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Abstract

The demand for glycerol, a by-product of biodiesel manufac-
turing, is anticipated to surpass supply, necessitating efficient con-
version techniques for sustainability. The importance of effective
conversion techniques is illustrated by the development of a system
of fractional order differential equations using a literature reaction
model. This study focuses on understanding and describing poten-
tial glycerol hydrogenolysis pathways by investigating the kinetics of
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a catalyzed hydrogenolysis model using qualitative analysis of frac-
tional order differential equations, as there is limited research on the
underlying reactions. The model is analyzed qualitatively and quan-
titatively using fixed point theorems. It is found to be generalized
Ulam-Hyers-Rassias stable. The impact of the fractional operator
is studied through computational simulations using a two-step La-
grange polynomial. Graphs at different fractional derivative orders
show the significant influence of the fractional order on the model’s
classes. Even though the results are based on a particular kinetic
model, they aim to improve comprehension and description of the
process.

1 Introduction

Human activities like climate change, air pollution, and urbanization nega-

tively impact the environment, leading to higher temperatures and chang-

ing precipitation patterns, prompting researchers to seek solutions [1].

Prior to civilization, the end of the Ice Age and the Industrial Revolution

both dramatically raised greenhouse gas concentrations [2]. The environ-

mental effects of the industrial age can be seen in the rise in atmospheric

carbon dioxide content during the previous 0.8 million years [3]. Pollution

is a result of using fossil fuels, especially when producing food, transport-

ing individuals around, and destroying forests. Waste decomposition also

increases greenhouse gas emissions, demonstrating the urgency of com-

bating climate change [4]. Climate change and problems with fossil fuels

are related to the threats to the environment posed by dangerous carbon

dioxide emissions and particulate matter [5]. Due to their affordability and

versatility, biodiesel and bio-compressed natural gas are eco-friendly, non-

toxic alternatives. In place of petroleum diesel in transportation, biodiesel,

a blend of fatty acids and alkyl esters, is biodegradable, renewable, and

environmentally friendly. It is a well-liked option in the manufacturing

industries because of its higher lubricity, which increases engine efficiency

and longevity [6]. Biodiesel manufacturing is crucial for efficiency and

affordability, with large volumes of glycerol produced as a by-product.

Increased production has made glycerol abundant, making it a desirable

platform chemical [7].

Glycerol is a naturally occurring, non-toxic liquid that is utilized in a
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number of sectors, including the chemical, food, and pharmaceutical in-

dustries [8]. Crude glycerol, a byproduct of biodiesel, is normally removed

using centrifugation or gravity separation. This crude glycerol could be

contaminated with salt, oil, soap, methanol, and other organic substances.

Effective use of crude glycerol is essential to making biodiesel more eco-

nomically sustainable and reducing its environmental impact. Its utility

and worth can be increased by lowering these pollutants [9]. 3.28 mil-

lion tonnes of glycerol were created as a byproduct of the 32.8 million

tonnes of biodiesel that were produced globally in 2016. This is essen-

tial for the long-term viability and affordability of the manufacturing of

biodiesel [10]. Glycerol is produced in excess as output rises, and it can

be converted into a variety of compounds through the use of catalysts and

processes [11]. Since 2000, over 1000 publications have explored catalytic

hydrogenolysis of glycerol to useful compounds, breaking chemical bonds

and adding hydrogen to glycerol, a saturated molecule with higher O/C

content [12,13]. With the aid of a metal catalyst, hydrogenolysis disassem-

bles the chemical bonds in glycerol to provide ethanol, propanol, methane,

and primary products such 1,2-propanediol, 1,3-propanediol, and ethylene

glycol. Ink, fiber glass, cosmetics, and coolants are just a few of the indus-

trial operations that utilize these products [14]. Numerous researchers have

conducted in-depth study on the development of selective hydrogenolysis

of glycerol employing a variety of catalysts [15–17].

Research on the hydrogenolysis of glycerol using catalysts makes con-

siderable use of mathematical modeling [18–20]. Fractional-order, involv-

ing integration and transect differentiation, aids in understanding real-

world problems and modeling phenomena due to memory and hereditary

properties [21–23]. Component concentration is important for chemical

and nonlinear problems in kinetics chemistry and is improved by fractional-

order modeling, which incorporates integration and transect differentia-

tion [24]. Using fractional time derivatives and the q-homotopy analy-

sis transform method, Saad K.M. [25] created a novel model for a cubic

isothermal auto-catalytic chemical system and offered approximations of

the solutions. Researchers [26] studied the distinctness of the fractional-

order delayed Brusselator chemical reaction model using contraction map-
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ping, providing a suitable condition to guarantee stability and the begin-

ning of Hopf bifurcation. Another study [27] used the Atangana-Baleanu

time-fractional operator and the Mittag-Leffler kernel to transform the

nonlinear differential equations into fractional-order models in order to

investigate the substrate-enzyme reversible reaction. The Newton polyno-

mial interpolation technique-based Atangana-Toufik approach was utilized

to provide numerical results. Recent studies have shown control strategies,

hopf bifurcation, and stability in fractional order systems [28, 29]. Nu-

merous investigations were also carried out by researchers to improve the

ecological systems and the environment [30,31].

In this study, we concentrate on the reaction mechanisms for potential

glycerol hydrogenolysis pathways. Since there is little research on the

underlying reactions, the goal of this work is to improve the tools for better

understanding and describing the reaction by investigating the kinetics of a

catalyzed hydrogenolysis model utilizing qualitative analysis of fractional

order differential equations. A generalized version of the model and a

summary of the description of the proposed model are provided in Section

“2”. Furthermore, the theoretical background of the suggested fractional

operator is explored. Section 3” deals with the qualitative analysis of

the proposed system. The numerical solutions to the suggested fractional-

order model with power law kernel are provided in Section “4”. In Sections

“5” and “6,” the numerical simulations, results, and conclusions will be

addressed.

2 Kinetic model for glycerol hydrogenolysis

via heterogeneous catalysis

The hydrogenolysis of glycerol involves cleaving glycerol’s chemical bonds

with hydrogen in the presence of a metal catalyst, producing main prod-

ucts like 1,2-propanediol (1,2-PD), 1,3-propanediol (1,3-PD), and ethlyene

glycol (EG), as well as secondary products like ethanol, propanol, and

methane. For the sake of this investigation, we take into account one re-

action from [20]. The Cu-Re/ZnO catalyst is used in this reaction. The
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concentration of the catalyst and the hydrogen pressure are non-zero con-

stants in order to study the kinetic model. The quantity of every substance

other than glycerol and hydrogen is zero at the beginning time t = 0. We

use the symbols X1 for glycerol and X2 for glyceraldehyde to represent

them. We also begin with the presumption that the concentrations of

glycolaldehyde and formic acid are equal at the beginning of the process,

ensuring that their amounts at any subsequent time will also be equal and

will be indicated by X3. The symbol X4 designates the primary product,

ethylene glycol. We do not differentiate between 1,2-propanediol(1,2-PD)

and 1,3-propanediol(1,3-PD) because, as was briefly discussed in [20], the

latter is said to have been generated in extremely small quantities. Instead,

we use the symbol X5 to indicate their global concentration. The corre-

sponding parameter values can be determined using experimental data

from the prior studies, as mentioned in [20]. Fractional calculus is crucial

for understanding complex physical systems dynamics, as its non-local na-

ture allows for accurate representation of natural phenomena and control

of various mathematical models. Therefore, we use the fractional-order

approach to define the aforementioned description.

C
0D

α
t X1(t) = −(κ(0) + κ(1))X1 + κ(−1)H2X2,

C
0D

α
t X2(t) = κ(1)X1 − κ(−1)H2X2 + κ(−2)X3

2 − κ(2)X2,

C
0D

α
t X3(t) = κ(2)X2 − κ(−2)X3

2 − κ(3)H2X3
2,

C
0D

α
t X4(t) = κ(3)H2X3

2,

C
0D

α
t X5(t) = κ(0)X1.

(1)

Where CDα represents the Caputo derivative of order 0 < α ≤ 1. And

X1(0) ≥ 0, X2(0) ≥ 0, X3(0) ≥ 0, X4(0) ≥ 0, X5(0) ≥ 0.

Figure (1) depicts a schematic illustration of the reaction system (1).
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Figure 1. Glycerol conversion reaction route using Cu/ZnO catalysts

Now, let’s go through a few recent and important calculus results.

Definition 1. [32] The Caputo derivative of a differentiable function Φ(t)

to order α ∈ (0, 1) with beginning point, t = 0, is given by

C
0D

α
t Φ(t) =

1

Γ(1− α)

∫ t

0

Φ′(q)

(t− q)α
dq. (2)

If Φ(t) is an integrable function with 0 < α < 1, the fractional integral is

specified as follows [33]:

C
0 I

α
t Φ(t) =

1

Γ(α)

∫ t

0

Φ(q)

(t− q)1−α
dq. (3)

Lemma 1. A fixed point γ⋆ is regarded as the equilibrium point of the

Caputo system

C
0D

α
t Φ(t) = Φ(t, γ(t)), α ∈ (0, 1) (4)

if and only if Φ(t, γ⋆) = 0.

Lemma 2. [34] Consider α ∈ R+, η1(t), and η2(t) demonstrate positive

functions and η3(t) denote an increasing as well as positive function for
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t ∈ [0,T], T > 0, and η3(t) ≤ m, while m is a constant value. Suppose

η1 ≤ η2 + η3(t)

∫ T

0

(t− q)α−1η1(q)dq, (5)

then

η1 ≤ η2Eα

[
η3(t)

πTα

Γ(1− α) sin(απ)

]
. (6)

3 Qualitative analysis of the model

3.1 Well-posedness and positively invariant region

Theorem 1. The solution of the prposed kinetic model (1) is distinct and

limited in R5
+ given straight-line constraints.

Proof: We have got

C
0D

α
t X1(t)

∣∣
X1=0

= κ(−1)H2X2 ≥ 0,

C
0D

α
t X2(t)

∣∣
X2=0

= κ(1)X1 + κ(−2)X3
2 ≥ 0,

C
0D

α
t X3(t)

∣∣
X3=0

= κ(2)X2 ≥ 0,

C
0D

α
t X4(t)

∣∣
X4=0

= κ(3)H2X3
2 ≥ 0,

C
0D

α
t X5(t)

∣∣
X5=0

= κ(0)X1 ≥ 0.

(7)

The choice of solution can’t escape from the hyperplane if

{X1(0),X2(0),X3(0),X4(0),X5(0)} ∈ R5
+.

The vector field on each hyperplane surrounding the non-negative orthant

directs into the domain R5
+, making it a positively invariant set.

3.2 Equilibrium points

The nonnegative equilibria for the kinetic model specified by (1) are pro-

vided [20] by

(X1
∗, X2

∗, X3
∗, X4

∗, X5
∗) = (0, 0, 0,X4eq,X5eq), (8)
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where X4eq +X5eq = X1(0).

3.3 Solutions’ existence and uniqueness

This section proves the existence and uniqueness of a solution to the system

(1) by applying the Banach fixed point theory and Schaefer’s fixed point

theorem. Arrange the following function:

K(t,X1,X2,X3,X4,X5) = −(κ(0) + κ(1))X1 + κ(−1)H2X2,

L(t,X1,X2,X3,X4,X5) = κ(1)X1 − κ(−1)H2X2 + κ(−2)X3
2 − κ(2)X2,

M(t,X1,X2,X3,X4,X5) = κ(2)X2 − κ(−2)X3
2 − κ(3)H2X3

2,

N(t,X1,X2,X3,X4,X5) = κ(3)H2X3
2,

P(t,X1,X2,X3,X4,X5) = κ(0)X1.

(9)

Therefore, the fractional integral will be applied to the initial conditions of

the Caputo fractional derivative model (1) of order α > 0. The technique

results in the second type of Volterra-integral equations, which contain the

solution to the proposed model (1).

X1(t)−X1(0) = 1
Γ(α)

∫ t
0
(t− q)α−1K(q,X1(q))dq,

X2(t)−X2(0) = 1
Γ(α)

∫ t
0
(t− q)α−1L(q,X2(q))dq,

X3(t)−X3(0) = 1
Γ(α)

∫ t
0
(t− q)α−1M(q,X3(q))dq,

X4(t)−X4(0) = 1
Γ(α)

∫ t
0
(t− q)α−1N(q,X4(q))dq,

X5(t)−X5(0) = 1
Γ(α)

∫ t
0
(t− q)α−1P(q,X4(q))dq.

(10)

In order for (R, ∥.∥) to be the Banach space and G1([0,T]) to be the Banach

space of all known continuous functions established in [0,T] → R formed

with Chebyshev norm, the function (X1,X2,X3,X4,X5) : [0,T]×R → R

is assumed to be continuous. Due to the polynomial vector field on the

right-hand side of (9), it is C∞ and, more specifically, locally Lipschitz.

Theorem 2. Assume that the functions (X1,X2,X3,X4,X5) : [0,T] ×
R → R are continuous and uphold the Lipschitz condition. The system (1)
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has a distinct solution if

(X1,X2,X3,X4,X5)
Γ(1− α) sin(απ)Pα

απ
< 1. (11)

Proof. Establish the mapping W : G1([0,T],R) → G1([0,T],R), where

W ∈ (X1,X2,X3,X4,X5) : [0,T]× R → R.

For all {(X11,X12), (X21,X22), (X31,X32), (X41,X42, (X51,X52)} ∈
G1([0,T],R) and t ∈ [0,T], we find

∥W(X11(t))−W(X12(t))∥

≤ 1

Γ(α)

∫ T

0

(t− q)α−1∥K(q,X11(q))−K(q,X12(q))∥dq

≤ ΠK

Γ(α)

∫ T

0

(t− q)α−1∥X11(q)−X12(q)∥dq

≤ ΠKP
α

Γ(α+ 1)

∥∥X11 −X12

∥∥
G1 . (12)

Likewise, we discover

∥W(X21(t))−W(X22(t))∥ ≤ ΠLP
α

Γ(α+ 1)

∥∥X21 −X22

∥∥
G1 ,

∥W(X31(t))−W(X32(t))∥ ≤ ΠMPα

Γ(α+ 1)

∥∥X31 −X32

∥∥
G1 ,

∥W(X41(t))−W(X42(t))∥ ≤ ΠNP
α

Γ(α+ 1)

∥∥X41 −X42

∥∥
G1 , (13)

∥W(X51(t))−W(X52(t))∥ ≤ ΠPP
α

Γ(α+ 1)

∥∥X51 −X52

∥∥
G1 .

The fact that the condition (X1,X2,X3,X4,X5)
Γ(1−α) sin(απ)Pα

απ < 1 is

obvious from the data. Assuming that the parameter W contains a fixed

point in t ∈ [0,T] as it is a contraction mapping, the idea of Banach

contraction mapping is used to show this.

Now, utilizing Schaefer’s fixed point theorem, we examine the existence

of solutions for the system.

Theorem 3. Provided that the variables (X1,X2,X3,X4,X5) : [0,T] ×
R → R are continuous and the fact that the constants
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(ΠK1 ,ΠL1 ,ΠM1 ,ΠN1 ,ΠP1) > 0

exist such that 

∥K(t,X1)∥ ≤ ΠK1(ψ + ∥X1∥),

∥L(t,X2)∥ ≤ ΠL1
(ψ + ∥X2∥),

∥M(t,X3)∥ ≤ ΠM1
(ψ + ∥X3∥),

∥N(t,X4)∥ ≤ ΠN1(ψ + ∥X4∥),

∥P(t,X5)∥ ≤ ΠP1
(ψ + ∥X5∥),

(14)

where ψ is a random number between 0 and 1, then system (1) has at least

one solution.

Proof. It follows that the operator W is continuous from above Theorem

(2). Suppose that {X1
σ+1}∞ , {X2

σ+1}∞ , {X3
σ+1}∞ , {X4

σ+1}∞ and

{X5
σ+1}∞ be sequences such that X1

σ+1 → X1
σ , X2

σ+1 → X2
σ ,

X3
σ+1 → X3

σ , X4
σ+1 → X4

σ, and X5
σ+1 → X5

σ , in G1([0,T],R). For

t ∈ [0,T], we get
∥∥W(X1

σ+1(t))−W(X1
σ(t))

∥∥
≤ 1

Γ(α)

∫ t
0
(t− q)α−1

∥∥K(q,X1
σ+1(q))−K(q,X1

σ(q))
∥∥dq

≤ ΠK1
Pα

Γ(α+1)

∥∥X1
σ+1 −X1

σ
∥∥
G1 .

(15)

Similarly,

∥∥W(X2
σ+1(t))−W(X2

σ(t))
∥∥ ≤ ΠL1P

α

Γ(α+1)

∥∥X2
σ+1 −X2

σ
∥∥
G1 ,∥∥W(X3

σ+1(t))−W(X3
σ(t))

∥∥ ≤ ΠM1
Pα

Γ(α+1)

∥∥X3
σ+1 −X3

σ
∥∥
G1 ,∥∥W(X4

σ+1(t))−W(X4
σ(t))

∥∥ ≤ ΠN1
Pα

Γ(α+1)

∥∥X4
σ+1 −X4

σ
∥∥
G1 ,∥∥W(X5

σ+1(t))−W(X5
σ(t))

∥∥ ≤ ΠP1P
α

Γ(α+1)

∥∥X5
σ+1 −X5

σ
∥∥
G1 .

(16)

Where ∥X1
σ+1 −X1

σ∥ → 0, ∥X2
σ+1 −X2

σ∥ → 0, ∥X3
σ+1 −X3

σ∥ → 0,

∥X4
σ+1 −X4

σ∥ → 0, and ∥X5
σ+1 −X5

σ∥ → 0, as σ → 0. Therefore, the

operator W is continuous.
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On the set of G1([0,T],R), we then show that the operator W is a

one-to-one bounded function. For each X1 ∈ BX1 , X2 ∈ BX2 , X3 ∈ BX3 ,

X4 ∈ BX4 , X5 ∈ BX5 ,and for ξ > 0, there exist a constant φ > 0 such that

{∥WX1∥, ∥WX2∥, ∥WX3∥, ∥WX4 , ∥WX5∥} ≤ φ. Also all the continuous

functions on the range t ∈ [0,T] are defined as a subset of Banach space

by 

BX1 = {X1 ∈ G1([0,T],R) : ∥X1∥ ≤ ξ},

BX2 = {X2 ∈ G1([0,T],R) : ∥X2∥ ≤ ξ},

BX3 = {X3 ∈ G1([0,T],R) : ∥X3∥ ≤ ξ},

BX4 = {X4 ∈ G1([0,T],R) : ∥X4∥ ≤ ξ},

BX5 = {X5 ∈ G1([0,T],R) : ∥X5∥ ≤ ξ}.

(17)

Hence, for any t ∈ [0,T],

∥WX1∥ ≤ ∥X1(0)∥+
1

Γ(α)

∫ t

0

(t− q)α−1∥K(q,X1(q))∥dq

≤ ∥X1(0)∥+
∥K(q,X1(q))∥

Γ(α)

∫ t

0

(t− q)α−1dq

≤ ∥X1(0)∥+ΠK1
(ψ + ∥X1∥)

[ Pα

Γ(α+ 1)

]
≤ ∥X1(0)∥+ΠK1(ψ + ξ)

[ Pα

Γ(α+ 1)

]
.

(18)

And

∥WX2∥ ≤ ∥X2(0)∥+ΠL1
(ψ + ξ)

[ Pα

Γ(α+ 1)

]
,

∥WX3∥ ≤ ∥X3(0)∥+ΠM1(ψ + ξ)
[ Pα

Γ(α+ 1)

]
,

∥WX4∥ ≤ ∥X4(0)∥+ΠN1
(ψ + ξ)

[ Pα

Γ(α+ 1)

]
,

∥WX5∥ ≤ ∥X5(0)∥+ΠP1(ψ + ξ)
[ Pα

Γ(α+ 1)

]
.

(19)

Consider the opposite scenario whenW maps bounded sets in G1([0,T],R)

into equal continuous sets. If 0 ≤ ti ≤ tj ≤ T, {ti, tj} ∈ [0,T], and

X1 ∈ BX1 , X2 ∈ BX2 , X3 ∈ BX3 , X4 ∈ BX4 , X5 ∈ BX5 then
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

∥∥WX1(ti)−WX1(tj)
∥∥

≤ 1
Γ(α)

∥∥∥ ∫ ti0 [
(ti − q)α−1 − (tj − q)α−1

]
K(q,X1(q))dq

∥∥∥
+ 1

Γ(α)

∥∥∥ ∫ tjti (tj − q)α−1K(q,X1(q))dq
∥∥∥

≤ ΠK1
(ψ+ξ)

Γ(α)

∥∥∥ ∫ ti0 [
(ti − q)α−1 − (tj − q)α−1

]
dq +

∫ tj
ti
(tj − q)α−1dq

∥∥∥
≤ ΠK1 (ψ+ξ)P

α

Γ(α+1)

[
tαi − tαj + 2(tj − ti)

α
]
.

(20)

And

∥∥WX2(ti)−WX2(tj)
∥∥ ≤ ΠL1 (ψ+ξ)P

α

Γ(α+1)

[
tαi − tαj + 2(tj − ti)

α
]
,∥∥WX3(ti)−WX3(tj)

∥∥ ≤ ΠM1
(ψ+ξ)Pα

Γ(α+1)

[
tαi − tαj + 2(tj − ti)

α
]
,∥∥WX4(ti)−WX4(tj)

∥∥ ≤ ΠN1
(ψ+ξ)Pα

Γ(α+1)

[
tαi − tαj + 2(tj − ti)

α
]
,∥∥WX5(ti)−WX5(tj)

∥∥ ≤ ΠP1 (ψ+ξ)P
α

Γ(α+1)

[
tαi − tαj + 2(tj − ti)

α
]
.

(21)

The aforementioned expressions tend to zero when ti → tj on the right

side of the inequality. W is a continuous function in accordance with the

Arzela-Ascoli theorem. Now we demonstrate that

Z(W) = {(X1,X2,X3,X4,X5) ∈ G1([0,T],R) : (X1,X2,X3,X4,X5)

= φ(X1,X2,X3,X4,X5)} (22)

is bounded for some 0 < φ < 1 by (1). For every t ∈ [0,T], let (X1,X2,X3,

X4,X5) ∈ Z(W), such that (X1,X2,X3,X4,X5) = φW(X1,X2,X3,X4,

X5), yields



∥X1(t)∥ ≤ X1(0) +
1

Γ(α)

∫ T

0
(t− q)α−1∥K(q,X1(q))∥dq

≤ X1(0) +
ΠK1

Γ(α)

∫ T

0
(t− q)α−1(ψ + ∥X1(q)∥)dq

≤ X1(0) +
ψΠK1

Γ(α)

∫ T

0
(t− q)α−1dq +

ΠK1

Γ(α)

∫ T

0
(t− q)α−1∥X1(q)∥dq

≤ X1(0) +
ΠK1P

α

Γ(α+1) +
ΠK1P

α

Γ(α+1)

∫ T

0
(t− q)α−1∥X1(q)∥dq

≤
{
X1(0) +

ΠK1
Pα

Γ(α+1)Kα(ΠK1
Pα)

}
<∞

(23)
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And

∥X2(t)∥ ≤
{
X2(0) +

ΠL1
Pα

Γ(α+ 1)
Lα(ΠL1

Pα)
}
<∞,

∥X3(t)∥ ≤
{
X3(0) +

ΠM1
Pα

Γ(α+ 1)
Mα(ΠM1

Pα)
}
<∞,

∥X4(t)∥ ≤
{
X4(0) +

ΠN1P
α

Γ(α+ 1)
Nα(ΠN1P

α)
}
<∞,

∥X5(t)∥ ≤
{
X5(0) +

ΠP1
Pα

Γ(α+ 1)
Pα(ΠN1

Pα)
}
<∞.

(24)

The system (1)’s solution exists because W has a fixed point, which is

shown by Schaefer’s fixed point theorem, as Z(W) is limited.

3.4 Generalized Ulam-Hyers-Rassias (UHR) stability

We evaluate the stability of the system (1) to demonstrate that it is UHR

stable using the Ulam-Hyers-Rassias (UHR) stability technique as given

in [34].

Definition 2. The proposed system (1) is generalized Ulam-Hyers-Rassias

(UHR) stable with respect to µ(t) ∈ G1([0,T],R) if there exists real val-

ues {λγ , λτ , λϑ, λρ, λν} > 0 with {γ, τ, ϑ, ρ, ν} > 0 and for all solutions

(X1,X2,X3,X4,X5) ∈ G1([0,T],R) of the subsequent inequalities∣∣CDα
t X1(t)−K(t,X1(t))

∣∣ ≤ µ(t),∣∣CDα
t X2(t)− L(t,X2(t))

∣∣ ≤ µ(t),∣∣CDα
t X3(t)−M(t,X3(t))

∣∣ ≤ µ(t),∣∣CDα
t X4(t)−N(t,X4(t))

∣∣ ≤ µ(t),∣∣CDα
t X5(t)− P(t,X5(t))

∣∣ ≤ µ(t),

(25)

there exists a solution (X̄1, X̄2, X̄3, X̄4, X̄5) ∈ G1([0,T],R) of proposed
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system (1) with 

|X1(t)− X̄1(t)| ≤ λγµ(t),

|X2(t)− X̄2(t)| ≤ λτµ(t),

|X3(t)− X̄3(t)| ≤ λϑµ(t),

|X4(t)− X̄4(t)| ≤ λρµ(t),

|X5(t)− X̄5(t)| ≤ λνµ(t).

(26)

Theorem 4. The proposed system (1) is generalized Ulam-Hyers-Rassias

stable with regard to G1([0,T],R) if

(X1,X2,X3,X4,X5)P
α < 1. (27)

Proof. There exists ℑ = {γ, τ, ϑ, ρ, ν} > 0 such that∫ t

0

(t− q)µ(q)dq ≤ ℑµ(t) (28)

is true for all t ∈ [0,T] in relation to definition (2), which assigns µ as a

non-decreasing function of t. The continuous nature of the functions X1,

X2, X3, X4, and X5 has been proved, and the Lipschitz condition is met

when (X1,X2,X3,X4,X5) > 0. Theorem (2) provides a unique solution

for the proposed system (1)

X̄1(t) = X1(0) +
1

Γ(α)

∫ t
0
(t− q)α−1∥K(q, X̄1(q))∥dq,

X̄2(t) = X2(0) +
1

Γ(α)

∫ t
0
(t− q)α−1∥L(q, X̄2(q))∥dq,

X̄3(t) = X3(0) +
1

Γ(α)

∫ t
0
(t− q)α−1∥M(q, X̄3(q))∥dq,

X̄4(t) = X4(0) +
1

Γ(α)

∫ t
0
(t− q)α−1∥N(q, X̄4(q))∥dq,

X̄5(t) = X5(0) +
1

Γ(α)

∫ t
0
(t− q)α−1∥P(q, X̄5(q))∥dq.

(29)

When we integrate the inequalities in the definition (2), we acquire

∣∣X1(t)−X1(0)−
1

Γ(α)

∫ t

0

(t− q)α−1K(q,X1(q))dq
∣∣

≤ 1

Γ(α)

∫ t

0

(t− q)α−1µ(q)dq ≤ γµ(t)Pα

Γ(α+ 1)
.

(30)
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From equation (30) and Lemma (2), we have

∣∣X1(t)− X̄1(t)
∣∣

≤
∣∣X1(t)−X1(0)−

[
1

Γ(α)

∫ t
0
(t− q)α−1K(q, X̄1(q))dq

+ 1
Γ(α)

∫ t
0
(t− q)α−1K(q,X1(q))dq − 1

Γ(α)

∫ t
0
(t− q)α−1K(q,X1(q))dq

]∣∣
≤

∣∣X1(t)−X1(0)− 1
Γ(α)

∫ t
0
(t− q)α−1K(q,X1(q))dq

∣∣
+ 1

Γ(α)

∫ t
0
(t− q)α−1

∣∣K(q,X1(q))−K(q, X̄1(q))
∣∣dq

≤ γµ(t)Pα

Γ(α+1) + ΠKPα

Γ(α+1)

∫ t
0
(t− q)α−1

∣∣X1(q)− X̄1(q)
∣∣dq

≤ γµ(t)Pα

Γ(α+1) Eα(ΠKP
α).

(31)

Let γµ(t)Pα

Γ(α+1) Kα(ΠKP
α) = ϖγ , then we have

|X1(t)− X̄1(t)| ≤ ϖγµ(t). (32)

4 Numerical scheme

It has been suggested in the literature that the power-law kernel-based

Caputo derivative is ideal for simulating power-law processes in real-world

issues. We numerically solve the system (1) using a Newton polynomial-

based approach. To make the system (1) simpler to use, we will write it

as follows:

Z1(t,X1) = −(κ(0) + κ(1))X1 + κ(−1)H2X2,

Z2(t,X2) = κ(1)X1 − κ(−1)H2X2 + κ(−2)X3
2 − κ(2)X2,

Z3(t,X3) = κ(2)X2 − κ(−2)X3
2 − κ(3)H2X3

2,

Z4(t,X4) = κ(3)H2X3
2,

Z5(t,X5) = κ(0)X1.

(33)
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Following the use of fractional integral, we arrive at:

X1(tj + 1) = X1(0) +
1

Γ(α)

j∑
u=2

∫ tu+1

tu

Z1(t,X1)(tj+1 − q)α−1dq,

X2(tj + 1) = X2(0) +
1

Γ(α)

j∑
u=2

∫ tu+1

tu

Z2(t,X2)(tj+1 − q)α−1dq,

X3(tj + 1) = X3(0) +
1

Γ(α)

j∑
u=2

∫ tu+1

tu

Z3(t,X3)(tj+1 − q)α−1dq,

X4(tj + 1) = X4(0) +
1

Γ(α)

j∑
u=2

∫ tu+1

tu

Z4(t,X4)(tj+1 − q)α−1dq,

X5(tj + 1) = X5(0) +
1

Γ(α)

j∑
u=2

∫ tu+1

tu

Z4(t,X5)(tj+1 − q)α−1dq.

(34)

Now let’s examine the Newton polynomial:

P(t,X) ≃ P(tj−2,X
j−2) +

1

δt

{
P(tj−1,X

j−1)−P(tj−2,X
j−2)

}
× (q − tj−2) +

1

2δt2

{
P(tj ,X

j)− 2P(tj−2,X
j−1)

+P(tj−2,X
j−2)

}
× (q − tj−2)(q − tj−1)

(35)

Replacing the Newton polynomial (35) into equation (34), we find

X1(j+1)

= X1(0) +
1

Γ(α)

∑j
u=2 Z1

(
tu−2,X1

u−2
)
×
∫ tu+1

tu
(tj+1 − q)α−1dq

+ 1
Γ(α)

∑j
u=2

1
δt

[
Z1

(
tu−1,X1

u−1
)
− Z1

(
tu−2,X1

u−2
)]

×
∫ tu+1

tu
(q − tu−2)(tj+1 − q)α−1dq

+ 1
Γ(α)

∑j
u=2

1
2δt2

[
Z1

(
tu,X1

u
)
− 2Z1

(
tu−1,X1

u−1
)

+Z1

(
tu−2,X1

u−2
)]

×
∫ tu+1

tu
(q − tu−2)(q − tu−1)(tj+1 − q)α−1dq

(36)

Putting the values of the integral shown in the aforementioned equation,

we achieve
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

X1(tj+1) = X1(0) +
(δt)α

Γ(α+1)

∑j
u=2 Z1(tu−2,X1

u−2)× Y1

+ (δt)α

Γ(α+2)

∑j
u=2

[
Z1(tu−1,X1

u−1)− Z1(tu−2,X1
u−2)

]
× Y2

+ α(δt)α

2Γ(α+3)

∑j
u=2

[
Z1(tu,X1

u)− 2Z1(tu−1,X1
u−1)

+Z1(tu−2,X1
u−2)

]
× Y3.

(37)

Where,

Y1 = (j − u+ 1)α − (j − u)α

Y2 = (j − u+ 1)α(j − u+ 3 + 2α)− (j − u)α(j − u+ 3 + 3α)

Y3 = (j − u+ 1)α
[
2(j − u)2 + (3α+ 10)(j − u) + 2α2 + 9α+ 12

]
−(j − u)α

[
2(j − u)2 + (5α+ 10)(j − u) + 6α2 + 18α+ 12

]
.

Likewise, we find

X2(tj+1) = X2(0) +
(δt)α

Γ(α+1)

∑j
u=2 Z2(tu−2,X2

u−2)× Y1

+ (δt)α

Γ(α+2)

∑j
u=2

[
Z2(tu−1,X2

u−1)− Z2(tu−2,X2
u−2)

]
× Y2

+ α(δt)α

2Γ(α+3)

∑j
u=2

[
Z2(tu,X2

u)− 2Z2(tu−1,X2
u−1)

+Z2(tu−2,X2
u−2)

]
× Y3.

(38)

X3(tj+1) = X3(0) +
(δt)α

Γ(α+1)

∑j
u=2 Z3(tu−2,X3

u−2)× Y1

+ (δt)α

Γ(α+2)

∑j
u=2

[
Z3(tu−1,X3

u−1)− Z3(tu−2,X3
u−2)

]
× Y2

+ α(δt)α

2Γ(α+3)

∑j
u=2

[
Z3(tu,X3

u)− 2Z3(tu−1,X3
u−1)

+Z3(tu−2,X3
u−2)

]
× Y3.

(39)

X4(tj+1) = X4(0) +
(δt)α

Γ(α+1)

∑j
u=2 Z4(tu−2,X4

u−2)× Y1

+ (δt)α

Γ(α+2)

∑j
u=2

[
Z4(tu−1,X4

u−1)− Z4(tu−2,X4
u−2)

]
× Y2

+ α(δt)α

2Γ(α+3)

∑j
u=2

[
Z4(tu,X4

u)− 2Z4(tu−1,X4
u−1)

+Z4(tu−2,X4
u−2)

]
× Y3.

(40)
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X5(tj+1) = X5(0) +
(δt)α

Γ(α+1)

∑j
u=2 Z5(tu−2,X5

u−2)× Y1

+ (δt)α

Γ(α+2)

∑j
u=2

[
Z5(tu−1,X5

u−1)− Z5(tu−2,X5
u−2)

]
× Y2

+ α(δt)α

2Γ(α+3)

∑j
u=2

[
Z5(tu,X5

u)− 2Z5(tu−1,X5
u−1)

+Z5(tu−2,X5
u−2)

]
× Y3.

(41)

5 Numerical simulation

The model’s numerical simulations have been carried out using the gen-

eralized two-step Lagrange polynomial for the power law kernel and the

parametric values from [20]. The simulations of the suggested systems

are shown in figures (2)-(21). For these simulations, we employed sev-

eral fractional order values α = 1.0, 0.95, 0.90, 0.85. Figures (2)-(6) show

simulations of the advised model for equal initial amounts of glycerol and

hydrogen at different fractional orders under the Caputo operator. We

utilized initial concentrations as X1 = 1, X2 = X3 = X4 = X5 = 0.

When we start with hydrogen:glycerol(H:G) ratio of 1:1, Figures (2)-(6)

show that the glycerol (X1) is quickly transformed into the products at

higher fractional orders. As the fractional order increases, so does the

synthesis of glyceraldehyde (X2) and glycolaldehyde (X3). At high frac-

tional orders, more ethylene glycol (X4) will be produced than propanediol

(X5). Figures (7)-(11) show simulations of the suggested model for a 2:1

proportion of hydrogen to glycerol. In figures (7)-(11), we utilized initial

concentrations as X1 = 2, X2 = X3 = X4 = X5 = 0. At larger fractional

orders, increasing the amount of hydrogen over that of glycerol still boosts

the creation of ethylene glycol over propanediol, according to the figures

(7)-(11).

Figures (12)-(16) show the findings obtained when the hydrogen to glycerol

ratio was set at 1:1 as well as κ0, κ2, κ−2, κ3, and simply modifying κ1 and

κ−1. When the hydrogen used is twice as much as the original glycerol, the

model simulations obtained are illustrated in Figures (17)-(21), along with

the modified parameter values used for the simulation. Figures (12)-(21)

demonstrate that raising the values of κ1 and κ−1 increases the concentra-
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tion of ethylene glycol (X4) generated and causes the reaction to approach

equilibrium faster. This is because, as shown in system (1), an increase

in these constants causes higher glycolaldehyde (X3) to be made, which

causes higher glyceraldehyde (X2) to be generated, resulting in an incre-

ment in the ethylene glycol (X4) produced. Glycerol breaks down quickly

with greater fractional orders, and the generation of products increases.

Fractional order derivations are more effective at comprehending chemical

processes than classical order, and the recommended model provides useful

feedback for non-integer fractional parameter values.
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Figure 2. Simulation of Glycerol (X1) at H:G ratio of 1:1.
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Figure 3. Simulation of Glyceraldehyde (X2) at H:G ratio of 1:1.



654

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X
3
(t

)

10-3 Proposed Method

=1.0
=0.95
=0.90
=0.85

Figure 4. Simulation of Glycolaldehyde (X3) at H:G ratio of 1:1.
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Figure 5. Simulation of Ethylene Glycol (X4) at H:G ratio of 1:1.
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Figure 6. Simulation of Propanediol (X5) at H:G ratio of 1:1.



655

0 1 2 3 4 5 6 7 8 9 10

Time

1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

X
1
(t

)

Proposed Method

=1.0
=0.95
=0.90
=0.85

Figure 7. Simulation of Glycerol (X1) at H:G ratio of 2:1.
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Figure 8. Simulation of Glyceraldehyde (X2) at H:G ratio of 2:1.
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Figure 9. Simulation of Glycolaldehyde (X3) at H:G ratio of 2:1.
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Figure 10. Simulation of Ethylene Glycol (X4) at H:G ratio of 2:1.
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Figure 11. Simulation of Propanediol (X5) at H:G ratio of 2:1.
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Figure 12. Simulation of Glycerol (X1) at H:G ratio of 1:1.
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Figure 13. Simulation of Glyceraldehyde (X2) at H:G ratio of 1:1.
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Figure 14. Simulation of Glycolaldehyde (X3) at H:G ratio of 1:1.
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Figure 15. Simulation of Ethylene Glycol (X4) at H:G ratio of 1:1.



658

0 1 2 3 4 5 6 7 8 9 10

Time

0.5

0.50005

0.5001

0.50015

0.5002

0.50025

0.5003

0.50035

0.5004

X
5
(t

)

Proposed Method

=1.0
=0.95
=0.90
=0.85

Figure 16. Simulation of Propanediol (X5) at H:G ratio of 1:1.
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Figure 17. Simulation of Glycerol (X1) at H:G ratio of 2:1.
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Figure 18. Simulation of Glyceraldehyde (X2) at H:G ratio of 2:1.
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Figure 19. Simulation of Glycolaldehyde (X3) at H:G ratio of 2:1.
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Figure 20. Simulation of Ethylene Glycol (X4) at H:G ratio of 2:1.
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Figure 21. Simulation of Propanediol (X5) at H:G ratio of 2:1.
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6 Conclusion

In this study, we created a fractional order kinetic model to investigate the

hydrogenolysis of glycerol, and the simulations of the model were consistent

with the chemistry of the reaction. The model has positive, constrained

solutions, as demonstrated by our investigation of the positively invariant

region.We also used techniques from a number of fixed point theorems

to investigate the existence and uniqueness of the model. Our findings

demonstrate the generalized Ulam-Hyers-Rassias stability of the model. A

numerical approach based on Newton’s polynomial interpolation was sub-

sequently used to resolve the mathematical model. There are noticeable

differences between the results using various fractional numbers. The flex-

ibility and behavior of the solution curves are significantly impacted by

non-integer order, as is seen on graphs. All model solutions depend on the

chosen hydrogen to glycerol ratio and reaction constant values, but they

all converge to a stable limit point in a two-dimensional plane of a posi-

tive cone in the R5 space. The ability to replicate memory effects is the

main advantage of the fractional order kinetic model. When compared to

classical model, fractional model have a higher degree of freedom, making

it ideal for best fitting real data when it is available. This significant com-

plex catalytic process can be better understood by using the tools of the

suggested approach. It is possible to broaden this research to include more

generally applicable fractional operators and enhance the control methods

for turning glycerol into useable end products.
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