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Abstract

We present an algorithm for enumerating all possible faceting
arrangements of dihedrally symmetric diamond cuts. We first sep-
arate the question into enumerating crowns and pavilions. In each
case, the method involves enumerating all plausible graphs within a
fundamental domain, and then checking for planarity and triconnec-
tivity using the Tutte spring embedding. Such graphs can be lifted
to three dimensional convex crowns or pavilions via the Maxwell-
Cremona correspondence.

1 Introduction

In this paper we explore the set of all possible dihedrally symmetric dia-

mond cuts. The most common diamond cut is called the standard round

brilliant (see Figure 1), and like most modern diamond cuts, has a crown,

a girdle, and a pavilion. The crown has a horizontal central facet called the

table, while the pavilion has a central vertex called the culet. The girdle of

a standard round brilliant is faceted to be approximately circular. It can

be modeled mathematically with a minimum of 16 facets, though it is often

represented with 32 or 64. Note that as soon as additional facets beyond

the minimum of 16 are added, the girdle develops a scalloped appearance.
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Figure 1. A standard round brilliant diamond and its symmetries. Left
image courtesy of GIA.

In this paper, we will not be interested in the specific geometry of a

cut, but in the abstract faceting arrangement. That is, we won’t care

about specific measurements like table size, facet angles, and diameter.

Rather, we restrict attention to the abstract graph isomorphism class of

a cut. Once we have an enumeration of all isomorphism classes, the next

task facing a diamond designer is to optimize proportions within each

class. Optimizing proportions is a significant area of research in diamond

cut, though it is not the subject of this paper. The interested reader will

find an extensive literature for the standard round brilliant [7, 11, 12, 18].

The paper [15] analyzes diamond beauty from the perspective of human

perception, and is not round brilliant specific.

The modern cutter avails himself of commercial products for evaluating

cut quality and optimizing the weight within a piece of rough. The com-

panies Sarine, Octonus, and Lexus SoftMac offer both instrumental and

software support for diamond cutting. At time of publication, the Gemo-

logical Institute of America offers a cut evaluation for standard rounds and

offers light performance analysis for a select group of other cuts.

We also note that the potential cut of a diamond is somewhat con-

strained by lattice orientation. In particular, the {1, 1, 1} direction (using

standard lattice coordinates) is very difficult to cut and polish. However

expert diamond cutters have techniques to mitigate this issue and lattice

orientation is not normally considered when planning a rough.

A diamond is an example of a convex polyhedron – a convex three

dimensional body with flat faces. (Non-convex diamonds, such as hearts,
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exist, but will not be considered here.) One naive hope in exploring pos-

sible diamond shapes would be to simply list all polyhedra in order of

increasing complexity. However, the number of such polyhedra grows ab-

surdly quickly, and most of them are not plausible gemstone shapes.

The search space can be reduced by considering the symmetry of a

diamond.

1.1 Symmetry

The symmetry group of an arbitrary polyhedron is a finite subgroup of

O(3). However, for diamonds as considered in this paper, the symmetry

group is more restricted. Such diamonds have a preferred “up” direction,

having been designed to be viewed perpendicularly to the table. In par-

ticular, we define the symmetry group to preserve the table setwise. Note

that a symmetry of a polyhedron that fixes a face pointwise is trivial, so

the set of symmetries of a polyhedron that preserves a face setwise is a

subgroup of the symmetry group of the face, implying it is planar.

The finite planar symmetry groups are well known to be one of the

following types: rotational Rn
∼= Z/nZ for n ≥ 2, or dihedral D2n for

n ≥ 1.

Groups of the first kind have no reflectional symmetries and consist

of rotations by multiples of 2π/n around a center point. For example,

Figure 2 depicts a diamond crown with R3 symmetry. Diamonds such

as this with no reflectional symmetry are uncommon, but certainly exist.

Indeed, there are diamond designs which have no symmetry at all.

Dihedral groups, D2n, have n lines of reflectional symmetry with angles

of π/n between them. The composition of two reflections is a rotation,

implying that diagrams with this symmetry group also have the set of

rotations Rn as a subgroup. In all, there are 2n symmetries, which explains

the subscript of the notation D2n. Figure 2 gives examples of D2, D4 and

D8 symmetry. Note that D2n is the symmetry group of a regular polygon

for n ≥ 3, with D2 and D4 being somewhat exceptional.

In this paper we will study the crowns and pavilions separately. Each

will inherit the symmetry group of the parent diamond. Note that we can

pair any crown and pavilion that have the same shape outline to create
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a diamond model, with the z-offset between crown and pavilion being an

additional parameter.

D2 R3 D8 D4

Figure 2. Symmetries of diamonds

1.2 Generating patterns from symmetry groups

Consider the pictures on the left of Figure 3. The first two examples have

D8 symmtery while the second two have D16 symmetry. The lines of re-

flection cut the plane into 8 or 16 sectors, and the diagrams are completely

determined by the intersection with a chosen sector. We call the choice of

such a sector a fundamental domain. More generally for planar reflection

groups, a fundamental domain is defined as the closure of a choice of con-

nected component of the complement of the reflection lines. Fundamental

domains can also be defined for more general group actions, but we will

not need that in this paper.

The diamond’s crown or pavilion is drawn as a graph in the plane. We

call the intersection of the graph with a fundamental domain a generating

graph, since rotated and reflected images of this will fill out (i.e. generate)

the whole graph.

It will follow from Theorem 3 that a generating graph for a diagram

with D2n symmetry (n ≥ 3), can be used to generate a dihedrally sym-

metric diamond of any order ≥ 3. This phenomenon is illustrated with the

generalized standard round brilliants and princesses in Figure 4.

Theorem 3 leads to the somewhat surprising conclusion that there is

a 1-1 correspondence between the set of facet arrangements of diamonds

with dihedral symmetry group D2n and D2m for any n,m ≥ 3.
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Figure 3. Generating graphs for princess cut and standard round bril-
liant diamond crowns and pavilions.
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Figure 4. Fundamental domains will generate dihedrally symmetric di-
amond crowns and pavilions of any symmetry order.

2 From two to three dimensions

A classical theorem of Steinitz [16, 17] states that convex 3D polyhedra

are in 1 − 1 correspondence with triconnected planar graphs (also called

Schlegel diagrams or c-nets.) A connected graph is said to be triconnected

if deleting any set of ≤ 2 vertices leaves the graph connected. Ziegler [23]

collects many proofs of Steinitz’s theorem, including one, the Maxwell-

Cremona correspondence, which we make use of in Theorem 2. See the

notes to Chapter 4 of Ziegler [23] as well as videos by Sheehy [13,14].

Thus one approach to enumerating diamond cuts is to enumerate tri-

connected planar graphs, and it is even the case that one could enumerate

dihedrally symmetric Schlegel diagrams to recover dihedrally symmetric

polyhdera [9]. However this would not take advantage of the special ge-

ometry of diamonds, that they decompose into crown, girdle, and pavilion,

and would include many implausible diamond cuts.

Instead, we will consider diagrams of crowns and pavilions separately

and determine when they can be embedded in the plane so that some
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assignment of z coordinates to each vertex gives a valid 3D geometry.

2.1 Trusses and lifting diagrams

Let us consider a two dimensional picture of a diamond crown or pavilion

wireframe (the 1-skeleton of the polytope). In order to convert this to a

three dimensional wireframe, we need to assign a height (z-coordinate) to

each vertex. The assignment of heights needs to create coplanar facets,

while coplanarity of the vertices around the boundary is not necessary in

order to form a diamond crown or pavilion.

In fact, as an illustration of this last point, in the 16 girdle facet model

of the standard round brilliant, there are two types of vertices on the

boundary of both crown and pavilion, which can be at different heights

(Figure 5). The boundary vertices of a princess diamond, on the other

hand, must all have the same height by symmetry.

Figure 5. An illustration of the fact that standard round crowns can
have variable vertex heights on the girdle, even when re-
stricted to vertices of degree greater than or equal to 3. The
two indicated vertices are at the same height in well cut dia-
monds, but can differ in height both mathematically and in
practice. Diamond cutters refer to the uneven positioning as
either painting or digging, depending on the exact geometry.

Definition 1. We say a planar graph is liftable, if there is an assignment

of heights to the vertices such that the lifted vertices in each bounded face

are coplanar. Such an assignment will be called a lift.

We define a truss to be a lift of a 2D graph, and say it is convex if

1. the outer boundary of the 2D graph is convex,

2. the lifted facets meet in mountain rather than valley folds.
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Let z = k be a plane such that k is less than the height of every lifted

vertex. Form a polytope as the set of all points underneath the truss and

above this plane. The above conditions ensure that this polytope is convex.

When enumerating diagrams, it will be most convenient if we only

have to consider abstract graph types rather than particular embeddings,

though we will need to keep track of the cycle of edges that forms the

outer boundary. Note that every truss gives rise to an abstract planar

graph with a specified cycle representing the outer edges.

Definition 2.

1. A pair (G,C) consisting of a connected graph G and a specified cycle

C ⊂ G will be called a circuited graph.

2. All maps of circuited graphs to R2 will be assumed to embed the

specified cycle as a convex polygon, while the remaining vertices and

edges will be mapped to the interior of this polygon.

3. We say a circuited graph is liftable if it has a planar embedding which

is liftable to a convex truss.

There is an analogue of Steinitz’s Theorem for trusses, but we need

another definition to state it.

Definition 3. We say a circuited graph (G,C) is boundary triconnected if

deleting any set of ≤ 2 vertices from G has the property that all connected

components contain vertices from C.

Remark. The necessity of this formulation can be seen by considering the

8 vertex graph consisting of a square with each side bisected and 4 edges

added to create a new square, rotated by 45 degrees, inside the first one.

This is not triconnected and so does not correspond to a polytope, but it

is liftable and could conceivably form the crown of a diamond.

Indeed, a top down view of such a graph appears in Figure 6 (Fig 22),

a list of different diamond cuts in Diderot’s encyclopedia published in the

late 1700s [6].

Before we state the main theorem, that boundary triconnected trusses

are liftable, we take a slight detour to discuss the Tutte embedding.
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Figure 6. Diamond cuts from Diderot’s L’Encyclopédie ou Diction-
naire raisonné des sciences, des arts et des métiers, late
1700s.
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2.2 Tutte on how to draw a graph

Let (G,C) be a circuited graph. Assign each internal edge e a positive

weight se called its spring tension. Embed the outer cycle in the plane in

any convex way and consider the vertices in this cycle to be immovable.

Now think of the graph as being a network of nodes connected by springs

and let it settle into equilibrium. In the equilibrium state, the sum of forces

acting on each internal vertex will be zero. That is, if we scale each edge,

thought of as a vector connecting its endpoints, by its spring tension, and

then add all the edges outgoing from a single internal vertex, they should

sum to zero as a vector. The positions of the internal vertices are easily

calculated by solving the resulting system of equations.

If (G,C) is an abstract circuited graph, S is a set of spring tensions

on the edges not in C, and φ : C → R2 is a convex embedding of the

boundary cycle, we denote the resulting image of the graph in the plane

by Tutte(S,φ)(G,C), or just TutteS(G,C) if the boundary embedding is

clear from context.

Theorem 1 (Tutte [19,20]). A circuited graph, (G,C), has a planar em-

bedding and is boundary triconnected if and only if G has no interior biva-

lent vertices and Tutte(S,φ)(G,C) is an embedded graph in the plane, for

any choice of positive spring tensions and convex boundary embedding.

We note that Tutte uses the term “3-linked with C” for what we call

“boundary triconnectivity.”

One way that a graph can fail to be (boundary) triconnected is if it

has a univalent vertex. When one puts a spring tension on the incident

edge, the edge will shrink to zero, so Tutte(S,φ)(G,C), will fail to be em-

bedded. Indeed the same reasoning applies if there is a cut vertex. The

side of the cut vertex that fails to intersect C will contract to a point. Sup-

pose you have two vertices whose deletion disconnects the graph into two

components and one of the components does not intersect C at all. That

means this entire component will shrink toward a line segment connect-

ing the two points when positive spring tensions are applied. Therefore,

Tutte(S,φ)(G,C) will again fail to be connected as long as the component

was not itself linear (i.e. formed from a chain of bivalent vertices). So we
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conclude that the Tutte map will detect the failure of boundary triconnec-

tivity except for the presence of interior bivalent vertices.

Theorem 2. A circuited graph is liftable iff it has a planar embedding and

is boundary triconnected.

Moreover, if the circuited graph has symmetry group G, the truss can

be constructed to have the same symmetry group.

Proof: First suppose that a circuited graph is liftable. Projecting a

truss to the xy plane yields an embedding, so we need only show that a

convex truss is boundary triconnected. Form the polytope as described

after Definition 1. This polyhedron is triconnected. Now choose a pair of

vertices in the truss, and suppose they disconnect it into two pieces. Since

the whole polytope is triconnected, each piece must be connected to the

edge of the truss for otherwise the polytope minus the two vertices would

be disconnected. Hence the truss is boundary triconnected.

Next suppose that we have a boundary triconnected circuited graph

with a planar embedding. Then by Theorem 1, the Tutte map yields

an embedding where all the spring tensions are in equilibrium. Once the

diagram is embedded, the standard proof of the Maxwell-Cremona corre-

spondence goes through to lift to a truss. See Crapo&Whiteley [4, 5].

Now suppose that a group G acts on a boundary triconnected circuited

graph (G,C) by automorphisms. Embed C as a regular polygon in the

plane, and set all internal edge tensions equal to 1. Then the Tutte embed-

ding will also have G symmetry. We can choose a symmetric lift as follows.

According to the Maxwell-Cremona correspondence (see [13,14]), lifts of a

diagram are controlled by the spring tensions and a chosen facet normal.

The spring tensions are used to construct a “reciprocal diagram,” while dif-

ferent choices of facet normal translate the reciprocal diagram around the

plane. In order to get a symmetric lift, we center the reciprocal diagram

on the origin.

The last paragraph of the proof implies that for symmetric graphs, the

space of symmetric 3D realizations (with fixed (x, y) coordinates of the

outer boundary and discounting vertical shifts) has the same number of

dimensions as independent spring tensions plus the degrees of freedom in
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repositioning the reciprocal diagram while respecting the symmetry group.

For D4 and higher, the reciprocal diagram must be centered on the ori-

gin, corresponding to the intersection of the reflection lines. For D2, the

reciprocal diagram can be centered anywhere along a line through the ori-

gin parallel to the unique line of symmetry, adding one dimension to the

parameter space. For the trivial group, there are two extra degrees of free-

dom. For any nontrivial rotational group Rn, there are no extra degrees

of freedom. So parameter space has the same number of dimensions as

interior edge orbits under the group action, possibly with the addition of

1 or 2 parameters for the groups D2 and D0 = R0 respectively. We have

collected the dimensions of parameter spaces for three diamond faceting

arrangements in Figure 7.

It is worth pointing out that Tutte’s method of drawing planar graphs

is not the only one. A particularly powerful circle packing method is due

to Mohar [10].

2.3 Truss recognition algorithm

If we have a method to detect when the Tutte map is an embedding,

then we can use the preceding section to create an algorithm for detecting

trusses. One could simply check all pairs of edges of the Tutte map of a

circuited graph for intersections, but we prefer to use a more combinatorial

approach using ribbon graphs. It has the added benefit of detecting the

faces of a planar graph, which is necessary information to implement the

Maxwell-Cremona lifting algorithm for creating a 3D model.

A ribbon graph is defined to be an abstract graph with a cyclic order

of incident edges at each vertex. A ribbon graph has a thickening to an

oriented surface with boundary components, which is defined by putting an

oriented disk at each vertex and gluing long thin rectangles along the edges

using the cyclic order to indicate where they should be glued. (In fact,

some authors only consider the thickened object to be a ribbon graph.)

One can read off the boundary components of the ribbon thickening by

doing walks along the graph where, at each vertex, one leaves on the edge

that comes next in the cyclic ordering after the edge one entered on.

If you have a graph mapped (not necessarily embedded) to the plane
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Round Brilliant: dim = 8

4 params

+

3 params

+
Girdle:

thickness (1)

1 param

Oval: dim = 28

12 params

+

10 params

+

Girdle:

thickness (1)

vertex placement (3)

outline (1)

LW ratio (1)

6 params

Pear: dim = 57

24 + 1 params

+

18 +1 params

+

Girdle:

thickness (1)

vertex placement (7)

outline (3)

LW ratio (2)

13 params

Figure 7. The dimensions of parameter space for three common di-
amond faceting arrangements. The girdle parameters are
explained as follows: the thickness measures the vertical off-
set of crown and pavilion. “Vertex placement” indicates the
position of girdle vertices along the boundary curve. Out-
line parameters are a chosen set of parameters to control
the shape of the boundary curve. LW ratio is length/width
ratio, and can be varied independently for both “halves” of
the pear. The high dimension counts for oval and pear help
to explain why the analysis of fancy cuts is so much harder
than that of standard rounds.
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such that no edges emanate from a vertex in exactly the same direction,

then there is an induced ribbon graph structure on the graph. One defines

the cyclic order at each vertex to be induced by the plane’s orientation.

Figure 8 shows the ribbon graph boundary components in a particular

example. Many readers fail to notice that the two edges in the middle

intersect, so be aware!

If a circuited graph is planar, then there is a bijection between bound-

ary components and planar faces, so Euler’s formula v − e + f = 2 must

hold. (v, e, f being the number of vertices, edges, and faces, including the

outer unbounded face, respectively.) Conversely, if v − e + f = 2, the

ribbon thickening is a sphere with holes, and gluing in disks to those holes

gives an embedding of the graph in the sphere, where the specified cycle

bounds a face. Designating that face as the unbounded face gives a pla-

nar embedding of the circuited graph. Hence the Tutte map must also be

planar.

Summarizing, we get a truss recognition algorithm as follows. First

check if the circuited graph is connected and that it has no bivalent vertices.

If it passes these checks, consider a Tutte map of the graph. Check that

it has no coincident vertices (within some tolerance), and that no edges

emanate from a single vertex in the same direction (within some tolerance).

If it passes these checks, thicken the graph, count the number of boundary

components, and check if v− e+ f = 2. If so, then it is a truss. Otherwise

it is not.

3 Enumeration

Recall that any dihedrally symmetric diagram in the plane has a funda-

mental domain which is a sector of the plane bounded by a vertex at the

diamond’s center, and two infinite rays, which we call walls and recall that

the intersection of the planar graph with a fundamental domain is called

the generating graph of the diagram. Note that the generating graph can

have “half edges” which intersect either of the two boundary walls of a

fundamental domain in right angles. This is illustrated in Figure 12. An

edge emanating from vertex 1 meets the right wall, and in order to form a
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Figure 8. The ribbon graph thickening of a graph immersed in the
plane. In order to check whether a graph in equilibrium is
planar, it suffices to check that Euler’s equation v−e+f = 2
is satisfied, where f is the number of boundary components
of the thickening. In this example, (v, e, f) = (16, 26, 10),
so that v − e + f = 0 ̸= 2, indicating that the graph is not
planar.

valid edge upon reflection through the wall, must meet it at a right angle.

Every diamond will have two generating graphs, one for the crown and

one for the pavilion. Pavilion generating graphs will have a vertex at the

top corner of a fundamental domain, corresponding to the culet, while

crown generating graphs will not have a top corner vertex.

In order to systematically enumerate diamond crowns and pavilions

with D2n-symmetry (n ≥ 3), we enumerate generating graphs. We distin-

guish types of graphs based on the combinatorics of the outer boundary

of the generating graph.

The simplest situation is where there is a single exterior vertex in a

fundamental domain, lying along one of the walls (see the princess crown

and pavilion in Figure 3). We call diamonds with this property simple.

The next simplest situation is when there are two exterior vertices in

a fundamental domain, one per wall. This occurs in the round brilliant

crown and pavilion. We call diamonds with this property standard.

There could also be additional vertices along the bottom boundary of

the generating graph, representing the outer edge of the diamond. This is

evident in Figure 2 for the marquise diamond with symmetry group D4.

Cushion diamond cuts can have D8 symmetry with such extra boundary
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Figure 9. A diamond with D8 symmetry and an extra vertex along the
bottom boundary of a fundamental domain. Image courtesy
of GIA.

vertices (Figure 9).

We make the following additional assumption:

The b1 and b2 vertices are not bivalent.

Note that Diderot’s Fig 22 in our Figure 6 does give an example of a

bivalent b1. So this is a nontrivial restriction.

It follows from the just stated assumption that in the simple and stan-

dard cases, the diagram must be triconnected, not merely boundary tricon-

nected. Indeed the only way a simple or standard graph can be boundary

triconnected but not triconnected is if b1 (or b2) connects to itself across a

line of reflection. This will have the effect of cuting off a little triangular

flap, as in the Diderot example, and will thus have a bivalent vertex.

For simplicity, we will restrict attention to simple and standard di-

amond cuts for the remainder of this paper. The techniques we present

generalize fairly easily to the case of any number of vertices along the outer

boundary of a fundamental domain. We suggest this to an interested re-

searcher as a nice topic for further exploration.

For simple crowns and pavilions, we assume the outer vertex is on the

right-hand wall, and label it b2. For standard crowns and pavilions, we

label the outer vertices b1 and b2 for the left and right wall respectively.

For a pavilion of either variety, the top corner of the chosen fundamental

domain will have a vertex, which we label c.
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Before we continue, we pause to prove that generating graphs are ag-

nostic to symmetry order for n ≥ 3.

3.1 Symmetry order

A generating graph can be used to generate graphs of any D2n-symmetry,

n ≥ 3, by interpreting it in a sector of the correct angular width.

Theorem 3. Let G be a connected generating graph, and let Gn be the

abstract circuited graph formed with D2n symmetry. Then Gn is planar

and boundary triconnected for all n ≥ 3 iff G3 is planar and boundary

triconnected.

Proof: Regarding planarity, note that Gn is planar iff the restriction

to the sector is planar, a condition which does not depend on the sector’s

angular width.

Next we show that a graph G3 is biconnected iff Gn is biconnected for

any n ≥ 3. More specifically, we show that the existence of a cut vertex

for any n is equivalent to the existence of one for n = 3.

Let us fix the following conventions for a connected graph G. Let c be

a vertex of the graph. If G \ {c}, considered as a topological space, is not

connected, we say c is a cut vertex. The connected components of G \ C
where C is the set of cut vertices, are called the biconnected components.

Note that according to this convention, the cut vertices themselves do not

belong to biconnected components, and the biconnected components have

open edges.

Because the biconnected components of G are disjoint, if σ ∈ Aut(G),

g is a biconnected component, and (σ · g) ∩ g ̸= ∅, then σ · g = g setwise.

(*)

Now consider the circuited graph Gn. There must exist at least one

biconnected component, g, which is adjacent to only one cut vertex, c, and

which does not meet the graph’s exterior circuit. If g meets a wall away

from c, then g overlaps with its reflection, so by (*), g is symmetric with

respect to that wall. Hence c must also lie on the wall. If g meets any

more walls, since it is symmetric in those walls, the vertex c will have a

reflection that also meets g, contradicting that g meets at most one cut
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vertex. Thus g is contained in at most two adjacent fundamental domains.

This implies that c will correspond to a cut vertex in any of the generated

graphs Gk, k ≥ 3.

For triconnectivity we argue as follows. Suppose G is a biconnected

graph. Then it can be decomposed into triconnected components [8], where

a triconnected component is defined to be a subgraph which is triconnected

and is not contained in a larger triconnected subgraph. Every edge belongs

to a unique triconnected component, but vertices may belong to multiple

components. We call the vertices of a component that belong to multiple

components boundary vertices, and the rest of the component its interior.

Then Aut(G) acts on the sets of interiors of triconnected components.

If σ ∈ Aut(G) and g is the interior of a triconnected component, then

(σ · g) ∩ g ̸= ∅ implies that σ · g = g setwise as before.

Suppose one of the graphs Gn is not boundary triconnected. We can

always find a triconnected component, g, with 2 boundary vertices whose

interior does not meet the exterior circuit. We claim g is in at most two

adjacent fundamental domains. Otherwise, suppose that g lies in three

adjacent fundamental domains. Let r1 and r2 be reflections corresponding

to the two interior walls separating these domains. Then I claim g is fixed

setwise by both r1 and r2. If g doesn’t actually hit one of the two interior

walls, then it is not connected, a contradiction. If it does hit a wall, there

are two cases. It does so in the interior of g, then the point where it

does is fixed by the associated reflection r, meaning that r fixes the entire

component setwise. If g meets the wall in one of its two boundary vertices

and nowhere else, then this vertex locally separates g, a contradiction.

But now notice that no matter how the boundary vertices are posi-

tioned, they can’t be invariant setwise under both r1 and r2.

Thus a nontrivial triconnected component will be present in G3 as well,

and we conclude that the boundary triconnectivity of Gn is equivalent to

that of G3.

3.2 First steps

To illustrate how the enumeration algorithm works, let’s look at how to

generate simple crowns and pavilions with small numbers of vertices.
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Figure 10. Pavilion and crown generating graphs with 2 vertices, and
symmetric lifts of orders 4, 5 and 8.

Suppose there is one vertex in our fundamental domain aside from the

boundary vertex b2. If that vertex lies at the top corner c, then it must

connect to the boundary vertex by a single line. The generated graph

represents a pyramid when lifted to 3D, which is the simplest possible

pavilion. The generating graph is given at the top of the leftmost column

of Figure 10, and three lifts of different symmetry order are depicted below

it.

If the vertex lies along the right wall, it must connect to b2, but it

must also connect to (a reflected copy of) itself, meaning it has an edge

emanating to the left and meeting the left wall at a right angle. This
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leads to the second column of Figure 10, representing the simplest possible

crown. Similarly, if the vertex is on the left wall, it must connect to itself

and to b2, which yields the crowns in the fourth column. Finally, if the

vertex lies in the middle, it needs to connect to itself both to the left and to

the right, leading to the crowns in the third column. Switching to standard

graphs leads to the diagrams in Figure 11.

In order to mechanize this process, we implement the Tutte embedding

and truss recognition algorithm.

3.3 The algorithm

As we saw earlier, we are considering generating graphs that may or may

not have a vertex at the top corner of the chosen fundamental domain

(labeled c if it exists), and it may or may not have boundary vertices on

either of the two walls of the fundamental domain, labeled b1 and b2.

The example in Figure 12 details how we encode generating graphs.

The generating graph is pictured on the right. This is a simple crown,

with only a b2 vertex. There are three types of vertices other than this

boundary one. The two vertices labeled 1 and 2 lie on the left wall. We

therefore call these “L” vertices. The vertex 3 is in the interior (or middle)

of the fundamental domain, so we call it an “M” vertex. Finally, vertex 4

lies on the right-hand wall, so is called an “R” vertex.

Let nL, nM , and nR denote the number of vertices of each kind.

In Figure 12, the graph is encoded by the following data:

1. The ordered triple (nL, nM , nR) = (2, 1, 1).

2. The edge connections of the vertices 1, . . . , 4:

{1, 3}, {2, 3}, {3, 4}

3. The edges that connect vertices with their reflections:

{1, 1}, {3, 3,−1}

Here the −1 indicates that the edge is reflected through the left wall.
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Figure 11. The top row depicts the three standard generating graphs
with three vertices. Below are the graphs with D6, D8 and
D14 symmetry that the top graphs generate.
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1

2

3 4

b2

Figure 12. Generating graph example.

If the edge went through the right wall, we would use the notation

{3, 3,+1}.

4. The list of vertices the corner attaches to, in this case {2, 4}.

Similarly, if there are other boundary vertices we list the vertices those

connect to as well. For example, referring to Figure 3, we have

Princess Crown

(nL, nM , nR) (1, 1, 1)

(b1, b2, c) (F, T, F )

edges {{1, 3}, {1, 2}, {2, 3}, {2, 2,−1}}
b2 connections {2}

Princess Pavilion

(nL, nM , nR) (4, 0, 1)

(b1, b2, c) (F, T, T )

edges {{1, 2}, {2, 3}, {3, 4}}
b1 connections {1, 2, 3, 4}
c connections {1}

Round Brilliant Crown

(nL, nM , nR) (1, 0, 1)

(b1, b2, c) (T, T, F )

edges {{1, 2}, {2, 2}}
b1 connections {1}
b2 connections {1}

Round Brilliant Pavilion

(nL, nM , nR) (1, 0, 0)

(b1, b2, c) (T, T, T )

edges {}
b1 connections {1}
b2 connections {1}
c connections {1}

Given such combinatorial data we can reconstruct the embedded gen-

erating graph as follows. First choose some n ≥ 3 and generate an abstract

graph from the generating graph with symmetry group D2n. We have a

specified outer cycle, so we can apply the Tutte embedding. Finally, we

restrict to a fundamental domain to get an embedded generating graph.
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Fix nL, nM , nR as well as the boundary vertex booleans b1, b2, c which

indicate whether the corresponding vertex exists or not. In order to find

all generating graphs with these data, we list all possible feasible ways of

abstractly connecting all the relevant vertices, then checking them all for

planarity, triconnectivity and duplicates.

We reduce the number of graphs that need to be searched by imposing

some constraints that embedded graphs must satisfy:

• The subgraph spanned by each of the L or R vertices has to be a

subgraph of a linear chain.

• The b2 vertex connects to at most one R vertex, while a b1 vertex

will connect to at most one L vertex. A c vertex will connect to at

most one vertex each of the L and R vertex sets.

So consider a graph TGraph(nL, nM , nR) on vertices of type L,M,R

with edges in the following classes:

• A linear chain on the L vertices. (edge count: max(nL − 1, 0).)

• all edges connecting L vertices to M and R vertices. (edge count:

nL(nM + nR).)

• all edges connecting M vertices to other M vertices and R vertices.

(edge count:
(
nM

2

)
+ nMnR.)

• A linear chain on the R vertices. (edge count: max(nR − 1, 0).)

• All self edges on the L and R vertices. (edge count: nL + nR.)

• Two types of self edges (k, k, 1) and (k, k,−1) on the M vertices.

(edge count: 2nM .)

Next we consider graphs formed by all subsets of these edges, forming a

list called abcBoolSets . We store each member of abcBoolSets as an array

of booleans indicating whether a given edge is included or excluded from

the graph.

We also define
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1. b1BoolSets encodes all possible sets of edges connecting b1 to the

graph’s interior vertices. Its members are arrays of nL + nM + nR

booleans, limited to at most one T in the first nL slots.

2. b2BoolSets encodes all possible sets of edges connecting b2 to the

graph’s interior vertices. Its members are arrays of nL + nM + nR

booleans, limited to at most one T in the last nR slots.

3. centerBoolSets encodes all possible sets of edges connecting c to the

graph’s interior vertices. Its members are arrays of nL + nM + nR

booleans, limited to at most one T in the first nL slots and one T in

the last c.

4. Booleans cb1 and cb2 indicate whether there are edges connecting c

to bi.

Next we fix the size of elements of abcBoolSets,b1BoolSets,b2BoolSets

and centerBoolSets to be j, k, l,m respectively (iterating over all possibili-

ties). For each element of these, we form a concatenated string of booleans.

This gives us a list boolGraphSet .

The next stage in the process is to remove duplicates caused by dif-

ferent labelings of the same graph. We consider the list of permutations

XnLnMnR
= SnL

×SnM
×SnR

\ {id}, i.e. the nontrivial permutations that

respect the vertex types. Each permutation σ acts on a boolean array

in g ∈ boolGraphSet by computing the action on T (nL, nM , nR) and the

edges coming from b1, b2 and c. In some cases, an edge in g when acted

on by σ will not lie in T (nL, nM , nR), which means this is not a valid

relabeling. If the relabeled graph is valid, we call the result g.σ.

The algorithm for removing duplicates consists of going through every

element of boolGraphSet, applying the permutations g ∈ XnLnMnR
and

removing valid results g.σ. In addition to removing duplicate graphs this

algorithm will also remove graphs with nontrivial automorphisms. This is

okay and actually desirable because any such generating graph will fail to

either be connected or triconnected.

After applying the duplicate removing algorithm, we check each gen-

erating graph for connectivity using depth first search.
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Next, relying on Theorem 3, each generating graph is generated into a

graph with 3-fold symmetry. The Tutte map is then applied and the truss

recognition algorithm is used to check if it is a truss. If not, it is discarded.

The remaining graphs are written to a file.

3.4 Algorithmic complexity

This is clearly an algorithm of exponential complexity in that it requires

us to look at all subsets of edges of a certain master graph and iterate

through all of these. We argue that, in fact, the number of D2n-symmetric

simple and standard graphs is expected to be exponential in the number

of vertices, implying that exponential complexity is unavoidable.

One reason to expect exponential complexity is Tutte’s beautiful result

[21] that the set of rooted planar maps (which allow multi and self edges)

with n edges is given by the unexpectedly simple formula

2(2n)!3n

n!(n+ 2)!
,

where a map is said to be rooted if one face is specified as the root. This at

least hints at exponential complexity for our simple and standard graphs.

More to the point, Tutte also considered rooted c-nets, which have the ad-

ditional condition of triconnectivity. He proves that the number of rooted

c-nets with n edges is asymptotically equal to

2n−5/24n

243
√
π

.

Although both of these numbers are in terms of edge count rather

than vertex count, and refer to general graphs, rather than the special

dihedrally symmetric ones we’ve been considering, the point of complexity

still stands.

Even though exponential complexity is unavoidable, there exist algo-

rithms and software tools that work extremely well in practice. For exam-

ple, Tutte’s methods actually give a generating function and an effective

method of enumeration. See [1] for more analysis with generating func-
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tions. On the software side, Brinkman and McKay’s program plantri [3]

efficiently enumerates some classes of planar graphs. See also the virtual

environment CaGe [2]. The particular dihedrally symmetric case we re-

strict to in this paper does not seem to have been previously considered in

the literature.

4 Results and tables

In this section we tabulate the results of the algorithm for simple or stan-

dard crowns and pavilions. We begin by listing the simplest examples as

measured by the number of vertices in a fundamental domain. A gener-

ating graph needs to have at least one vertex on the boundary, and if the

truss is not going to simply be a flat plane with no 3D geometry, there

needs to be at least one other vertex. Hence we start with a fundamental

domain containing 2 vertices.

4.1 Two vertices

There are four generating graphs with two vertices, each listed at the top

of Figure 10. There is one simple pavilion and three simple crowns of the

form (0, 0, 1), (0, 1, 0) and (1, 0, 0) respectively. The remaining rows of the

diagram give diagrams with 4−, 5− and 8-fold symmetry cf. Theorem 3.

4.2 Three vertices

Next we list generating graphs with 3 vertices, organized by which of the

three corner vertices b1, b2, c are present.

Case 1: All three of b1, b2, c are filled. Then there is no other vertex

in a fundamental domain, yielding a standard pavilion which is just a

pyramid on a 2n-gon.

Case 2: Only b1, b2 are filled. This yields standard crowns with one

non-corner vertex in a fundamental domain, so they must be of type

(1, 0, 0), (0, 1, 0), or (0, 0, 1). There is one of each of these types, though

the last one is a rotation of the first one.
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Case 3: Only b2 and c are filled, we get a simple pavilion with one

extra non-corner vertex. There are 7 of these, three each of types (1, 0, 0),

(0, 1, 0) and one of type (0, 0, 1).

Case 4: Only b2 is filled, we get a simple crown, with two extra non-

corner vertices. There are 33 of these as summarized in this table:

Simple Crowns

200 020 002 110 101 011 total

3 6 1 9 7 7 33

In Figures 13 and 14, the 4- and 5-fold lifts of the generating graphs

of this section are listed.

4.3 Four vertices

The crown and pavilion graphs with 4 vertices are of the following forms:

• Simple crowns with three extra vertices:

Simple Crowns

300 030 003 120 210 102 201 012 021 111 total

5 56 1 102 51 25 35 25 80 115 415

(Figure 15)

• Simple pavilions with two extra vertices:

Simple Pavilions

200 020 002 110 101 011 total

5 28 1 33 17 17 101

(Figure 16)

• Standard crowns with two extra vertices:

Standard Crowns

200 020 002 110 101 011 total

3 16 3 19 13 19 73
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Figure 13. All 4-fold lifts generated by 3-vertex fundamental domains:
33 simple crowns, 2 standard crowns, 1 standard pavilion,
and 7 simple pavilions.



621

Figure 14. All 5-fold lifts generated by 3 vertex fundamental domains.
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See Figure 17 for 8-fold lifts of standard crowns with ≤ 4 vertices in

a fundamental domain.

• Standard pavilions with one extra vertex:

Standard Pavilions

001 010 100 total

3 9 3 15

See Figure 18 for 8-fold lifts of standard pavilions with ≤ 4 vertices

in a fundamental domain.

4.4 Master table of results

Figures 19 and 20 depict master tables of computational results. We set

a limit of nL+nM +nR = 6 and list all triplets such that nL+nM +nR ≤
6. For each triplet, we consider the four types of graphs determined by

whether it is simple or standard and whether it is a crown or pavilion.

Thus for example, there is 1 simple crown of type (0, 0, 4), 7 standard

crowns of the same type, 1 simple pavilion, and 9 standard pavilions.

Entries with a weather symbol were not computed at time of publishing.

The symbols indicate difficulty of computation starting at� which means

less than 31.6 million graphs that need to be checked, then proceeding �,

�, ,",!,�,$, with each one being 10 times the previous one, ending

at 316 trillion graphs needing checking.

All entries were computed using C# code implementing the algorithm

outlined in Section 3.2. Refactoring in C or C++ would provide a perfor-

mance boost.

4.5 Odds and ends

There are a few patterns that stand out in the data. In order to discuss

these, we define functions C0(a, b, c), P0(a, b, c), which count the number

of simple crowns and pavilions of type (a, b, c), and C(a, b, c), P (a, b, c)

which count the number of standard crowns and pavilions of type (a, b, c).

Proposition 4. The following equalities hold.
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Figure 15. A subset of the 415 simple crowns with 4 vertices in their
fundamental domain, pictured with 4-fold symmetry. We
encourage the digital reader to zoom in to see greater detail
in this and subsequent figures.
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Figure 16. The 101 simple pavilions with 4 vertices in a fundamental
domain, pictured with 4-fold symmetry.
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Figure 17. 8-fold standard crowns generated by ≤ 4-vertex generating
graphs. Graphs of the form 100, 010, 200, 020, 110, and
101 are drawn, omitting 002 and 011, which duplicate 200
and 110 up to rotation.

Figure 18. 8-fold standard pavilions generated by ≤ 4-vertex generat-
ing graphs. Standard pavilions of the form 000, 001 and
010 are drawn, omitting 100.
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1. C(a, b, c) = C(c, b, a) and P (a, b, c) = P (c, b, a).

2. C0(0, 0, n) = P0(0, 0, n) = 1, C(0, 0, n) = 2n − 1, and P (0, 0, n) =

2n+ 1

3. C0(n, 0, 0) = C(n, 0, 0) = 2n − 1. P0(n, 0, 0) = 2n + 1. C(n, 0, 0) =

2n+ 1

4. P0(1, 0, n) = P0(0, 1, n) and C0(1, 0, n) = C0(0, 1, n).

Proof: The first point follows because the vertices b1 and b2 can be

interchanged. Here is a good point to note that the involution given by re-

flection of the diagram through the perpendicular bisector of b1, b2 acts on

the sets counted by C(c, b, c) and P (c, b, c). Graphs fixed by this involution

have a a higher order D2n+2 symmetry, while the other graphs are counted

twice up to isomorphisms that allow boundary vertex permutation.

The fact that C0(0, 0, n) = P0(0, 0, n) = 1 can be seen as follows. There

are n vertices lined up on the right hand wall. Each vertex can connect

to the one above and below it as well as to itself across the left wall. All

of the edges between consecutive vertices on the wall need to be filled in

order for the graph to be connected. Moreover, since the vertex degrees

need to be at least 3, the self-edges also need to be in place. Hence there

is a unique such graph.

To see that C0(n, 0, 0) = 2n− 1, let v0, . . . , vn be the list of vertices on

the left wall, where the indices are in increasing order as you move down

the wall. Given a generating graph on these, let vk be the maximal vertex

that has a self-edge (which must cross the right hand wall). At least one

such self edge is necessary or else the boundary vertex b2 would meet the

diamond’s table, so the graph would not be triconnected. Once some vk

has a self edge, all vertices with i < k must also have self edges for degree

reasons. If k = n, then the graph is determined, each vk has a self-edge,

each vi is connected to vi+1, and finally vn is connected to b2. Otherwise,

consider the vertices with i > k. They must all connect to b2 for degree

reasons and moreover the entire set of n vertices must be connected in a

linear chain. Finally, the edge connecting b2 with vk may or may not be

present, giving two options. In total we have 2(n−1)+1 = 2n−1 possible

graphs.
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The other equalities in point 3 are proved similarly.

The equalities in the last point come from expanding the L-vertex to

an edge that crosses the left wall.

Proposition 5. The sequence C0(0, n, 0) is equal to the number of c-nets

with 3 outer vertices and n − 3 inner vertices, which is OEIS sequence

A285165. Our results match those of [1] within the calculated range.†

Sketch of proof: Given a C0(0, n, 0) type generating graph, discard the

bottom edge and introduce two new vertices that connect to all of the

edges meeting the left and right walls, respectively. This gives us a planar

graph with three outer vertices when we count the lower right boundary

point of the fundamental domain.

We leave the reader with the following conjecture.

Conjecture 1. The number of simple crowns of type (1, 0, n) is given by

C0(1, 0, n− 1) =
1

3
(4n3 + 6n2 + 8n+ 3),

which is sequence A001845 in the OEIS.
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nL nM nR spl std spl std
crowns crowns pavs pavs

0 0 0 1 1 1 1
0 0 1 1 1 1 3
0 1 0 1 1 3 9
1 0 0 1 1 3 3
0 0 2 1 3 1 5
0 1 1 7 19 17 67
0 2 0 6 16 28 118
1 0 1 7 13 17 27
1 1 0 9 19 33 67
2 0 0 3 3 5 5
0 0 3 1 5 1 7
0 1 2 25 89 51 241
0 2 1 80 292 258 1210
0 3 0 56 208 320 1616
1 0 2 25 49 51 99
1 1 1 115 285 331 737
1 2 0 102 292 452 1210
2 0 1 35 49 73 99
2 1 0 51 89 139 241
3 0 0 5 5 7 7
0 0 4 1 7 1 9
0 1 3 63 283 113 635
0 2 2 486 1964 1284 6538
0 3 1 1064 4536 4020 21048
0 4 0 640 2848 4128 23392
1 0 3 63 141 113 267
1 1 2 685 1707 1701 4059
1 2 1 1830 5462 6012 16160
1 3 0 1320 4536 6664 21048
2 0 2 199 315 417 661
2 1 1 877 1707 2209 4059
2 2 0 850 1964 2936 6538
3 0 1 111 141 217 267
3 1 0 177 283 409 635
4 0 0 7 7 9 9

Figure 19. Number of simple/standard crowns and pavilions of the
form (nL, nM , nR) with nL + nM + nR ≤ 4.
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nL nM nR spl std spl std
crowns crowns pavs pavs

0 0 5 1 9 1 11
0 1 4 129 705 211 1385
0 2 3 1976 9056 4594 25662
0 3 2 8920 39432 27672  
0 4 1 15328 � �  
0 5 0 8256 � � "
1 0 4 129 337 211 595
1 1 3 2759 7317 6175 16201

1 2 2 14870 � � �

1 3 1 29544 � �  
1 4 0 18584 � �  
2 0 3 783 1401 1581 2867

2 1 2 6927 � 16519 �

2 2 1 18208 � � �

2 3 0 14304 39432 �  
3 0 2 977 1401 2019 2867
3 1 1 4275 7317 9931 16201
3 2 0 4442 9056 13008 25662
4 0 1 283 337 513 595
4 1 0 475 705 963 1385
5 0 0 9 9 11 11
0 0 6 1 11 1 13
0 1 5 231 1491 353 2659
0 2 4 6262 � �  

0 3 3 �   !

0 4 2 � " " �

0 5 1  " " �

0 6 0 115456* ! ! $
1 0 5 231 70 353 1163
1 1 4 8705 � 17945  

1 2 3 �   "

1 3 2 � " " !

1 4 1 � " " �

1 5 0  " " �

2 0 4 2443 � �  
2 1 3 37241  � "

2 2 2 �   !

2 3 1 � " " !

2 4 0 � " " �

3 0 3 5547 � �  

3 1 2 �  � "

3 2 1 �   "

3 3 0 �   !

4 0 2 3647 � �  

4 1 1 � � �  

4 2 0 � � �  
5 0 1 615 701 1041 1163
5 1 0 1065 1491 1953 2659
6 0 0 11 11 13 13

Figure 20. Number of simple/standard crowns and pavilions of the
form (nL, nM , nR) with nL+nM +nR = 5, 6. The starred
entry is explained in Proposition 5. The weather symbols
are explained in the first paragraph of section 4.4.
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