3, 3) =

√
2

3
− 2

3
≈ 0.14983

for y ≥ x ≥ 3. Let p denote the number of pendent vertices of G. Then,
m− p ≥ p. Now, by keeping in mind these observations, we have

ABS(G)−ABC(G) =
∑

uv∈E(G)

(√
du + dv − 2

du + dv
−

√
du + dv − 2

du dv

)

=
∑

uv∈E(G); du=1

(√
du + dv − 2

du + dv
−

√
du + dv − 2

du dv

)

+
∑

uv∈E(G); min{du,dv}≥3

(√
du + dv − 2

du + dv
−

√
du + dv − 2

du dv

)

≥
∑

uv∈E(G); du=1

(
1
√
2
−
√

2

3

)

+
∑

uv∈E(G); min{du,dv}≥3

(√
2

3
−

2

3

)

= p

(
1
√
2
−
√

2

3

)
+ (m− p)

(√
2

3
−

2

3

)

≥ p

(
1
√
2
−
√

2

3

)
+ p

(√
2

3
−

2

3

)
> 0 .

Theorem 2.8. Let G be a connected graph of size m such that if v ∈ V (G)

is a vertex of degree 2 then v has no neighbor of either of the degrees

2, 3, 4. If the number of pendent vertices of G is at most ⌊m/2⌋, then

ABS(G) > ABC(G).

Proof. Consider the function f of two variables x and y defined in the

proof of Theorem 2.7 with the constraints y ≥ x ≥ 1 and y ≥ 2. Note

that the function f is strictly increasing (in both x and y). Also, if x and

y are integers satisfying the inequalities y ≥ x ≥ 1 and y ≥ 2, then the
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inequality f(x, y) < 0 holds if and only if x = 1. Thus,

−0.129757 ≈ 1√
3
− 1√

2
= f(1, 2) ≤ f(1, y) < 0

for every y ≥ 2. Also,

f(x, y) ≥ f(2, 5) =

√
5

7
− 1√

2
≈ 0.138047

for y ≥ x ≥ 2 with y ≥ 5 and

f(x, y) ≥ f(3, 3) > f(2, 5)

for y ≥ x ≥ 3. Let P denote the set of pendent edges of G. Then,

|E(G) \ P | ≥ |P |.

Now, by keeping in mind the above observations, we have

ABS(G)−ABC(G) =
∑

uv∈E(G)\P

(√
du + dv − 2

du + dv
−
√

du + dv − 2

du dv

)

+
∑
uv∈P

(√
du + dv − 2

du + dv
−
√

du + dv − 2

du dv

)

≥
∑

uv∈E(G)\P

(√
5

7
− 1√

2

)
+
∑
uv∈P

(
1√
3
− 1√

2

)

= |E(G) \ P |

(√
5

7
− 1√

2

)
+ |P |

(
1√
3
− 1√

2

)

≥ |P |

(√
5

7
− 1√

2

)
+ |P |

(
1√
3
− 1√

2

)
> 0.
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3 Conclusion and Some Open Problems

In this paper, we established a few relations between the atom-bond con-

nectivity (ABC) and atom-bond sum-connectivity (ABS) vertex-degree-

based topological indices. In the case of graphs without pendent vertices,

this relation is trivially easy (see Proposition 2.1). On the other hand, in

the case of graphs possessing pendent vertices, especially for trees, this re-

lation becomes perplexed and the complete solution of the problem awaits

additional studies.

Denote the difference ABC−ABS by Θ. By means of computer search

we found that for trees with n ≤ 15 vertices (except in the trivial cases

n = 1, 2), Θ = 0 never happens. It would be of some interest to extend

this finding to higher values of n, or to discover a tree (or a graph with

minimum degree 1) for which Θ = 0.

Let Tn be the number of trees of order n, and tn the number of trees

of order n for which Θ < 0. We know that tn/Tn > 0 for n ≥ 11. It is an

open problem what the value of limn→∞ tn/Tn is, especially whether it is

equal to zero or to unity.
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[7] T. A. Alraqad, I. Ž. Milovanović, H. Saber, A. Ali, J. P. Mazorodze,
Minimum atom-bond sum-connectivity index of trees with a fixed or-
der and/or number of pendent vertices, arXiv:2211.05218 [math.CO].

[8] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, London, 2008.

[9] G. Chartrand, L. Lesniak, P. Zhang, Graphs & Digraphs, CRC Press,
Boca Raton, 2016.
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[26] M. Randić, M. Novič, D. Plavšić, Solved and Unsolved Problems in
Structural Chemistry, CRC Press, Boca Raton, 2016.

[27] S. Wagner, H. Wang, Introduction to Chemical Graph Theory, CRC
Press, Boca Raton, 2018.
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