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Abstract

Organic synthesis has been widely used in drug discovery and de-
velopment. The intelligent prediction and analysis of high-through-
put coupling reaction yield is one of the important and challenging
research hotspots in the field of organic synthesis. However, the
existing methods focus on intelligent prediction rather than study
and interpret the internal relationship between reaction conditions
and yield. For tackling this problem, an intelligent analysis organic
chemical synthesis model by combining topological data analysis
(TDA) and Light Gradient Boosting Machine (LightGBM), named
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OCS-TGBM, is proposed to deeply explore the internal relation-
ship between reaction conditions and yield, and obtain high-yield
reaction conditions and combinations. In order to further enhance
the performance of the OCS-TGBM model, a stratified diversity
sampling strategy is introduced. Experimental results show that
the OCS-TGBM model is superior to other methods in analyzing
and predicting the reaction performance of high-throughput organic
chemical synthesis. And it provides intelligent assistance for the op-
timal design of the reaction system and the evaluation of reaction
conditions, thus greatly accelerating the process of the drug discov-
ery and development.

1 Introduction

Organic synthesis plays a vital role in the innovative research and de-

velopment of new drugs as well as the optimization of old drugs. With

the development of organic synthesis technology, the coupling reaction

catalyzed by transition metals is also developing rapidly. Among them,

the cross-coupling reaction catalyzed by palladium (Pd) is a widely used

method with high efficiency, excellent selectivity, and mild reaction condi-

tions, which is an effective tool for modern organic synthesis.

Buchwald-Hartwig amination reaction is one of the research hot points

in the field of coupling reaction of C-N bond catalyzed by Pd [1–4]. In

order to improve the yield of Buchwald-Hartwig cross coupling reaction,

researchers have been committed to improving reaction conditions such as

ligands and additives in the reaction [5–8]. However, the current Buchwald-

Hartwig cross coupling reaction is obviously facing corresponding short-

comings. For example, the reaction conditions are harsh, the synthetic

route is complex, the reaction time is long, the solvent pollutes environ-

ment, high cost and difficult to achieve [9]. Therefore, designing green,

simple, and efficient chemical synthesis method has become the focus of

research on Buchwald-Hartwig cross coupling reaction.

In recent years, machine learning (ML) as an efficient method has been

gradually applied in the field of bioinformatics and chemistry [10, 11]. It

shows more and more competitiveness in the research of chemical reac-

tion prediction [12–14], drug performance prediction [15–19], screening for

target compounds [20–23], molecular material design [24–26]. Recently,
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researchers considered using ensemble tree models to predict the perfor-

mance of chemical reactions, which are easy to analyze and interpret. For

example, the Random Forest model is used to predict the toxicity of chem-

icals [27,28], the stereoselectivity of glycosylation [29]. And hybrid genetic

algorithm decision tree model is used to predict the effect of solvent struc-

ture on the reaction rate [30].

In 2018, Ahneman et al. [12] reported the prediction of Buchwald-

Hartwig amination reaction yield by Random Forest model, which is an

advanced study of ML method in the field of multidimensional chemical

spatial prediction. The yield was predicted with an accuracy of R2 = 0.92,

RMSE = 7.80. However, the data obtained by Ahneman et al. [12] is high-

dimensional data, and it has lots of redundant information, the Random

Forest algorithm cannot make prediction beyond the training data range

when solving the regression problem, which will lead to over-fitting.

Based on the above, our team proposed an integrated feature selection

based on importance and relevance, then obtained comprehensive and con-

cise feature descriptors data (21 feature descriptors) [36,37]. And XGBoost

was introduced to improve the precision. However, XGBoost is relatively

large time cost due to the pre-sorted algorithm.

Furthermore, researchers not only want good predictions, but also aim

to delve deeper into the relationship between reaction conditions and

yield. Cluster analysis, as a primary method of data mining, has re-

ceived widespread attention. In 2000, H. Edelsbrunner et al. proposed

the Topological Data Analysis (TDA) model [31]. It’s sensitive to both

large-scale and small-scale patterns, which other analysis methods such

as PCA and K-Means may not be able to detect [32, 33]. It also can find

some small categories that cannot be found by traditional methods. There-

fore, this method has played a great role in the field of gene and cancer

research [34,35].

Motivated by these works, this paper focuses on exploring the relation-

ship between reaction conditions and yield, and improving the intelligent

prediction yield model using the feature descriptors screened by our team.

The main contributions are as follows,
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Figure 1. All reaction components of Buchwald-Hartwig amination re-
action.

(1) We propose OCS-TGBM, an intelligent analysis organic chemi-

cal synthesis model by combining topological data analysis (TDA) and

Light Gradient Boosting Machine (LightGBM). OCS-TGBM can be used

to deeply explore the intrinsic relationship between reaction conditions

and yield, and make intelligent predictions. Besides, it can reduce running
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time while improve the accuracy of intelligent prediction.

(2) The stratified diversity sampling is proposed to divide the training

set and testing set, it enhances the performance of the model.

(3) Experimental results show that the OCS-TGBM model is superior

to other methods in analyzing and predicting the reaction performance of

high-throughput organic chemical synthesis. That is, the OCS-TGBM is

an effectiveness model.

2 Intelligent analysis and prediction model

for reaction yield—OSC-TGBM

To investigate the relationship between reaction conditions and yield in

depth, and to achieve efficient intelligent prediction, this paper proposes an

intelligent organic chemistry synthesis system called OCS-TGBM. OCS-

TGBM combines Topological Data Analysis (TDA) and Light Gradient

Boosting Machine (LightGBM). First, TDA is applied to comprehensively

analyze the relationship between reaction conditions and yield. Then,

LightGBM is utilized to achieve efficient intelligent prediction. The in-

troduction of OCS-TGBM provides an innovative approach for research

and synthesis processes in the field of organic chemistry, with the hope of

further enhancing reaction efficiency and product selectivity.

Nextly, this section will introduce TDA, LightGBM, stratified diversity

sampling strategy and three evaluating indicators.

2.1 TDA-based hidden information mining model for

high-dimensional data

The unique function of TDA make it have broad potential in the field

of data analysis and mining, which can widely explore and understand

the complex high-dimensional data spaces. The main methods of TDA

include persistent homology and Mapper. Mapper helps data analysts

summarize and visualize complex datasets, providing intuitive insights into

the data [38].
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2.1.1 Mapper algorithm

The Mapper summarizes the topological structure of the datasets into a

graph through a mapping f : X → G. It is a way of constructing graphs

from data, which reveals the topological characteristics of high-dimensional

data space.

The Mapper algorithm is divided into sequential Mapper and dis-

tributed Mapper, among which distributed Mapper is widely used. In

order to ensure that the output of the distributed Mapper is the same as

that of the sequential Mapper, some coverage preprocessing is required to

obtain the final Mapper output.

For coverage preprocessing, first construct an N-chain coverage of [a, b],

[a, b] is covered by N open intervals A1, A2 · · ·AN . When |i− j| = 1 and

|i− j| = ϕ, Ai,j := Ai∩Aj ̸= ϕ. Then construct an open cover Ui for each

open set Ai, {Ui}Ni=1 coverage meets the following conditions,

(1) Ai,i+1 is an open set covering of Ui and Ui+1, that is Ui ∩ Ui+1 =

{Ai,i+1}.
(2) If Ui ∈ ui and Ui+1 ∈ ui+1 make Ui ∩ Ui+1 ̸= ϕ, i = 1, 2, · · ·N − 1,

there is Ui ∩ Ui+1 = Ai,i+1i.

For the set of {Ai, Ui}Ni=1, where {Ai}Ni=1 is the N-chain coverage of

[a, b] and Ui is the coverage of Ai.

Sequential Mapper algorithm. Given a finite cover u = {U1, U2, . . . Uk}
of f(X), the cluster Xi,j ⊂ Xi for each set Xi := f−1(Ui) is computed by

using clustering algorithm.

Distributed Mapper algorithm. After preprocessing the coverage and

obtaining the set {Ai, Ui}Ni−1, firstly, map each pair of (Ai, Ui) to a specific

processor Pi. Then determine the set Xi ⊂ X of points, it is mapped to

Ai by f and simultaneously run the sequential Mapper construction on

cover (f |xi) ∗ (ui) , (i = 1, 2, · · ·N), thus, obtaining N graphs G1, G2, GN ,

if N = 1, return graph G1. Then, let Ci
j1, C

i
j2, · · ·Ci

ji be the cluster ob-

tained from f−1 (Ai,i+1). By selecting coverings ui and ui+1, these clusters

are represented by vertices vij1, v
i
j2, · · · , viji in Gi and Gi+1( each vik corre-

sponds to cluster Ci
k). Finally, by constructing Ai,i+1, ui and ui+1, each

f∗ (ui) and f∗ (ui+1) share a cluster Ci
jk in f∗ (Ai,i+1). So Ci

jk is repre-

sented by a vector in graphs Gi and Gi+1, and by considering disjoint joint



563

graphsG1∪G2∪· · ·∪GN when merging, then take the quotient of this graph

to determine the corresponding vertices in Gi and Gi+1 (1 ≤ i ≤ N − 1).

Thus, the subgraphs G1, G2, · · ·GN are merged into a graph G.

2.1.2 Clustering for topological data analysis

The main steps of TDA clustering visualization are as follows,

(1) Calculating a filtered value for each data point by using a filter

function. The L − inf inity is used as filter function in this paper. (The

value of L − inf inity is the distance from the point to the point farthest

from it, which is a centrality indicator.)

L− inf inity = max
j=1,···len(d)

√√√√√ d[j][20]∑
k=d[j][0]

d[i][20]∑
l=d[i][0]

(k − l)
2
, (1)

where d is the original data, len(d) is sample size, and n is the number of

features, d[j] is the jth sample, d[j][0] is the first feature of the jth sample.

(2) The data points are divided into different filter value intervals from

small to large according to their filter values. However, it should be noted

that adjacent filter value intervals are set with a certain overlapping area,

that is, the points in the overlapping area belong to two intervals at the

same time. The set of N equal-length intervals are determined by the two

resolution parameters (N intervals and p overlap percentages).

(3) Clustering the data in each interval. In this paper, single-link clus-

ter is used to cluster each group. Let N is the number of points in the

box. This paper first constructs a single-link dendrogram for the data in

bins and records the threshold for each transition in the cluster. Then

selecting an integer K, and constructing a K-interval histogram for these

transition values. The last threshold before the first gap in the histogram

is used for clustering. Note that the larger values of K, the more clusters

are produced, and the lower values of K, the fewer clusters are produced.

(4) Putting together the subclasses obtained by each interval clustering

in the previous step, and each subclass is represented by a circle of different

size. If two categories have common original data points (this is why the
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intervals need to overlap each other), add an edge between them.

2.2 Construction of a yield prediction model based on

LightGBM

LightGBM is an open-source framework based on the Gradient Boosting

Decision Tree (GBDT). LightGBM is proposed to improve the performance

of GBDT in processing massive data. The histogram-based decision tree

algorithm and distributed processing make GBDT better and faster to

apply to big data analysis, such as industry, medical treatment and so on.

Therefore, this section will introduce GBDT and the improved LightGBM

model based on GBDT [39].

The algorithm goal of GBDT is to optimize the loss function L(φ) =∑
l(ŷi, yi). The idea is too iterative generate multiple weak models, and

then adding up the prediction results of each weak model. The latter

model ft(x) is generated based on the effect of the previous learning model

ft−1(x). Assuming the GBDT model contains K weak learners, and let A

and B are the parameters of the classifier, there is,

ŷi =

K∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi;αt). (2)

Therefore, the objective function L(φ) =
∑

l(ŷi, yi) of GBDT can be

transformed into the following form,

L(t) =

n∑
i=1

l
[
yi, ŷ

(t−1)
i + ft(xi;αt)

]
. (3)

Next, through the first-order Taylor expansion, removing the constant

term, and optimizing the loss function term to optimize the GBDT objec-

tive function. Let the first-order derivative be gi = l′(yi, ŷ
(t−1)
i ), then the

first-order Taylor expansion is,

l(yi, ŷ
(t−1)
i + ft(xi)) ≈ l(yi, ŷ

(t−1)
i ) + gift(xi;αt). (4)
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Substitute further into the objective function (1) to get L(t),

L(t) =

n∑
i=1

[
l(yi, ŷ

(t−1)
i ) + gift(xi;αt)

]
, (5)

it can be found that l(yi, ŷ
(t−1)
i ) is the loss corresponding to the previous

step t− 1. If A is set, it can be guaranteed that the subtraction of the last

part of the formula must be a positive number. So, taking a negative gra-

dient in this way will make the loss decrease step by step. The parameters

that minimize the objective function are,

βt, αt = argmin

n∑
i=1

[
l(yi, ŷ

(t−1)
i ) + gift(xi;αt)

]
, (6)

where βt, αt are the parameters of the direction that makes the loss func-

tion of the model ft−1(x) of the previous step decreases the fastest, and

they are also the parameters to get the direction of model ft(x). Because

the direction where the loss function of ft−1(x) decreases the fastest is

−gi = −l′(yi, ŷ
(t−1)
i ), αt, βt are obtained by the least squares method,

αt = argmin

n∑
i=1

[−gi − gift(xi;α)]
2

βt = argmin

n∑
i=1

[
l(yi, ŷ

(t−1)
i ) + gift(xi;αt)

]
.

(7)

Thus, the final model can be obtained,

ft(x) = ft−1(x) + βtft(x;αt). (8)

Gradient Boosting tree is an optimization process that uses the addi-

tive model and forward distribution algorithm for learning. When building

decision trees in GBDT, it is fitted with a negative gradient, and when cal-

culating the information gain, all simples need to be scanned to find the

optimal splitting point, which greatly reduces the efficiency of the model.

LightGBM solves this problem through the Gradient-based One-side Sam-

pling (GOSS) algorithm and the Exclusive feature bundling (EFB) algo-

rithm, they are the core algorithm of LightGBM.
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The GOSS algorithm attempts to solve this problem from the perspec-

tive of reducing the sample size. By sorting the absolute values of the data

gradients, retaining instance with larger gradients among a and set it as

data subset A. And randomly sampling b instances from the remaining

small gradient instances as the data subset B. The information gain is cal-

culated based on the samples collected from the gradients, which greatly

reducing the amount of calculation and ensures accuracy. The specific

process of GOSS are as follows,

(1) Firstly, making prediction according to the model, and the sample

prediction value preds is obtained.

(2) Calculating loss according to preds, then further calculating the

sample gradient, and the initial assignment of sample weight w is equal to

1.

(3) According to the absolute value of the sample gradient, the sequence

sorted is obtained by descending sort, which is the index array of the

samples.

(4) Large gradient sample data, selecting topN = a ∗ len(I) to get

topSet, which is also an index array.

(5) Small gradient sample data, randomly selecting randN = b∗ len(I)
from the remaining samples to get randSet.

(6) Combining rows topSet and randSet to get usedSet, the size is

equal to (a+ b) ∗ len(I).
(7) Multiply the sample weight of the small sample by the weight co-

efficient factor (1− a)/b to get the new sample weight w.

(8) According to the sample I on index usedSet, the gradient g, and

the weight w, a new weak learner newModel is obtained.

(9) Adding the new weak learner newModel to the total model (Light-

GBM is an additive model).

Where I is the training data, a is the sampling ratio of large gradient data,

and b is the sampling ratio of small gradient data.

The EFB algorithm achieves dimensionality reduction and improves

efficiency by bundling mutually exclusive features. For example, for one-

hot encoded features, the features cannot have non-zero values at the same

time. These mutually exclusive features are bundled, and the bundled
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features are merged to construct a feature histogram that is equivalent to

a single feature, thus reducing computational costs. The greedy strategy

for feature bundling in EFB can be summarized as follows,

(1) The features are taken as the vertices of the graph, and the non-

mutually exclusive features are connected (there exist samples that are not

zero at the same time). And the number of samples with features that are

not zero at the same time is taken as the weight of the edge.

(2) Sorting the features in descending order according to the degree of

the vertices. The greater the degree, the greater the conflict between the

feature and other features (less likely to be bundled with other features).

(3) Setting a maximum conflict thresholdK, the outer loop first iterates

over each of the sorted features mentioned above, and then iterates over

the existing feature bundles/clusters. If it is found that adding the feature

to a particular cluster would not exceed the maximum threshold K of

conflicts, then add the feature to that cluster. Otherwise, creating a new

feature cluster and add the feature to the newly created cluster.

Finally, since histogram-based algorithms store discrete bins rather

than continuous feature values, feature bundles can be constructed by

adding exclusive features that reside in different containers, which is achi-

eved by adding an offset to the original values of the features. This is the

Merge Exclusive Features of LightGBM.

2.3 Stratified diversity sampling

Stratified sampling can improve the representativeness of samples, and

diversity sampling can make the model better for feature learning.

The main steps of stratified diversity sampling are as follows,

(1) According to the TDA clustering results, the data is divided into

several layers (several categories). For each layer, 10% of the datasets in

this layer are randomly selected as the labeled sets, and the remaining 90%

are unlabeled sets.

(2) Calculating the cosine similarity of unlabeled data with all labeled

data, cos(θ) =
∑n

k=1 x1kx2k√∑n
k=1 x2

1k

√∑n
k=1 x2

2k

, where x1k is labeled data and x2k is

unlabeled data.
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(3) Sorting the similarity of the unlabeled sets in ascending order.

(4) Selecting the top m data sets to add to the labeled set, and remove

the m data sets from the unlabeled sets.

(5) Repeating steps (2)-(4) until the label sets exceeds n% of the data

sets. Then the several layers of labeled sets and unlabeled sets are respec-

tively combined. The labeled set (A ∗ n%) is the training set, and the

unlabeled set (A ∗ (100%− n%)) is the testing set, A is the total data.

2.4 Evaluating indicators

In the regression prediction of yield, R2, Root Mean Square Error (RMSE)

and Mean Absolute Error (MAE) are selected to measure the regression

prediction effect of the model.

(1) R2, also known as coefficient of determination, reflects the inter-

pretable proportion of the independent variable to the dependent variable.

The value range of R2 is between 0 and 1. The closer R2 is to 1, the better

the fitting effect of the model.

R2 = 1− SSR

SST
= 1−

∑
i

(yi − ŷi)
2

∑
i

(yi − ȳ)
2 , (9)

where SST is the sum of squares, and the sum of squares of errors

between the original data yi and the mean value ȳ is calculated. SSR is

the sum of squares of regression, which calculates the sum of squares of

the mean value ȳ and the error of fitting data ŷi.

(2) RMSE is the square root of the ratio of the square of the deviation

between the observed value ŷi and the real value yi and the observation

times n. The smaller the value of RMSE, the better the regression pre-

diction effect of the mode.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2
. (10)

(3) MAE is the average of the absolute value of the error between the

observed value and the real value. Similarly, it is used to measure the
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deviation between the predicted value and the real value. The smaller the

MAE value, the better the regression prediction effect of the model.

MAE =
1

n

n∑
i=1

|yi − ŷi|. (11)

3 Results

In this part, TDA and multi-factor analysis of variance are performed to

analyze of the chemical reaction conditions that affecting high yield. The

convergence, prediction accuracy, and interpretability of the LightGBM

model are tested and analyzed. And the stratified diversity sampling strat-

egy is used to enhance the performance of model.

Experimental environment: each experiment is the result of an av-

erage of 100 trials with the same configuration. Computer configura-

tion is as follows: Brand: Dell; CPU: Intel(R) Core (TM) i7-7700HQ

CPU @2.80GHz(8CPUs), 2.8GHz; Memory type: DDR4.Software: under

Python3.7 scikit-learn module or MATLAB R2020a on a 2.80GHz machine

with 24.00GB RAM.

3.1 Source data

This paper selects the data published by Ahneman et al. [12] on the

Buchwald-Hartwig coupling reaction. Ahneman et al. used an ultra-high-

throughput device for coupling reactions and obtained data for 4608 reac-

tions (including controls) spanning different reaction combinations consist-

ing of 4 components, including 23 isoxazole additives, 15 aryl or Heteroaryl

halide, 4 palladium catalyst ligands and 3 bases. The yields of these reac-

tions are used as the model output. The effective experimental data are

3960 (Among them, the yields of 5 sets of experimental data are miss-

ing, so the 5 sets of experiments are deleted in this paper). Chemical

descriptors of reactants, catalysts, and additives involved in the reaction

are independent variables, and the corresponding reaction yields are de-

pendent variables. Ahneman et al. to avoid prohibitively time-consuming

analysis and logging of computational data, they developed software to
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submit molecular, atomic, and vibrational property calculations to Spar-

tan and subsequently extract these features from the resulting text files

for accessibility to a general user. The program requires only the input

of reagent structures in the Spartan graphical user interface and specifi-

cation of the reaction components in a Python script; it is applicable to

any reaction type. The program then generates the data table that can be

used for modeling. In total, 120 descriptors are extracted by the software

to characterize each reaction.

However, more descriptors may have a large correlation between fea-

tures, which leads to over-fitting and increases computation time. There-

fore, this paper uses the feature descriptor data filtered by our team as

the input data for all subsequent algorithms. It has been stated in the

text that the obtained 21 descriptors can well replace the original 120

descriptors [36,37].

Table 1. The 21 feature descriptors extracted through the feature
screening method based on importance and correlation.

feature descriptors feature descriptors

1 additive dipole moment 12 aryl halide ovality

2 additive electronegativity 13 aryl halide *C3 NMR shift

3 aryl halide E HOMO 14 base dipole moment

4 aryl halide dipole moment 15 ligand V10 intensity

5 aryl halide electronegativity 16 additive V1 frequency

6 aryl halide molecular weight 17 additive V1 intensity

7 additive *C4 electrostatic charge 18 ligand V9 intensity

8 ligand *C7 electrostatic charge 19 aryl halide V1 frequency

9 base surface area 20 aryl halide V1 intensity

10 additive *C3 electrostatic charge 21 aryl halide V3 frequency

11 additive *C4 NMR shift

3.2 Association analysis between reaction conditions

and yield

To further explore the internal relationships within the Buchwald-Hartwig

coupling reaction data and infer the possible conditions for high-yield re-
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action, this section analyzes the correlation analysis between reaction con-

ditions and yield based on TDA and multi-factor analysis of variance.

3.2.1 TDA-based association analysis between reaction condi-

tions and yield

In statistics, a quantile is a value that divides a dataset into equal portions

based on probability. The meaning of quantile represents the proportion

of data subset less than a certain value in the total sample set after a data

set is arranged from small to large, which provides a good basis for finding

data outliers and observing data distribution. In this paper, the reac-

tion yield was divided into two categories, low-yield rate (Low Yield, less

than 0.5 quantile points, which is below the sample median of 28.76173),

and high-yield rate (High Yield, more than 0.5 quantile points, which is

above the sample median of 28.76173), based on the statistical concept of

quantile. Then, TDA cluster analysis is used to provide researchers with

corresponding decision-making information.

In TDA, a circle represents a cluster, and its size indicates the number

of samples contained. A larger circle indicates that the corresponding

cluster contains more samples. The depth of the circle’s color represents

the average value of the sample labels in the cluster, which in this case is

the average yield. The darker the circle’s color, the larger the mean label

value. When the distance between clusters is smaller, it typically indicates

that the internal samples within those clusters are more similar to each

other. In Figure 2, it is obvious that K-Means, PCA, t-SNE [40] and

UMAP [41, 42] cannot effectively classify the Buchwald-Hartwig coupling

reaction data. But TDA can divide it into two classes. As shown in Figure

2(B), the visualization results vary significantly when the parameters are

set differently. As a result, two groups of diverse parameters were randomly

selected for experimental comparison and analysis in this paper.
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Figure 2. Cluster visualization results. (A) Clustering visualization
of K-Means, PCA, t-SNE and UMAP. (B) Visualization of
TDA clustering under different parameters. (C) Two groups
in (B) are randomly selected for detailed analysis.
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Table 2. Detailed analysis of Figure 2(e) and Figure 2(i).

Cluster Cluster

yield

mean

Reaction conditions

(e)

TDA1

(N=3,

P=0.8,

K=3)

Low-yield
Clusters

4,6,8,10,11

< 28.7617 All samples only

contained 5th aryl, and

17th additive isn’t found

in the low-yield samples.Cluster 13 > 28.7617

High-yield
Cluster 1 < 28.7617 All samples don’t contain

5th aryl, and 5th and 7th

aryl aren’t found in the

high-yield samples, which

7th is chloride.

Clusters

2, 3, 5, 7,

9, 12, 14

> 28.7617

(i)

TDA2

(N=15,

P=0.6,

K=5)

Low-yield
Clusters

14,16,19,

24,30,36

< 28.7617 All samples only

contained 5th aryl, and

17th additive isn’t found

in the low-yield samples.Clusters

31,33,38

> 28.7617

High-yield

Upper arm > 28.7617 All samples don’t contain

5th aryl, and 5th and 7th

aryl aren’t found in the

high-yield samples, which

7th is chloride.

Below arm < 28.7617

clusters

21,25,26

< 28.7617

Remaining

clusters

> 28.7617

Through the analysis of each cluster of samples in Figure 2C(e), it is

found that, (1) it was discovered that the upper six clusters consist of

low-yield sample combinations. Except for the 13th cluster, which has the

potential to become a low yield due to its corresponding reaction condi-

tions containing only the 5th aryl, the mean yields of the remaining clusters

are less than 28.76173%. Therefore, the 13th cluster was also classified as

a low yield. The following eight clusters are high-yield sample combina-
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tions. Except for the 1st cluster, the mean yields of the other clusters are

greater than 28.76173. However, the 1st cluster is still classified as high-

yield because its corresponding reaction conditions have the potential to

achieve high-yield output, it does not contain 5th aryl. (2) The mean yield

corresponding to 14th cluster is 66.71, which is the highest, among which

there are only six samples with low yield. Through analysis, it is found

that these six samples are the overlapping samples of 14th cluster with

5th, 7th, 9th, and 12th clusters. The reaction conditions corresponding to

these samples all contain only the more active 15th aryl in the reaction

conditions, which 15th is iodide.

Through the analysis of each cluster of samples in Figure 2C(i), it is

found that the same, (1) The upper nine clusters consist of low-yield sam-

ple combinations, except for the 38th, 31st, and 33rd clusters where the

mean yields were above 28.76173. However, these clusters were still clas-

sified as low yield due to their corresponding reaction conditions, which

have the potential to result in low yields since they only contain 5th aryl.

The Y-shaped structure is high-yield sample combinations, except for the

clusters below the arm of the Y-shaped structure, as well as the 21st, 25th,

and 26th clusters. However, the mean yields of all the other clusters are

greater than 28.76173. The below arm clusters of the Y-shaped structure

and the 21st, 25th, and 26th clusters are still classified as high-yield due

to their corresponding reaction conditions having the potential to yield

high results, they do not contain 5th aryl. And the samples correspond-

ing to 25th and 26th clusters are all samples from 21th cluster. (2) The

32nd cluster corresponds to the same sample as the 14th cluster in Figure

2C(e). The mean yield corresponding to this cluster is 66.71, which is the

highest. Only six samples in this cluster have low yield. Through analysis,

it is found that these six samples overlap with 32nd cluster with clusters

32nd, 34th, 35th and 37th. The reaction conditions corresponding to these

samples all contain only the more active 15th aryl, which 15th is iodide.

(3) The below arm clusters of Y-shaped structure were compared with

24th, 19th, 14th, 16th, 30th, and 36th clusters in the low-yield group, and

it is found that in the reaction conditions corresponding to the low-yield

samples of these 13clusters, they haven’t 2nd, 15th additives and 9th, 15th
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aryls.

Table 3. Further detailed analysis of Figure 2(i).

Cluster Reaction conditions

Clusters

14,16,19,

24,30,36

All samples contained only 5th

aryl, and 2th, 6th, 15th, 16th,

and 17th additive aren’t found

in the low-yield samples.

Low-yield

(i)

TDA2

(N=15,

P=0.6,

K=5)

Clusters

31,33,38

All samples contained only 5th

aryl, and 1th, 4th, 7th, 10th,

12th, 13th, 14th, 19th, 20th ad-

ditive isn’t found in the low-

yield samples.

Upper arm

of the Y

All samples don’t contain 5th

and 10th aryl, and 5th, 7th and

10th aryl aren’t found in the

high-yield samples, which 7th

and 10th are chloride.

High-yield

Below arm

of the Y

All samples don’t contain 5th,

9th, and 15th aryl, 2th and 3th

base, and 4th, 5th, 7th, 9th,

and 15th aryl aren’t found in

the high-yield samples, which

4th and 7th are chloride.

Based on the above analysis, it can be concluded that while the visu-

alization results may vary due to different parameters, the classification

results are generally consistent. Further comparative analysis suggests

that selecting more active reactants, such as iodide or bromide, can lead

to a higher reaction yield (In comparison to chloride, iodide and bromide

exhibit greater reactivity, with the order of reactivity being iodide > bro-
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mide > chloride [43]). And the 5th aryl should not be selected as much

as possible, the additive should be selected as much as possible 1st, 2nd,

4th, 6th, 7th, 10th, 12th, 13th, 14th, 16th, 17th, 19th and 20th, and the

base should be selected as much as possible 3rd.

3.2.2 Interaction-based association analysis between reaction

conditions and yield

In chemical reactions, the combination of reaction conditions plays a cru-

cial role in determining the outcome. Therefore, it is essential to quantify

these interactions and reveal any hidden correlations. This section aims to

analyze the effects of various additives, aryls, bases, ligands, and pairwise

interactions on yield through multi-factor analysis of variance. And then

provides relevant decision-making information for researchers.

To begin with, the pairwise reaction conditions are tested for inter-

subjective effects. The revised model’s values for all six groups of models

are less than α = 0.05, indicating that the models are statistically signif-

icant. The P values of additive, aryl, base, ligand, and their interaction

are all less than α = 0.05, leading to the rejection of the null hypothesis.

It is considered additive, aryl, base, ligand, and their interaction have a

significant effect on the yield. (The significance level α = 0.05).

In Figure 3(a), it is shown that when changing from the 1st additive to

the 22nd additive, choosing a specific aryl can maximize the average yield.

For instance, selecting the 12th aryl while using the 1st additive can lead

to the highest average yield. Among all combinations of additive and aryl,

the combination of the 6th additive and the 12th aryl results in the largest

average yield, which is 78.6. Similarly, the Table 4 is got.

According to Table 4, the yield was higher when 5th, 6th and 17th

additives, 12th aryl (which 12th is iodide), 2nd and 3rd base, 2nd and 3rd

ligand were selected. This observation is consistent with the findings of

the TDA clustering analysis discussed earlier.
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Figure 3. The pairwise interaction plot of additive, aryl, base, ligand
obtained by multi-factor analysis of variance.

Table 4. Pairwise optimal combination of reaction conditions. (In the
table, (6, 12) represents 6th additive and 12th aryl are the
optimal combination of the additive and aryl.)

Additive Aryl Base Ligand

Additive −− (6,12) (17,3) (5,2)

Aryl (12,6) −− (12,3) (12,3)

Base (3,17) (3,12) −− (2,3)

Ligand (2,5) (2,12) (3,2) −−
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To sum up, in order to obtain a higher reaction yield, chemically active

reactants, such as iodide or bromide should be selected as far as possible,

the 5th aryl should be avoided if possible, the 1st, 2nd, 4th, 5th, 6th,

7th, 10th, 12th, 13th, 14th, 16th, 17th, 19th and 20th additives should be

selected as much as possible, the 2nd and 3rd bases should be selected as

much as possible, and the 2nd and 3rd ligands also should be selected as

much as possible.

3.3 LightGBM-based chemical reaction yield predic-

tion

In this section, the convergence and predictive performance of the Light-

GBM model were investigated. By comparing with ML and deep learning

methods, it is proved that the LightGBM not only has good prediction

accuracy, but also has faster running speed. Then the stratified diversity

sampling was used to enhance the generalization ability of the model.

3.3.1 Parameter optimization and convergence analysis

The optimal parameters of the LightGBM model are typically determined

through a combination of cross-validation and grid search training. For

example, to find the optimal learning rate, as shown in Figure 4, when the

learning rate is 0.12, the highest score is 0.9484.

Figure 4. Grid search for learning rate.
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Additionally, the convergence of the LightGBM model is analyzed by

obtaining its optimal parameters. As depicted in Figure 5, both the train-

ing and testing error curves exhibit a downward trend with increasing iter-

ations and eventually stabilize. This indicates that the LightGBM model

has converged after training.

Figure 5. LightGBM’s learning curve under10-fold cross-validation.
(a)-(b) The RMSE of the training set and testing set varies
with the number of iterations. (c)-(d) The absolute error be-
tween adjacent iteration steps of the training set and testing
set.

3.3.2 Yield prediction accuracy analysis

The regression methods used in this article include MLPR, SVR, Ad-

aBoost, Gradient Boost, Extra Tree, Random Forest, XGBoost and CNN.

However, the deep learning models are mainly data-driven and has certain

requirements for data. The data screened by our team cannot be applied

to the neural network model due to certain limitations. Therefore, when

discussing the prediction accuracy of CNN in this section, a large amount

of data (source data: 120 feature descriptors) is still selected.
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Figure 6. Model prediction performance. (A) Prediction results of dif-
ferent models (training set: testing set = 7:3). (B) Light-
GBM, XGBoost and Random Forest diagram of different
proportions of training data and prediction results.

As shown in Figure 6(A), although general decision tree and ML meth-

ods perform nonlinear regression, they are unable to produce relatively

accurate prediction results. On the other hand, LightGBM, XGBoost,
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and CNN have demonstrated better prediction results. However, both

XGBoost and CNN require longer training and prediction times, with

CNN further demanding a large amount of deep learning data. In con-

trast, LightGBM performs almost perfectly, achieving an accuracy level of

R2=0.9553, RMSE= 5.7638, MAE=4.0816. Compared with the XGBoost

model, the LightGBM model runs more than 3 times faster. This is be-

cause LightGBM has introduced two optimization techniques: GOSS and

EFB, which allow LightGBM to intelligently select samples and features,

reducing computation and memory usage. As a result, it significantly im-

proves training speed and prediction efficiency.

Table 5. Prediction results for nine models. (training set: testing set
= 7:3)

Methods R2 RMSE MAE Run Time(s)

LightGBM 0.9553 5.7638 4.0816 0.6542

XGBoost 0.9517 5.9733 4.0888 2.2048

Random Forest 0.9295 7.2353 4.9487 4.0732

Extra Tree 0.9240 7.5063 4.8304 5.1285

Gradient Boost 0.9234 7.5386 5.4760 2.5606

Adaboost 0.9201 7.6971 5.9781 4.8961

SVR 0.5309 18.7214 14.9049 41.0222

MLPR 0.5052 19.1672 15.1457 2.8783

CNN 0.9435 6.4801 4.3830 946.4686

For the LightGBM model, it’s found that using a significantly smaller

subset of the training data of 21 descriptors achieved better predictive

power than other methods. As shown in Figure 6(B), with only 5% of the

reaction data using LightGBM training to predict the remaining 95% of the

reaction data, the result is obvious better than using linear regression pre-

diction results, the accuracy isR2=0.7446, RMSE=13.7786, MAE=10.2382.

When 40% reaction data are used for training prediction, the prediction

result of LightGBM can reach the prediction result of Ahneman et al. [12].

In conclusion, the LightGBM algorithm can “learn” enough informa-

tion from a small amount of data to get better prediction results. It
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also proves that the 21 descriptors obtained by the integrated feature se-

lection based on importance and relevance can replace the original high-

dimensional data.

3.3.3 Stratified diversity sampling-based yield prediction accu-

racy analysis

In the previous subsection, the predictive ability of LightGBM was veri-

fied. And in this subsection, the stratified diversity sampling was used to

select training data, which enhancing the performance of the model. Based

on the clustering results in the ”TDA-based association analysis between

reaction conditions and yield” section, the data can be classified into two

layers, and diversity sampling can be performed accordingly.

Figure 7. Model prediction results under different sampling methods.
(Because the prediction performance of the SVR and MLPR
models is poor, it will affect the beauty of the graph, so
the SVR and MLPR models are not drawn here, but the
prediction results are given in Table 6, training set: testing
set = 7:3.)

As shown in Figure 7, for the same model, the training set selected

by stratified diversity sampling is better than random sampling. When

70% was selected as training data to predict the remaining 30% of the

sample data, using stratified diversity sampling can improve the Light-

GBM accuracy by 0.0046 for R2, and reduce by 0.0655 for RMSE. When

using 90% of stratified diversity sampling selection as training data to
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predict the remaining 10% of sample data, the accuracy can even reach

R2=0.9716, RMSE=4.6903.

In a word, compared with the random sampling strategy, the stratified

diversity sampling strategy can obtain better prediction performance. And

the LightGBM model is superior to other models. It also proves that the

TDA clustering results are effective from the side in this paper.

Table 6. Model prediction results under different sampling methods.
(Here, we want to compare the prediction results of the four
sampling methods under the same model, so the results of
MAE and running time are not added, training set: testing
set = 7:3.)

Methods LightGBM XGBoost Random Forest

Index R2 RMSE R2 RMSE R2 RMSE

Sratified

diversity

0.9599 5.4924 0.9566 5.6798 0.9350 6.9800

Diversity 0.9589 5.5301 0.9558 5.7044 0.9341 6.9933

Stratified 0.9553 5.7638 0.9534 5.8719 0.9314 7.1568

Random 0.9568 5.6983 0.9517 5.9733 0.9295 7.2353

Methods Adaboost Extra tree Gradient Boost

Index R2 RMSE R2 RMSE R2 RMSE

Sratified

diversity

0.9254 7.4479 0.9281 7.3227 0.9327 7.0627

Diversity 0.9240 7.4871 0.9268 7.3523 0.9308 7.1626

Stratified 0.9215 7.6320 0.9250 7.4868 0.9276 7.2996

Random 0.9201 7.6971 0.9234 7.5386 0.9240 7.5063

Methods CNN(120) SVR MLPR

Index R2 RMSE R2 RMSE R2 RMSE

Sratified

diversity

0.9491 5.846 0.536 18.5956 0.5201 18.8675

Diversity 0.9479 5.9765 0.5343 18.6104 0.5155 18.9024

Stratified 0.9475 6.2369 0.5324 18.6552 0.5107 19.0894

Random 0.9435 6.4801 0.5309 18.7214 0.5052 19.1672
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3.3.4 Generalization performance analysis based on out-of-sample

predictions and out-of-fold predictions

In order to verify the generalization performance of the proposed method,

this paper performs out-of-sample prediction and out-of-fold prediction on

the same dataset.

Out-of-sample prediction tests the generalization ability of the model

by dividing the data set into two disjoint parts, one to estimate the model

and the other to predict. Like [12], isoxazoles in the additive training set (1

to 14 and 16, 17, 20, 23) are used to predict the performance of isoxazoles

15, 18, 19, 21, and 22 in the testing set. The out-of-sample prediction

results are shown in Figure 8. Compared with Random Forest-based and

XGBoost-based out-of-sample prediction results, LightGBM has a larger

R2, smaller RMSE and MAE, and the shortest Time, which indicates

that the LightGBM achieves better out-of- sample prediction effect. It is

sufficient to demonstrate that the LightGBM can predict the effect of a

new isoxazole or aryl halide structure on the outcome of the Buchwald-

Hartwig amination reaction, and identify bases and ligands combinations

to provide higher yield.

The concept of out-of-fold prediction is directly related to the concept

of out-of-sample prediction. In both cases, predictions are made on samples

that were not used during model training, and both allow an estimate of

the model’s performance when making predictions on new data. The most

common method for evaluating a model is to score its predictions during

each training session and then average those scores. Another approach

is to use out-of-fold prediction, where the predictions for each model are

aggregated into a list that summarizes the retained data for each training

set as the testing set. Taking the list to get a single accuracy score after

all models have been trained. This approach is used to consider that

each data appears only once in each testing set. That is, each sample in

the training datasets has a prediction during the cross-validation process.

After the training process is complete, all predictions can be gathered

and compared with the target results to calculate a score. The benefit of

this approach is that it can effectively showcase the model’s generalization

performance.
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Figure 8. Out-of-sample prediction results.

The out-of-fold prediction results are presented in Figure 9. When

compared to the out-of-fold predictions of Random Forest and XGBoost,

LightGBM shows a higher R2 value, smaller RMSE and MAE values,

and shorter computation time. These indicates again that the LightGBM

achieves better predictions.

The results of out-of-sample prediction and out-of-fold prediction are

sufficient to show that the LightGBM can be well used for the prediction

of coupled chemical reactions.
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Table 7. Out-of-sample prediction results for LightGBM, XGBoost,
Random Forest.

Methods R2 RMSE MAE Run

Time(s)

Additive

15

LightGBM 0.9428 6.1124 4.8986 0.1898

XGBoost 0.9246 7.0234 5.1262 0.6692

Random Forest 0.9136 7.5186 5.7362 2.2215

Additive

18

LightGBM 0.9538 5.7693 3.4238 0.3559

XGBoost 0.9505 5.9671 3.5433 0.7084

Random Forest 0.9404 6.5508 4.0102 2.0697

Additive

19

LightGBM 0.8385 8.9622 6.3477 0.3278

XGBoost 0.8315 9.1537 6.7293 0.7310

Random Forest 0.8208 9.4398 7.0925 2.5958

Additive

21

LightGBM 0.8728 8.8927 6.4718 0.1426

XGBoost 0.8669 9.0969 6.4364 0.5400

Random Forest 0.8492 9.6847 7.0534 3.4195

Additive

22

LightGBM 0.9540 5.5585 3.9069 0.1768

XGBoost 0.9469 5.9724 4.2392 0.6095

Random Forest 0.9311 6.7990 4.5664 1.4601

Figure 9. Out-of-fold prediction results. (The right pictures are the
partial enlarged picture of R2, RMSE, MAE.)
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Table 8. Out-of-fold prediction results for LightGBM, XGBoost, Ran-
dom Forest.

Methods R2 RMSE MAE Run Times(s)

LightGBM 0.9631 5.2414 3.7192 6.3201
XGBoost 0.9595 5.4885 3.7544 28.4405
Random Forest 0.9409 6.6340 4.4383 35.9912

As shown in Figure 10, for the convenience of users, we has developed a

free EXE software called OCS-TGBM, which can implement TDA cluster-

ing, multivariate analysis of variance, diversity sampling, and intelligent

prediction of reaction yields. All code and software can be found online at

https://github.com/cogyh/OCS-TGBM.

Figure 10. The system interface of OCS-TGBM.

4 Conclusions

In this paper, the OCS-TGBM model is proposed to explore the internal

relationship between reaction conditions and reaction yield in Buchwald-

Hartwig coupling reaction, and to make intelligent predictions. The strat-



588

ified diversity sampling strategy is introduced to improve the model’s per-

formance. Finally, an intelligent prediction system with faster training

speed, lower memory consumption and better prediction performance is

constructed. It provides a new method for researchers to find high-yield

reactions, which is helpful to design the required chemical materials more

efficiently. Thereby greatly accelerating the process of drug discovery and

development.

It is natural to extend the proposed analysis and intelligent prediction

system to other chemical reactions beyond coupling reactions. Comple-

menting the advantages of LightGBM and deep neural networks for pre-

dicting molecular or drugs design is another interesting and challenging

work.
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