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Abstract

Hosoya index and Merrifield-Simmons index are two well-known
topological descriptors that reflex some physical properties, such
as boiling points and heat of formation, of benzenoid hydrocarbon
compounds. In this paper, we establish the generating functions
of the expected values of these two indices of random hexagonal
cacti. This generalizes the results of Došlić and Måløy, published
in Discrete Mathematics in 2010. By applying the ideas on mero-
morphic functions and the growth of power series coefficients, the
asymptotic behaviors of these indices on the random cacti have been
established.
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1 Introduction and motivation

Throughout this paper, we may let G = (V,E) be a graph having the

vertex set V and the edge set E. For a vertex v ∈ V , we say that v is a cut

vertex of G if G− v has more components than G. A maximal connected

subgraph H of G such that H does not have a cut vertex is called a block.

Hence, if G has a cut vertex, then H contains a cut vertex of G. A block

B is an end block if B has exactly one cut vertex of G. A vertex subset

I ⊆ V is independent if any pair of vertices in I are not adjacent in G. An

edge subset M ⊆ E is matching if any two edges in M are not adjacent

to a common vertex. A cycle of length k is denoted by Ck. A regular

hexagonal cactus chain is a graph that has exactly two end blocks and all

the blocks are C6, hexagons. A regular hexagonal cactus G is said to be

ortho if the two cut vertices of G that belong to the same non-end block are

adjacent. A regular hexagonal cactus G is said to be meta if the two cut

vertices of G that belong to the same non-end block are a pair of vertices

at distance two. Further, a regular hexagonal cactus G is said to be para

if the two cut vertices of G that belong to the same non-end block is a

pair of vertices at distance three. For a non-negative integer n and non-

negative real numbers a, b, c such that a+ b+ c = 1, a random hexagonal

cactus chain Rn(a, b, c) with n hexagons is defined as follows: when n = 0,

R0(a, b, c) is the empty graph. When n = 1, R1(a, b, c) is a hexagon and,

when n = 2, R2(a, b, c) is obtained from two hexagons by identifying one

vertex of each. For n ≥ 3, renaming hexagons if necessary, we label the

names of hexagons of Rn−1(a, b, c) by 1, ..., n − 1 consecutively along the

cactus. Further, the graph Rn(a, b, c) is obtained from Rn−1(a, b, c) and a

hexagon H by identifying a vertex of H with a vertex at distance one with

the probability a or a vertex at distance two with the probability b or the

vertex at distance three with the probability c from the cut vertex of the

(n− 1)th hexagon of Rn−1(a, b, c).

Husimi [13] expanded Mayer and Mayer [14]’s book of Statistical Me-

chanics by generalizing cluster and irreducible integrals for the Theory

of Condensation in 1952. Surprisingly, Uhlenbeck [24] found in the same

year that Husimi’s integrals can be represented by using graph structures.
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These kinds of graphs were known as Husimi trees which are graphs whose

each edge is in at most one cycle. In some study such as [8, 10,22], it was

found further that Husimi trees can be employed to clarify many of con-

densation phenomena. Husimi trees were first described in graph theory

literature as cacti in 1973 when Harary and Palmer [9] printed their clas-

sical book on graph enumeration.

In 1971, Hosoya introduced, in his classical paper [11], a graph param-

eter called Z-index which is the total number of matchings of the graphs.

Hosoya found that Z-index relates with boiling point of the graphs rep-

resenting saturated hydrocarbons. Interestingly, Gutman et al. [6] found

further that Z-index also relates with the important molecular graph de-

scriptor called graph energy. This has attracted much attentions of graph

theorists and has resulted in many studies to evaluate this index of graphs

which has been well known in Hosoya index later. For some example of

studies to find Hosoya index see [4, 7, 20,25].

From the observation of Merrifield and Simmons in [15–18], physical

properties of hydrocarbons are related to topological indices on graphs ap-

plied in chemistry which describe molecular structures such as the number

of independent sets. Specifically, in [15], the number of independent sets

of graphs representing alkanes varies inversely to the boiling points and

heat of formations of the compounds. From then on, Merrifield-Simmons

index is recognized as the number of independent sets of graphs repre-

senting molecular structures which have been researched by several graph

theorists, see [2, 3, 19,21] for example.

In 2010, Došlić and Måløy [3] established the generating functions of

Hosoya index and Merrifield-Simmons index of ortho-, meta-, and para-

hexagonal cactus chain. In the following, we let Hn be a hexagonal cactus

chain of n hexagons, in particular, we let On,Mn and Pn be the ortho-,

meta- and para-hexagonal cactus chain of n hexagons, respectively.

Theorem 1. [3] For a non-negative integer n, let O(x),M(x) and P (x)

be the generating functions of the number of matchings of On,Mn and Pn,
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respectively. Then

O(x) =
1 + 7x

1− 11x− 26x2

M(x) =
1 + 5x

1− 13x+ 10x2

P (x) =
1 + 6x

1− 12x− 8x2
.

Theorem 2. [3] For a non-negative integer n, let O(x),M(x) and P (x)

be the generating functions of the number of independent sets of On,Mn

and Pn, respectively. Then

O(x) =
2 + 2x

1− 8x− 25x2

M(x) =
2− 6x

1− 12x+ 11x2

P (x) =
2− 2x

1− 10x− 7x2
.

In the same paper, the authors further established the structures of hexag-

onal cacti whose Hosoya and Merrifield-Simmons indices are minimum and

maximum.

Theorem 3. [3] For a hexagonal cactus chain Hn of n hexagons, we let

m(Hn) be the Hosoya index of Hn. Then

m(Mn) ≤ m(Hn) ≤ m(On).

Theorem 4. [3] For a hexagonal cactus chain Hn of n hexagons, we let

i(Hn) be the Merrifield-Simmons index of Hn. Then

i(Mn) ≤ i(Hn) ≤ i(On).

For related works on finding Hosoya index and Merrrifield-Simmons

index in random chain, Huang et al. [12] described exact formulas for the

expected values of these indices of a random polyphenylene chain including

n octagons. Chen et al. [1] established explicit expressions for the expected

value of Merrifield-Simmons index of a random phenylene chain PHn,p and
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a random hexagonal chain HSn,p by using the method of the generating

functions. The corresponding entropy constants are computed and the

maximum and minimum values are obtained in both random systems.

Very recently in 2022, Sun et al. [23] found the recurrence relations of the

expected values of Hosoya index and Merrifield-Simmons index of a random

cyclooctylene chains containing n octagons. By solving these recurrence

relations, the formula of expected values of these indices were established.

In this paper, we establish generating functions of the expected values

of Hosoya index and Merrifield-Simmons index of random hexagonal cactus

chain. Some special cases of our results prove Theorems 1 and 2.

2 Main results

In this section, we present our theorems related to the expected values

of Hosoya index and Merrifield-Simmons index of random hexagonal cac-

tus chains. Our first theorem establishes generating function of expected

values of Hosoya index of random hexagonal cactus chains.

Theorem 5. For a non-negative integer n and non-negative real numbers

a, b, c such that a+b+c = 1, we let Rn(a, b, c) be a random hexagonal cactus

chain with n hexagons. Further, we let E(mn(a, b, c)) be the expected value

of the number of matchings of Rn(a, b, c) and Ma,b,c(x) be the generating

function of E(mn(a, b, c)). Then

Ma,b,c(x) =

∞∑
n=0

E(mn(a, b, c))x
n

=
1 + 10x− 3ax− 5bx− 4cx

1− 8x− 3ax− 5bx− 4cx− 26ax2 + 10bx2 − 8cx2
.

By letting a = 1, b = c = 0 and a = c = 0, b = 1 and a = b = 0, c = 1, we

have that the graph Rn(a, b, c) becomes ortho-, meta- and para-hexagonal

cactus chain, respectively. Thus, we have the following equations:
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M1,0,0(x) = O(x) =
1 + 7x

1− 11x− 26x2

M0,1,0(x) = M(x) =
1 + 5x

1− 13x+ 10x2

M0,0,1(x) = P (x) =
1 + 6x

1− 12x− 8x2
.

Hence, Theorem 5 generalizes Theorem 1.

Further, we determine the asymptotic behavior of E(mn(a, b, c)). As

the dominant singularity is at − 3a+5b+4c−σ1+8
52a−20b+16c where σ1 is given in the

theorem below, we apply the subtraction of singularities by the principal

part of the series expansion around the singularity [26] and obtain the

result as follows:

Theorem 6. If E(mn(a, b, c)) is the expected value of the number of

matchings of Rn(a, b, c). Then,

E(mn(a, b, c)) ≈

σ2 − 3aσ1 − 5bσ1 − 4cσ1 + 9a2 + 25b2 + 16c2 + 10σ1 − 80

(− 3a+5b+4c−σ1+8
52a−20b+16c )n+1(52a− 20b+ 16c)σ1

where

σ1 =
√
9a2 + 30ab+ 24ac+ 152a+ 25b2 + 40bc+ 40b+ 16c2 + 96c+ 64

and σ2 = 46a− 30b+ 8c+ 30ab+ 24ac+ 40bc.

It can be observed that the growth of the expected value follows the form

Anθ(n) [5] where the subexponential factor θ(n) is given by

σ2 − 3aσ1 − 5bσ1 − 4cσ1 + 9a2 + 25b2 + 16c2 + 10σ1 − 80

−(3a+ 5b+ 4c− σ1 + 8)σ1
.

Then seeking extreme values for the growth function is implemented by

fmincon in MATLAB with SQP algorithm considering a, b and c as non-

negative variables constrained to a+ b+ c = 1. As a result, the maximum

of m(Rn(a, b, c)) can be reached at a = 1, b = 0, c = 0 and the minimum

of m(Rn(a, b, c)) at a = 0, b = 1, c = 0. That is
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m(Mn) ≤ m(Hn) ≤ m(On),

proving Theorem 3.

Theorem 7. For a non-negative integer n and non-negative real numbers

a, b, c such that a + b + c = 1, we let Rn(a, b, c) be a random hexagonal

cactus chain with n hexagons. Further, we let E(in(a, b, c)) be the expected

value of the number of independent sets of Rn(a, b, c) and Ia,b,c(x) be the

generating function of E(in(a, b, c)). Then

Ia,b,c(x) =

∞∑
n=0

E(in(a, b, c))x
n

=
1 + 13x− 3ax− 7bx− 5cx+ 25ax2 − 11bx2 + 7cx2

1− 5x− 3ax− 7bx− 5cx− 25ax2 + 11bx2 − 7cx2
.

By letting a = 1, b = c = 0 and a = c = 0, b = 1 and a = b = 0, c = 1 the

graph Rn(a, b, c) becomes ortho-, meta- and para-hexagonal cactus chain,

respectively. Thus, we have the following equations:

I1,0,0(x) = O(x) =
1 + 10x+ 25x2

1− 8x− 25x2

I0,1,0(x) = M(x) =
1 + 6x− 11x2

1− 12x+ 11x2

I0,0,1(x) = P (x) =
1 + 8x+ 7x2

1− 10x− 7x2
.

Hence, Theorem 7 completes Theorem 2.

Further, in a similar fasion to Theorem 6, we have the asymptotic

behavior of E(in(a, b, c)) as follows:

Theorem 8. If E(in(a, b, c)) is the expected value of the number of inde-

pendent sets of Rn(a, b, c). Then,

E(in(a, b, c)) ≈

−3aσ1 − 7b3aσ1 − 5c3aσ1 + 42ab+ 30ac+ 70bc+ 4σ1 + σ3

(− 3a+7b+5c−σ1+5
2σ2

)n+1σ1σ2

.

where
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σ1 =
√
9a2 + 42ab+ 30ac+ 130a+ 49b2 + 70bc+ 26b+ 25c2 + 78c+ 25

and σ2 = 25a−11b+7c and σ3 = 9a2+49b2+25c2−20+53a−15b+19c.

Similarly, the obtained function with a, b, c as non-negative variables such

that a+ b+ c = 1 has extreme values where the maximum of i(Rn(a, b, c))

can be reached at a = 1, b = 0, c = 0 and the minimum of i(Rn(a, b, c)) at

a = 0, b = 1, c = 0. That is

i(Mn) ≤ i(Hn) ≤ i(On),

proving Theorem 4.

3 Proofs of main results

In this section, we prove Theorems 5 and 7. Firstly, we recall that, for non-

negative real numbers a, b, c such that a+ b+ c = 1, the graph R0(a, b, c)

is empty, the graph R1(a, b, c) is a hexagon and the graph R2(a, b, c) is

obtained from two hexagons by identifying one vertex of each. For n ≥ 3,

the graph Rn(a, b, c) is obtained from Rn−1(a, b, c) and a hexagon H by

identifying a vertex of H with a vertex at distance one with the probability

a or a vertex at distance two with the probability b or the vertex at distance

three with the probability c from the cut vertex of the (n− 1)th hexagon

of Rn−1(a, b, c). Figure 1 shows examples of Rn(a, b, c).

Hn−1 Hn−1 Hn−1 Hn

Hn Hn

Figure 1. The graphs Rn(a, b, c)

In the figure, from left to right, a vertex of the hexagonHn is identified with

a vertex of the hexagonHn−1 with the probabilities a, b and c, respectively.

We further define three auxiliary graphs as follows. The graph R′
n(a, b,

c) is obtained from Rn(a, b, c) and a path of length four P5 = x1x2x3x4x5
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by identifying x1 of P5 to a vertex at distance one with the probability a,

a vertex at distance two with the probability b and the vertex at distance

three with the probability c from the cut vertex of the nth hexagon of

Rn(a, b, c). Figure 2 illustrates examples of R′
n(a, b, c). From left to right,

x1 of the path x1...x5 is identified with a vertex of the hexagon Hn with

the probabilities a, b and c, respectively.

Hn Hn Hn

Figure 2. The graphs R′
n(a, b, c)

The graph R̃n(a, b, c) is obtained from Rn(a, b, c) and a path of length four

P5 = x1x2x3x4x5 by identifying x2 of P5 to a vertex at distance one with

the probability a, a vertex at distance two with the probability b and the

vertex at distance three with the probability c from the cut vertex of the

nth hexagon of Rn(a, b, c). Figure 3 shows examples of R̃n(a, b, c). From

left to right, x2 of the path x1...x5 is identified with a vertex of the hexagon

Hn with the probabilities a, b and c, respectively.

Hn Hn Hn

Figure 3. The graphs R̃n(a, b, c)

The graph R̂n(a, b, c) is obtained from Rn(a, b, c) and a path of length

four P5 = x1x2x3x4x5 by identifying x3 of P5 to a vertex at distance one

with the probability a, a vertex at distance two with the probability b and

the vertex at distance three with the probability c from the cut vertex of

the nth hexagon of Rn(a, b, c). Figure 4 illustrates examples of R̂n(a, b, c).
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From left to right, x3 of the path x1...x5 is identified with a vertex of the

hexagon Hn with the probabilities a, b and c, respectively.

Hn Hn Hn

Figure 4. The graphs R̂n(a, b, c)

3.1 Hosoya index of random hexagonal cactus chains

In this subsection, we prove Theorem 5. Recall that

E(mn(a, b, c)) is the expected value of the number of matchings of

Rn(a, b, c)

Ma,b,c(x) is the generating function of E(mn(a, b, c)).

When there is no danger of confusion, we let E(mn) and M(x) to denote

E(mn(a, b, c)) and Ma,b,c(x), respectively. Thus,

M(x) =
∑∞

n=0 E(mn)x
n.

Similarly, we let E(m′
n), E(m̃n) and E(m̂n) be the expected values of the

number of matchings of R′
n(a, b, c), R̃n(a, b, c) and R̂n(a, b, c), respectively.

Further, we let M ′(x), M̃(x) and M̂(x) be the generating functions of

E(m′
n), E(m̃n) and E(m̂n), respectively. Therefore,

M ′(x) =
∑∞

n=0 E(m′
n)x

n

M̃(x) =
∑∞

n=0 E(m̃n)x
n

M̂(x) =
∑∞

n=0 E(m̂n)x
n.

Now, to prove Theorem 5, we will prove the following equations.
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(1− 8x)M(x) = 1 + 10x+ 10ax2M ′(x) + 10bx2M̃(x) + 10cx2M̂(x) (1)

(1− 3ax)M ′(x) = 3 + 5M(x) + 3bxM̃(x) + 3cxM̂(x) (2)

(1− 5bx)M̃(x) = 5 + 3M(x) + 5axM ′(x) + 3cxM̂(x) (3)

(1− 4cx)M̂(x) = 4 + 4M(x) + 4axM ′(x) + 4bxM̃(x) (4)

Proof of Equation (1). We name the vertices of the nth hexagon Hn of

Rn(a, b, c) by h1, h2, ..., h6 clockwise with h1 is the cut vertex containing in

Hn (and in the (n− 1)th hexagon Hn−1). Similarly, we name the vertices

of Hn−1 by k1, k1, ..., k6 clockwise with k1 is the cut vertex containing in

Hn−1. Because Rn(a, b, c) is a chain, k1 ̸= h1. We distinguish three cases

depending on the distance between h1 and k1 on Hn−1.

Case 1: h1 is adjacent to k1.

Thus, h1 is either k2 or k6. Without loss of generality, we let h1 = k2.

This case occurs with the probability a. We count the number of matchings

due to the following subcases.

Subscase 1.1: The matchings that contain h1h2.

For any matching that contains h1h2, it cannot contain k2k3, k1k2, h2h3

and h1h6. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R′
n−2(a, b, c) and the path P4 =

h3h4h5h6. Clearly, P4 has 5 matchings. So, the expected value of the

number of matchings in this subcase is 5E(m′
n−2).

Subscase 1.2: The matchings that contain h1h6.

This subcase is symmetric to subcase 1.1. Thus, the expected value of

the number of matchings in this subcase is 5E(m′
n−2).

Subscase 1.3: The matchings that contain neither h1h2 nor h1h6.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn−1(a, b, c) and the path P5 = h2h3h4h5h6. Clearly,

P5 has 8 matchings. So, the expected value of the number of matchings in

this subcase is 8E(mn−1).

From the three subcases, there are 10aE(m′
n−2) + 8aE(mn−1).



694

Case 2: h1 is at distance two from k1.

Thus, h1 is either k3 or k5. Without loss of generality, we let h1 = k3.

This case occurs with the probability b. We count the number of matchings

due to the following subcases.

Subscase 2.1: The matchings that contain h1h2.

For any matching that contains h1h2, it cannot contain k2k3, k3k4, h2h3

and h1h6. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R̃n−2(a, b, c) and the path P4 =

h3h4h5h6. Clearly, P4 has 5 matchings. So, the expected value of the

number of matchings in this subcase is 5E(m̃n−2).

Subscase 2.2: The matchings that contain h1h6.

This subcase is symmetric to subcase 2.1. Thus, the expected value of

the number of matchings in this subcase is 5E(m̃n−2).

Subscase 2.3: The matchings that contain neither h1h2 nor h1h6.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn−1(a, b, c) and the path P5 = h2h3h4h5h6. Clearly,

P5 has 8 matchings. So, the expected value of the number of matchings in

this subcase is 8E(mn−1).

From the three subcases, there are 10bE(m̃n−2) + 8bE(mn−1).

Case 3: h1 is at distance three from k1.

Thus, h1 is k4. This case occurs with the probability c. We count the

number of matchings due to the following subcases.

Subscase 3.1: The matchings that contain h1h2.

For any matching that contains h1h2, it cannot contain k4k5, k3k4, h2h3

and h1h6. the number of matchings in this subcase equals the number of

matchings of the union of R̂n−2(a, b, c) and a path P4 = h3h4h5h6. Clearly,

P4 has 5 matchings. So, the expected value of the number of matchings in

this subcase is 5E(m̂n−2).

Subscase 3.2: The matchings that contain h1h6.

This subcase is symmetric to subcase 3.1. Thus, the expected value of

the number of matchings in this subcase is 5E(m̂n−2).
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Subscase 3.3: The matchings that contain neither h1h2 nor h1h6.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn−1(a, b, c) and the path P5 = h2h3h4h5h6. Clearly,

P5 has 8 matchings. So, the expected value of the number of matchings in

this subcase is 8E(mn−1).

From the three subcases, there are 10cE(m̂n−2) + 8cE(mn−1). There-

fore, from Cases 1, 2 and 3, we have that

E(mn) = 10aE(m′
n−2) + 8aE(mn−1) + 10bE(m̃n−2) + 8bE(mn−1)

+ 10cE(m̂n−2) + 8cE(mn−1)

= 8(a+ b+ c)E(mn−1) + 10aE(m′
n−2) + 10bE(m̃n−2)

+ 10cE(m̂n−2)

= 8E(mn−1) + 10aE(m′
n−2) + 10bE(m̃n−2) + 10cE(m̂n−2).

For n ≥ 2, we multiply xn throughout the above equation and sum over

all n. We have that

∞∑
n=2

E(mn)x
n =

∞∑
n=2

8E(mn−1)x
n + 10a

∞∑
n=2

E(m′
n−2)x

n

+ 10b

∞∑
n=2

E(m̃n−2)x
n + 10c

∞∑
n=2

E(m̂n−2)x
n

which implies that

M(x)− E(m0)− E(m1)x = 8x(M(x)− E(m0)) + 10ax2M ′(x)

+ 10bx2M̃(x) + 10cx2(̂M)(x).

It can be checked that E(m0) = 1 and E(m1) = 18. Hence,

M(x) = 1 + 10x+ 8xM(x) + 10ax2M ′(x) + 10bx2M̃(x) + 10cx2M̂(x).

This proves Equation (1).

Proof of Equation (2). Recall that R′
n(a, b, c) is obtained from Rn(a, b, c)

and a path P5 = x1x2x3x4x5 by identifying x1 with a vertex of the nth
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hexagon of Rn(a, b, c). We name the vertices of the nth hexagon Hn of

R′
n(a, b, c) by h1, h2, ..., h6 clockwise with h1 is the cut vertex containing in

Hn (and in the (n− 1)th hexagon Hn−1). By the definition of R′
n(a, b, c),

we have that x1 ̸= h1. We distinguish three cases due to the distance

between x1 and h1.

Case 1: x1 is adjacent to h1.

Thus, x1 is either h2 or h6. Without loss of generality, we let x1 = h2.

This case occurs with the probability a. We count the number of matchings

due to the following subcases.

Subscase 1.1: The matchings that contain x1x2.

For any matching that contains x1x2, it cannot contain x2x3, h1h2 and

h2h3. Thus, the number of matchings in this subcase equals the number

of matchings of the union of R′
n−1(a, b, c) and the path x3x4x5. Clearly,

x3x4x5 has 3 matchings. So, the expected value of the number of matchings

in this subcase is 3E(m′
n−1).

Subscase 1.2: The matchings that do not contain x1x2.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn(a, b, c) and the path x2x3x4x5. Clearly, x2x3x4x5

has 5 matchings. So, the expected value of the number of matchings in

this subcase is 5E(mn).

From the two subcases, we have that there are 3aE(m′
n−1)+ 5aE(mn)

from Case 1.

Case 2: x1 is at distance two from h1.

Thus, x1 is either h3 or h5. Without loss of generality, we let x1 = h3.

This case occurs with the probability b. We count the number of matchings

due to the following subcases.

Subscase 2.1: The matchings that contain x1x2.

For any matching that contains x1x2, it cannot contain x2x3, h3h4 and

h2h3. Thus, the number of matchings in this subcase equals the number

of matchings of the union of R̃n−1(a, b, c) and the path x3x4x5. Clearly,

x3x4x5 has 3 matchings. So, the expected value of the number of matchings

in this subcase is 3E(m̃n−1).
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Subscase 2.2: The matchings that do not contain x1x2.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn(a, b, c) and the path x2x3x4x5. Clearly, x2x3x4x5

has 5 matchings. So, the expected value of the number of matchings in

this subcase is 5E(mn).

From the two subcases, we have that there are 3bE(m̃n−1) + 5bE(mn)

from Case 2.

Case 3: x1 is at distance three from h1.

Thus, x1 is h4. This case occurs with the probability c. We count the

number of matchings due to the following subcases.

Subscase 3.1: The matchings that contain x1x2.

For any matching that contains x1x2, it cannot contain x2x3, h3h4 and

h4h5. Thus, the number of matchings in this subcase equals the number

of matchings of the union of R̂n−1(a, b, c) and the path x3x4x5. Clearly,

x3x4x5 has 3 matchings. So, the expected value of the number of matchings

in this subcase is 3E(m̂n−1).

Subscase 3.2: The matchings that do not contain x1x2.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn(a, b, c) and the path x2x3x4x5. Clearly, x2x3x4x5

has 5 matchings. So, the expected value of the number of matchings in

this subcase is 5E(mn).

From the two subcases, there are 3cE(m̂n−1) + 5cE(mn) from Case 3.

Therefore, from Cases 1, 2 and 3, we have that

E(m′
n) = 3aE(m′

n−1) + 5aE(mn) + 3bE(m̃n−1) + 5bE(mn)

+ 3cE(m̂n−1) + 5cE(mn)

= 5(a+ b+ c)E(mn) + 3aE(m′
n−1) + 3bE(m̃n−1) + 3cE(m̂n−1)

= 5E(mn) + 3aE(m′
n−1) + 3bE(m̃n−1) + 3cE(m̂n−1).

For n ≥ 1, we multiply xn throughout the above equation and sum over
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all n. We have that

∞∑
n=1

E(m′
n)x

n =

∞∑
n=1

5E(mn)x
n + 3a

∞∑
n=1

E(m′
n−1)x

n + 3b

∞∑
n=1

E(m̃n−1)x
n

+ 3c

∞∑
n=1

E(m̂n−1)x
n

which implies that

M ′(x)− E(m′
0) = 5(M(x)− E(m0)) + 3axM ′(x) + 3bxM̃(x) + 3cxM̂(x).

Note that E(m′
0) is the number of matchings of path of 5 vertices while

E(m0) is the number of matching of size 0, the empty set, of the empty

graph. Thus, E(m′
0) = 8 and E(m0) = 1. Hence,

M ′(x) = 3 + 5M(x) + 3axM ′(x) + 3bxM̃(x) + 3cxM̂(x).

This proves Equation (2).

Proof of Equation (3). Recall that R̃n(a, b, c) is obtained from Rn(a, b, c)

and a path P5 = x1x2x3x4x5 by identifying x2 with a vertex of the nth

hexagon of Rn(a, b, c). We name the vertices of the nth hexagon Hn of

R̃n(a, b, c) by h1, h2, ..., h6 clockwise with h1 is the cut vertex containing in

Hn (and in the (n− 1)th hexagon Hn−1). By the definition of R̃n(a, b, c),

we have that x2 ̸= h1. We distinguish three cases due to the distance

between x2 and h1.

Case 1: x2 is adjacent to h1.

Thus, x2 is either h2 or h6. Without loss of generality, we let x2 = h2.

This case occurs with the probability a. We count the number of matchings

due to the following subcases.

Subscase 1.1: The matchings that contain x1x2.

For any matching that contains x1x2, it cannot contain x2x3, h1h2 and

h2h3. Thus, the number of matchings in this subcase equals the number of

matchings of the union of R′
n−1(a, b, c) and the path P3 = x3x4x5. Clearly,

P3 has 3 matchings. So, the expected value of the number of matchings in
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this subcase is 3E(m′
n−1).

Subscase 1.2: The matchings that contain x2x3.

For any matching that contains x2x3, it cannot contain x1x2, x3x4, h1h2

and h2h3. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R′
n−1(a, b, c), the vertex x1 and the

path P2 = x4x5. Clearly, P2 has 2 matchings. So, the expected value of

the number of matchings in this subcase is 2E(m′
n−1).

Subscase 1.3: The matchings that contain neither x1x2 nor x2x3.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn(a, b, c) and the path P3 = x3x4x5. Clearly, P3 has

3 matchings. So, the expected value of the number of matchings in this

subcase is 3E(mn).

From the three subcases, we have that there are 5aE(m′
n−1)+3aE(mn).

Case 2: x2 is at distance two from h1.

Thus, x2 is either h3 or h5. Without loss of generality, we let x2 = h3.

This case occurs with the probability b. We count the number of matchings

due to the following subcases.

Subscase 2.1: The matchings that contain x1x2.

For any matching that contains x1x2, it cannot contain x2x3, h2h3 and

h3h4. Thus, the number of matchings in this subcase equals the number of

matchings of the union of R̃n−1(a, b, c) and the path P3 = x3x4x5. Clearly,

P3 has 3 matchings. So, the expected value of the number of matchings in

this subcase is 3E(m̃n−1).

Subscase 2.2: The matchings that contain x2x3.

For any matching that contains x2x3, it cannot contain x1x2, x3x4, h3h4

and h2h3. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R̃n−1(a, b, c), the vertex x1 and the

path P2 = x4x5. Clearly, P2 has 2 matchings. So, the expected value of

the number of matchings in this subcase is 2E(m̃n−1).

Subscase 2.3: The matchings that contain neither x1x2 nor x2x3.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn(a, b, c) and the path P3 = x3x4x5. Clearly, P3 has



700

3 matchings. So, the expected value of the number of matchings in this

subcase is 3E(mn).

From the three subcases, we have that there are 5bE(m̃n−1)+3bE(mn).

Case 3: x2 is at distance three from h1.

Thus, x2 is h4. This case occurs with the probability c. We count the

number of matchings due to the following subcases.

Subscase 3.1: The matchings that contain x1x2.

For any matching that contains x1x2, it cannot contain x2x3, h3h4 and

h4h5. Thus, the number of matchings in this subcase equals the number of

matchings of the union of R̂n−1(a, b, c) and the path P3 = x3x4x5. Clearly,

P3 has 3 matchings. So, the expected value of the number of matchings in

this subcase is 3E(m̂n−1).

Subscase 3.2: The matchings that contain x2x3.

For any matching that contains x2x3, it cannot contain x1x2, x3x4, h3h4

and h4h5. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R̂n−1(a, b, c), the vertex x1 and the

path P2 = x4x5. Clearly, P2 has 2 matchings. So, the expected value of

the number of matchings in this subcase is 2E(m̂n−1).

Subscase 3.3: The matchings that contain neither x1x2 nor x2x3.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn(a, b, c) and the path P3 = x3x4x5. Clearly, P3 has

3 matchings. So, the expected value of the number of matchings in this

subcase is 3E(mn).

From the three subcases, we have that there are 5cE(m̂n−1)+3cE(mn).

Therefore, from Cases 1, 2 and 3, we have that

E(m̃n) = 5aE(m′
n−1) + 3aE(mn) + 5bE(m̃n−1) + 3bE(mn) + 5cE(m̂n−1)

+ 3cE(mn))

= 3(a+ b+ c)E(mn) + 5aE(m′
n−1) + 5bE(m̃n−1) + 5cE(m̂n−1)

= 3E(mn) + 5aE(m′
n−1) + 5bE(m̃n−1) + 5cE(m̂n−1).

For n ≥ 1, we multiply xn throughout the above equation and sum over
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all n. We have that

∞∑
n=1

E(m̃n)x
n =

∞∑
n=1

3E(mn)x
n + 5a

∞∑
n=1

E(m′
n−1)x

n + 5b

∞∑
n=1

E(m̃n−1)x
n

+ 5c

∞∑
n=1

E(m̂n−1)x
n

which implies that

M̃(x)− E(m̃0) = 3(M(x)− E(m0)) + 5axM ′(x) + 5bxM̃(x) + 5cxM̂(x).

Note that E(m̃0) is the number of matchings of path of 5 vertices while

E(m0) is the number of matching of size 0, the empty set, of the empty

graph. Thus, E(m̃0) = 8 and E(m0) = 1. Hence,

M̃(x) = 5 + 3M(x) + 5axM ′(x) + 5bxM̃(x) + 5cxM̂(x).

This proves Equation (3).

Proof of Equation (4). Recall that R̂n(a, b, c) is obtained from Rn(a, b, c)

and a path P5 = x1x2x3x4x5 by identifying x3 with a vertex of the nth

hexagon of Rn(a, b, c). We name the vertices of the nth hexagon Hn of

R̂n(a, b, c) by h1, h2, ..., h6 clockwise with h1 is the cut vertex containing in

Hn (and in the (n− 1)th hexagon Hn−1). By the definition of R̂n(a, b, c),

we have that x3 ̸= h1. We distinguish three cases due to the distance

between x3 and h1.

Case 1: x3 is adjacent to h1.

Thus, x3 is either h2 or h6. Without loss of generality, we let x3 = h2.

This case occurs with the probability a. We count the number of matchings

due to the following subcases.

Subscase 1.1: The matchings that contain x2x3.

For any matching that contains x2x3, it cannot contain x1x2, x3x4, h1h2

and h2h3. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R′
n−1(a, b, c), the vertex x1 and the

path P2 = x4x5. Clearly, P2 has 2 matchings. So, the expected value of
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the number of matchings in this subcase is 2E(m′
n−1).

Subscase 1.2: The matchings that contain x3x4.

For any matching that contains x3x4, it cannot contain x2x3, x4x5, h1h2

and h2h3. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R′
n−1(a, b, c), the vertex x5 and the

path x1x2. Clearly, x1x2 has 2 matchings. So, the expected value of the

number of matchings in this subcase is 2E(m′
n−1).

Subscase 1.3: The matchings that contain neither x2x3 nor x3x4.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn(a, b, c) , the paths x1x2 and x4x5 . Clearly, x1x2

and x4x5 has 4 matchings. So, the expected value of the number of match-

ings in this subcase is 4E(mn).

From the three subcases, we have that there are 4aE(m′
n−1)+4aE(mn).

Case 2: x3 is at distance two from h1.

Thus, x3 is either h3 or h5. Without loss of generality, we let x3 = h3.

This case occurs with the probability b. We count the number of matchings

due to the following subcases.

Subscase 2.1: The matchings that contain x2x3.

For any matching that contains x2x3, it cannot contain x1x2, x3x4, h2h3

and h3h4. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R̃n−1(a, b, c), the vertex x1 and the

path x4x5. Clearly, x4x5 has 2 matchings. So, the expected value of the

number of matchings in this subcase is 2E(m̃n−1).

Subscase 2.2: The matchings that contain x3x4.

For any matching that contains x3x4, it cannot contain x2x3, x4x5, h2h3

and h3h4. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R̃n−1(a, b, c), the vertex x5 and the

path x1x2. Clearly, x1x2 has 2 matchings. So, the expected value of the

number of matchings in this subcase is 2E(m̃n−1).

Subscase 2.3: The matchings that contain neither x2x3 nor x3x4.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn(a, b, c) , the paths x1x2 and x4x5 . Clearly, x1x2
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and x4x5 has 4 matchings. So, the expected value of the number of match-

ings in this subcase is 4E(mn).

From the three subcases, we have that there are 4bE(m̃n−1)+4bE(mn).

Case 3: x3 is at distance three from h1.

Thus, x3 is h4. This case occurs with the probability c. We count the

number of matchings due to the following subcases.

Subscase 3.1: The matchings that contain x2x3.

For any matching that contains x2x3, it cannot contain x1x2, x3x4, h3h4

and h4h5. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R̂n−1(a, b, c), the vertex x1 and the

path x4x5. Clearly, x4x5 has 2 matchings. So, the expected value of the

number of matchings in this subcase is 2E(m̂n−1).

Subscase 3.2: The matchings that contain x3x4.

For any matching that contains x3x4, it cannot contain x2x3, x4x5, h3h4

and h4h5. Thus, the number of matchings in this subcase equals the

number of matchings of the union of R̂n−1(a, b, c), the vertex x5 and the

path x1x2. Clearly, x1x2 has 2 matchings. So, the expected value of the

number of matchings in this subcase is 2E(m̂n−1).

Subscase 3.3: The matchings that contain neither x2x3 nor x3x4.

The number of matchings in this subcase equals the number of match-

ings of the union of Rn(a, b, c) , the paths x1x2 and x4x5 . Clearly, x1x2

and x4x5 has 4 matchings. So, the expected value of the number of match-

ings in this subcase is 4E(mn).

From the three subcases, we have that there are 4cE(m̂n−1)+4cE(mn).

Therefore, from Cases 1, 2 and 3, we have that

E(m̂n) = 4aE(m′
n−1) + 4aE(mn) + 4bE(m̃n−1) + 4bE(mn) + 4cE(m̂n−1)

+ 4cE(mn)

= 4(a+ b+ c)E(mn) + 4aE(m′
n−1) + 4bE(m̃n−1) + 4cE(m̂n−1)

= 4E(mn) + 4aE(m′
n−1) + 4bE(m̃n−1) + 4cE(m̂n−1).

For n ≥ 1, we multiply xn throughout the above equation and sum over
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all n. We have that

∞∑
n=1

E(m̂n)x
n =

∞∑
n=1

4E(mn)x
n + 4a

∞∑
n=1

E(m′
n−1)x

n + 4b

∞∑
n=1

E(m̃n−1)x
n

+ 4c

∞∑
n=1

E(m̂n−1)x
n

which implies that

M̂(x)− E(m̂0) = 4(M(x)− E(m0)) + 4axM ′(x) + 4bxM̃(x) + 4cxM̂(x).

Note that E(m̂0) is the number of matchings of path of 5 vertices while

E(m0) is the number of matching of size 0, the empty set, of the empty

graph. Thus, E(m̂0) = 8 and E(m0) = 1. Hence,

M̂(x) = 4 + 4M(x) + 4axM ′(x) + 4bxM̃(x) + 4cxM̂(x).

This proves Equation (4).

By Equations (1), (2), (3) and (4), it can be solved that

M(x) =
1 + 10x− 3ax− 5bx− 4cx

1− 8x− 3ax− 5bx− 4cx− 26ax2 + 10bx2 − 8cx2
.

This proves Theorem 5.

3.2 Merrifield-Simmons index of random hexagonal

cactus chains

In this subsection, we prove Theorem 7. Recall that

E(in(a, b, c)) is the expected value of the number of independent sets

of Rn(a, b, c).

Ia,b,c(x) is the generating function of E(in(a, b, c)).

When there is no danger of confusion, we let E(in) to denote E(in(a, b, c))

and let I(x) to denote Ia,b,c(x). Thus,

I(x) =
∑∞

n=0 E(in)x
n.



705

Similarly, we let E(i′n), E(̃in) and E(̂in) be the expected values of the

number of independent sets of R′
n(a, b, c), R̃n(a, b, c) and R̂n(a, b, c), re-

spectively. Further, we let I ′(x), Ĩ(x) and Î(x) be the generating functions

of E(i′n), E(̃in) and E(̂in), respectively. Therefore,

I ′(x) =
∑∞

n=0 E(i′n)x
n

Ĩ(x) =
∑∞

n=0 E(̃in)x
n

Î(x) =
∑∞

n=0 E(̂in)x
n.

Now, to prove Theorem 7, we need the following equations.

(1− 5x)I(x) = 1 + 13x+ 8ax2I ′(x) + 8bx2Ĩ(x) + 8cx2Î(x) (5)

(1− 3ax)I ′(x) = 8 + 5I(x) + 3bxĨ(x) + 3cxÎ(x) (6)

(1− 7bx)Ĩ(x) = 10 + 3I(x) + 7axI ′(x) + 7cxÎ(x) (7)

(1− 5cx)Î(x) = 9 + 4I(x) + 5axI ′(x) + 5bxĨ(x) (8)

Because we can prove Equations (5) - (8) by similar arguments as Theorem

5, we omit the proofs of these equations.

By Equations (5), (6), (7) and (8), it can be solved that

I(x) =
1 + 13x− 3ax− 7bx− 5cx+ 25ax2 − 11bx2 + 7cx2

1− 5x− 3ax− 7bx− 5cx− 25ax2 + 11bx2 − 7cx2
.

This proves Theorem 7.
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