
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 91 (2024) 533–551

ISSN: 0340–6253

doi: 10.46793/match.91-2.533S

Relations between p-Sombor and Other

Degree–Based Indices

Laxman Saha∗

Department of Mathematics, Balurghat College,

Balurghat 733101, India.

laxman.iitkgp@gmail.com

(Received June 29, 2023)

Abstract

The Sombor index (SO) and its extended version p-Sombor in-
dex (SOp) are vertex degree-based topological indices that have po-
tential applications in mathematical chemistry. In this article, we
obtain several new relations for these indices. Precisely, we find
relations between SO and SOp and characterize the graphs where
equality occurs. Also, we present relations for SO and SOp involving
other topological indices, such as the first Zagreb, Randić, reciprocal
Randić, inverse sum indeg, and Albertson indices. Furthermore, we
set up relations between the p-Sombor indices for different values of
p.

1 Introduction

Let G = (V (G), E(G)) be a simple connected graph with vertex set V (G)

and edge set E(G). The neighborhood of a vertex v, denoted by NG(v),

is the set of all vertices which are adjacent to v. The degree dv of v in G

is the cardinality of NG(v). We denote ∆ = ∆(G) and δ = δ(G) for the

maximum degree and minimum degree of the graph G, respectively.

Degree-based topological indices have potential applications in math-

ematical chemistry. At present time, a study on mathematical properties
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and chemical applications of degree-based topological indices is a burn-

ing area of research [1, 3, 4, 6–12, 15]. On the basis of Euclidean metric,

Gutman [7] introduced the Sombor index, which is defined by

SO(G) =
∑

uv∈E(G)

√
(d2u + d2v).

Based on the p-norm, Rêti et al. [17] extended the concept of the Sombor

index to p-Symbor index (p ̸= 0), which was defined as

SOp(G) =
∑

uv∈E(G)

(dpu + dpv)
1
p .

They also observed that the first Zagreb index [11,12] defined by

M1(G) =
∑

uv∈E(G)

d2u =
∑

uv∈E(G)

(du + dv)

is equals to SO1(G) and the Sombor index is equals to SO2(G). The

Inverse sum indeg index is defined as

ISI(G) =
∑

uv∈E(G)

2dudv
du + dv

= 2SO−1(G).

The Randić index [16] and reciprocal Randić index [13] are defined as

R(G) =
∑

uv∈E(G)

1√
dudv

RR(G) =
∑

uv∈E(G)

√
dudv.

The Albertston irregularity index [2] is defined as

Alb(G) =
∑

uv∈E(G)

|du − dv|.

In this article, we obtain several new relations for SOp(G) and SO(G).

Precisely, we find relations between SO and SOp and characterize the
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graphs where equality occurs. Also, we present relations for SO and SOp

involving other topological indices, such as the first Zagreb, Randić, recip-

rocal Randić, inverse sum indeg, and Albertson indices. Furthermore, we

set up relations between the p-Sombor indices for different values of p.

2 Relations between p-Sombor, first Zagreb

and reciprocal Randić indices

Lemma 1. Let G be a simple graph such that du = dv for all uv ∈ E(G).

Then each component of G is regular. In particular, if G is connected and

du = dv for all uv ∈ E(G), then G is regular.

Proof. Let C be a component of G. Then C is a connected graph. Since

du = dv for all uv ∈ E(G) and so any two adjacent vertices in C are of

the same degree. Let u be a vertex in C and deg(u) = m, a finite number.

Since C is connected, then for any arbitrary vertex v ∈ V (C), there exists

a u − v path in C. Then by condition deg(u) = deg(v) = m. Therefore,

the degree of every vertex v is equal to the degree of u. Hence C is regular.

Thus proof is complete.

Recall that SOp(G) = M1(G) for p = 1. In the following, we repre-

sent bounds for SOp(G) in terms of M1(G) and characterize the graphs

achieving the bounds.

Theorem 1. For a simple graph G with minimum degree δ > 0 and

maximum degree ∆,

(a) 1

2
p−1
p

M1(G) ≤ SOp(G) ≤ (δp+∆p)
1
p

δ+∆ M1(G) if p > 1.

(b) (δp+∆p)
1
p

δ+∆ M1(G) ≤ SOp(G) ≤ 1

2
p−1
p

M1(G) if p < 1.
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Moreover, the left-side equality in (a) or reight-side equality in (b) will

occur if and only if each component of G is regular, and the right-side

equality in (a) or the left-side equality in (b) occurs only when G is a

bi-regular.

Proof. Let’s consider the following ratio

(dpu + dpv)
1
p

du + dv
=

{
1 +

(
du

dv

)p} 1
p

1 + du

dv

, du, dv ∈ [δ,∆]. (1)

Since du, dv ∈ [δ,∆], so δ
∆ ≤ du

dv
≤ ∆

δ . In view of expression (1), we take

the following function h defined by

h(t) =
(1 + tp)

1
p

1 + t
, t ∈

[
δ

∆
,
∆

δ

]
.

Then

h′(t) =
tp−1(1 + tp)

1
p−1 − (1 + tp)

1
p

(1 + t)2

=
(1 + tp)

1
p−1{(1 + t)tp−1 − (1 + tp)}

(1 + t)2

=
(1 + tp)

1
p−1(tp−1 − 1)

(1 + t)2
. (2)

Case-1: p > 1. Since p > 1, from (2) we get that h is monotonically

decreasing on
[
δ
∆ , 1

]
and monotonically increasing on

[
1, ∆

δ

]
and so

1

2
p−1
p

≤ h(t) ≤ (δp +∆p)
1
p

δ +∆

i.e.,
1

2
p−1
p

≤ (1 + tp)
1
p

1 + t
≤ (δp +∆p)

1
p

δ +∆
, t ∈

[
δ
∆ , ∆

δ

]
. (3)
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From the expression (1) and inequality (3), we have

1

2
p−1
p

≤

{
1 +

(
du

dv

)} 1
p

1 + du

dv

≤ (δp +∆p)
1
p

δ +∆
(4)

Then

1

2
p−1
p

≤ (dpu + dpv)
1
p

du + dv
≤ (δp +∆p)

1
p

δ +∆

1

2
p−1
p

(du + dv) ≤ (dpu + dpv)
1
p ≤ (δp +∆p)

1
p

δ +∆
(du + dv)

Taking summation over uv ∈ E(G), we have

1

2
p−1
p

∑
uv∈E(G)

(du + dv) ≤ (dpu + dpv)
1
p ≤ (δp +∆p)

1
p

δ +∆

∑
uv∈E(G)

(du + dv)

Therefore,

1

2
p−1
p

M1(G) ≤ SOp(G) ≤ (δp +∆p)
1
p

δ +∆
M1(G) when p > 1. (5)

The left-side equality in (3) will occurs only when t = 1 and so left-side

equality of (5) will occurs when du

dv
= 1, i.e., du = dv. Thus left-side

equality in (5) will occurs only when du = dv for all uv ∈ E(G), i.e., when

each component of G is regular due to Lemma 1. Again right-side equality

in (3) will occurs if and only if t ∈
{

∆
δ ,

δ
∆

}
and so right-side equality of

(4) will occurs only when du

dv
∈

{
∆
δ ,

δ
∆

}
, i.e., only when du, dv ∈ {δ,∆}.

Thus right equality in (5) will occurs only when du, dv ∈ {δ,∆} for all

uv ∈ E(G), i.e., only when G is a bi-regular graph.

Case-2: p < 1. Since p < 1, from (2) we get that h is monotonically

increasing on
[
δ
∆ , 1

]
and monotonically decreasing on

[
1, ∆

δ

]
and so
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(δp +∆p)
1
p

δ +∆
≤ h(t) ≤ 1

2
p−1
p

i.e.,
(δp +∆p)

1
p

δ +∆
≤ (1 + tp)

1
p

1 + t
≤ 1

2
p−1
p

, t ∈
[
δ
∆ , ∆

δ

]
. (6)

Notice that (6) is the reverse of the inequality (3) and so we get the fol-

lowing reverse inequality of (4)

(δp +∆p)
1
p

δ +∆
≤ (dpu + dpv)

1
p

du + dv
≤ 1

2
p−1
p

.

By employing similar type calculations as of Case-1, we get

(δp +∆p)
1
p

δ +∆
M1(G) ≤ SOp(G) ≤ 1

2
p−1
p

M1(G). (7)

By a similar explanation of Case-1, the right-side equality of (5) occurs

only when G is regular, and the left-side equality occurs only when G is

bi-regular.

Remark. Applying Theorem 1 for an r-regular graph G, SOp(G) =

1

2
p−1
p

2r|E(G)|.

The following result is a consequence of Theorem 1 for p = 2.

Corollary. ( [5]) For a simple graph SO2(G) ≥ 1√
2
M1(G).

It is well known that for a simple connected graph with n vertices and

m edges occurs M1 ≥ 4m2

n . Using this inequality in Theorem 1, we get the

following result.

Corollary. For a simple connected graph G with n vertices and m edges,

SOp(G) ≥ 4

2
p−1
p

m2

n if p > 1.

A consequence of Corollary 2 and of Theorem 1 is the following one.
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Corollary. ( [5]) For a simple connected graph G with n vertices and m

edges, SO2(G) ≥ 2
√
2

n m2.

Corollary. ( [5], [14], [15]) For a simple graph G with minimum degree

δ and maximum degree ∆, 1√
2
M1(G) ≤ SO2(G) ≤ (δ2+∆2)

1
2

δ+∆ M1(G).

Now we give the bound of SOp(G) in terms of RR(G).

Theorem 2. For a simple graph G with minimum degree δ > 0 and

maximum degree ∆,

(a) 2
2
p RR(G) ≤ SOp(G) ≤ (δp +∆p)

1
p

√
δ∆

RR(G) when p > 0.

(b)
(δp +∆p)

1
p

√
δ∆

RR(G) ≤ SOp(G) ≤ 2
1
p RR(G) when p < 0.

Also, left-side equality in (a) or right-side equality in (b) are held if and

only if each component of G is regular and the right-side equality in (a) or

lefts-side equality in (b) hold if and only if G is a bi-regular graph.

Proof. Since du, dv ∈ [δ,∆], so δ
∆ ≤ du

dv
≤ ∆

δ . We consider the ratio,

(dpu + dpv)
2
p

dudv
=

(
1 +

(
du

dv

)p) 2
p

du

dv

and an equivalent function corresponding to this expression can be taken

as

f(t) =
(1 + tp)

2
p

t
, t ∈

[
δ

∆
,
∆

δ

]
.

Then

f ′(t) =
2tp(1 + tp)

2
p−1 − (1 + tp)

2
p

t2

=
(1 + tp)

2
p−1(2tp − (1 + tp)

t2

=
(1 + tp)

2
p−1(tp − 1)

t2
.
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Case-1: p > 0. Since p > 0, f is monotonically decreasing on
[
δ
∆ , 1

]
and

monotonically increasing on
[
1, ∆

δ

]
and so

2
2
p ≤ f(t) ≤ (δp +∆p)

2
p

δ∆
. (8)

Therefore,

2
2
p ≤

(
1 +

(
du

dv

)p) 2
p

du

dv

≤ (δp +∆p)
2
p

δ∆
(9)

2
1
p

√
dudv ≤ (du + dv)

1
p ≤ (δp +∆p)

1
p

√
δ∆

√
dudv.

Taking summation over uv ∈ E(G), and using SOp(G) =
∑

uv∈E(G)

(du +

dv)
2
p and RR(G) =

∑
uv∈E(G)

√
dudv, we get

2
1
pRR(G) ≤ (SOp(G) ≤ (δp +∆p)

1
p

√
δ∆

RR(G). (10)

The left side equality in (7) holds if and only if t = 1 and so left side

equality of (9) holds if and only if du

dv
= 1, du = dv for all uv ∈ E(G), i.e.,

if and only if each component of G is regular due to Lemma 1. Again right

side equality in (7) hold if and only if t ∈
{

δ
∆ , ∆

δ

}
and so right side equality

of (9) is hold if and only if du

dv
∈
{

δ
∆ , ∆

δ

}
, i.e., if and only if du, dv ∈ {δ,∆}.

Thus the right-side equality in (10) is hold if and only if du, dv ∈ {δ,∆}

for all uv ∈ E(G), i.e., if and only if G is bi-regular.

Case-2: p < 0. Since p < 0, f is monotonically increasing on
[
δ
∆ , 1

]
and monotonically decreasing on

[
1, ∆

δ

]
and so

(δp +∆p)
2
p

δ∆
≤ f(t) ≤ 2

2
p ; (11)

which is a reverse inequality of (7).
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Therefore,

(δp +∆p)
2
p

δ∆
≤

(
1 +

(
du

dv

)p) 2
p

du

dv

≤ 2
2
p (12)

i.e.,
(δp +∆p)

1
p

√
δ∆

√
dudv ≤ (du + dv)

1
p ≤ 2

1
p

√
dudv.

Proceeding similar way as in Case-1, we get the result.

Corollary. ( [19]) For a simple graph G with minimum degree δ > 0 and

maximum degree ∆,

√
2RR(G) ≤ SO2(G) ≤

√
δ

∆
+

∆

δ
RR(G).

Moreover, the left-side equality holds if and only if each component of G

is regular and the right-side equality holds if and only if G is a bi-regular

graph.

Corollary. For a simple graph G with minimum degree δ > 0 and maxi-

mum degree ∆,
2
√
δ∆

δ +∆
≤ ISI(G) ≤ 2

p+1
p RR(G).

Moreover, the right-side equality holds if and only if each component of G

is regular and the left-side equality holds if and only if G is a bi-regular

graph.

Proof. From definition ISI(G) = 2SO−1(G) and so putting p = −1 in

Theorem 2, we get

(δ−1 +∆−1)−1

√
δ∆

RR(G) ≤ SO−1(G) ≤ 2
1
p RR(G)

i.e.,

√
δ∆

δ +∆
≤ 1

2
ISI(G) ≤ 2

1
p RR(G),

which completes the proof.
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3 Relations between p-Sombor, Sombor,

Randić and Albertson indices

Theorem 3. For a simple graph G with minimum degree δ > 0 and

maximum degree ∆,

(a)
1

2
p−2
2p

SO(G) ≤ SOp(G) ≤ (δp +∆p)
1
p

√
δ2 +∆2

SO(G) if p > 2;

(b)
(δp +∆p)

1
p

√
δ2 +∆2

SO(G) ≤ SOp(G) ≤ 1

2
p−2
2p

SO(G) if p < 2.

Also, left-side equality in (a) or right-side equality in (b) are held if and

only if each component of G is regular and the right-side equality in (a) or

lefts-side equality in (b) hold if and only if G is a bi-regular graph.

Proof. We know that SOp(G) =
∑

uv∈E(G)

(dpu + dpv)
1
p and SO(G) =

∑
uv∈E(G)

(d2u + d2v)
1
2 . In view of the ratio (δp+∆p)

2
p

δ2+∆2 we take the following

function f defined as

f(t) =
(1 + tp)

2
p

1 + t2
, t ∈

[
δ

∆
,
∆

δ

]
.

Then

f ′(t) =
(1 + t2)2tp−1(1 + tp)

2
p−1 − (1 + tp)

2
p 2t

(1 + t2)2

=
2t(1 + tp)

2
p−1{(1 + t2)tp−2 − (1 + tp)}

(1 + t2)2

=
2t(1 + tp)

2
p−1(tp−2 − 1)

(1 + t2)2
. (13)

Case1 : p > 2. In this case f is monotonically decreasing on
[
δ
∆ , 1

]
and monotonically increasing on

[
1, ∆

δ

]
and so,

2
2
p

2
≤ f(t) ≤ (δp +∆p)

2
p

δ2 +∆2
. (14)
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Then,

1

2
p−2
p

≤

(
1 +

(
du

dv

)p) 2
p

1 +
(

du

dv

)2 ≤ (δp +∆p)
2
p

δ2 +∆2

i.e.,
1

2
p−2
2p

(
d2u + d2v

) 1
2 ≤ (dpu + dpv)

1
p ≤ (δp +∆p)

1
p

√
δ2 +∆2

(
d2u + d2v

) 1
2 .

Taking summation over uv ∈ E(G), we have

1

2
p−2
2p

SO(G) ≤ SOp(G) ≤ (δp +∆p)
1
p

√
δ2 +∆2

SO(G). (15)

By a similar argument as described in Theorem 1, the left side equality

will occur if and only if G is regular and the right side equality will occur

if and only if G is bi-regular.

Case2 : p < 2. In this case f is a monotonically increasing on
[
δ
∆ , 1

]
and monotonically decreasing on

[
1, ∆

δ

]
and so

(δp +∆p)
2
p

δ2 +∆2
≤ f(t) ≤ 1

2
p−2
p

;

which is a reverse inequality of (14) and proceeding by similar arguments of

Case 1 we get the following inequality, which is a reverse of the inequality

(15)

(δp +∆p)
1
p

√
δ2 +∆2

SO(G) ≤ SOp(G) ≤ 1

2
p−2
2p

SO(G).

Theorem 4. For graph G be a graph with maximum degree ∆ and mini-

mum degree δ > 0,

(a) δ2 R(G) 2
1
p ≤ SOp(G) ≤ ∆2 R(G) 2

1
p for p > 0;

(b) ∆2 R(G) 2
1
p ≤ SOp(G) ≤ δ2 R(G) 2

1
p for p < 0.
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The bounds are attained if and only if G is a regular graph.

Proof. First we assume that p > 0. Since δ ≤ du ≤ ∆, so for p > 0, we get

δ ≤
√
du dv ≤ ∆

δp ≤ dpu ≤ ∆p

2δp ≤ dpu + dpv ≤ 2∆p

2
1
p δ ≤ (dpu + dpv)

1
p ≤ 2

1
p∆.

Therefore δ2 2
1
p ≤

√
du dv (d

p
u + dpv)

1
p ≤ ∆2 2

1
p , which gives

δ2 2
1
p

1√
du dv

≤ (dpu + dpv)
1
p ≤ ∆2 2

1
p

1√
du dv

.

Taking summation over uv ∈ E(G), we get the required inequality for

p > 0. Similarly, we can prove the result for p < 0.

Putting p = 2, in the above theorem we get the following result.

Corollary. ( [19]) For graph G be a graph with maximum degree ∆ and

minimum degree δ > 0,

δ2 R(G)
√
2 ≤ SO2(G) ≤ ∆2 R(G)

√
2.

Theorem 5. For a simple graph G with minimum degree δ > 0 and

maximum degree ∆ > δ,

SOp(G) ≥ (δp +∆p)
1
p

∆− δ
Alb(G).

Also, equality occurs if and only if G is a bi-regular graph.
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Proof. In view of the ratio |du−dv|

(dp
u+dp

v)
1
p
, let us consider the following function

f(t) =
|1− t|

(1 + tp)
1
p

, t ∈
[
δ

∆
,
∆

δ

]
;

=


1−t

(1+tp)
1
p
, if δ

∆ ≤ t ≤ 1;

t−1

(1+tp)
1
p
, if 1 ≤ t ≤ ∆

δ .

For t = 1, f(t) = 0 and for others values of t, f ′(t) are as follows.

For t < 1,

f ′(t) =
(1 + tp)

1
p (−1)− tp−1(1 + tp)

1
p−1

(1 + tp)
2
p

= − (1 + tp)
1
p−1(1 + tp + tp−1)

(1 + tp)
2
p

< 0

and for t > 1,

f ′(t) =
(1 + tp)

1
p · 1− tp−1(1 + tp)

1
p−1

(1 + tp)
2
p

=
(1 + tp)

1
p−1{1 + tp−1(t− 1)}
(1 + tp)

2
p

> 0.

Therefore, f is monotonically decreasing on
[
δ
∆ , 1

]
and monotonically in-

creasing on
[
1, ∆

δ

]
. Thus the maximum of f attains at t = δ

∆ or t = ∆
δ or

at both the points. Clearly, f
(

δ
∆

)
= |δ−∆|

(δp+∆p)
1
p
= f

(
∆
δ

)
.

Therefore,

f(t) ≤ |δ −∆|
(δp +∆p)

1
p

for all t ∈
[
δ
∆ , ∆

δ

]
; (16)∣∣∣1− dv

du

∣∣∣(
1 + dv

du

) 1
p

≤ |δ −∆|
(δp +∆p)

1
p

for all dv

du
∈
[
δ
∆ , ∆

δ

]
. (17)
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By simple calculation and taking summation over uv ∈ E(G), we get

Alb(G) ≤ ∆− δ

(δp +∆p)
1
p

SOp(G);

i.e.,
(δp +∆p)

1
p

∆− δ
Alb(G) ≤ SOp(G). (18)

Equality in (16) hold if and only if t ∈
{

δ
∆ , ∆

δ

}
and so equality of (17) is

hold if and only if du

dv
∈
{

δ
∆ , ∆

δ

}
, i.e., if and only if du, dv ∈ {δ,∆}. Thus

the equality in (18) is hold if and only if du, dv ∈ {δ,∆} for all uv ∈ E(G),

i.e., if and only if G is bi-regular.

4 Relations between p-Sombor indices with

different values of p

Theorem 6. For p > 0 and a simple graph G with minimum degree δ > 0

and maximum degree ∆,

2
2
pSO−p(G) ≤ SOp(G) ≤ (δp +∆p)

2
p

δ∆
SO−p(G).

Also, the left-side equality holds if and only if G is regular, and the right-

side equality holds if and only if G is a bi-regular graph.

Proof. In view of the ratio
(dp

u+dp
v)

1
p

(d−p
u +d−p

v )
−1
p

=
(1+( dv

du
)
p
)

1
p(

1+( dv
du
)
−p

)−1
p

of the terms in

SOp(G) and SO−p(G), we consider a function f defined by

f(t) =
(1 + tp)

1
p

(1 + t−p)−
1
p

, t ∈
[
δ

∆
,
∆

δ

]
= (1 + tp)

1
p · (1 + 1

tp
)

1
p

=
(1 + tp)

2
p

t
, t ∈

[
δ

∆
,
∆

δ

]
.



547

Then

f ′(t) =
t · 2tp−1(1 + tp)

2
p−1 − (1 + tp)

2
p · 1

t2

=
(1 + tp)

2
p−1{2tp − (1 + tp)}

t2
=

(1 + tp)
2
p−1(tp − 1)

t2
.

Since p > 0, f is monotonically decreasing on
[
δ
∆ , 1

]
and monotonically

increasing on
[
1, ∆

δ

]
and so,

2
2
p ≤ f(t) ≤ (δ2 +∆2)

2
p

δ∆
, t ∈

[
δ

∆
,
∆

δ

]
.

Consequently, we have

2
2
p ≤

(
1 +

(
dv

du

)p) 1
p

(
1 +

(
dv

du

)−p
)−1

p

≤ (δ2 +∆2)
2
p

δ∆
, t ∈

[
δ

∆
,
∆

δ

]
,

which is equivalent to

2
2
p ≤ (dpu + dpv)

1
p

(d−p
u + d−p

v )
−1
p

≤ (δ2 +∆2)
2
p

δ∆
, t ∈

[
δ

∆
,
∆

δ

]
.

Taking summation over uv ∈ E(G), we get

2
2
pSO−p(G) ≤ SOp(G) ≤ (δ2 +∆2)

2
p

δ∆
SO−p(G).

Theorem 7. For a simple graph G with minimum degree δ > 0 and

maximum degree ∆,

1

2
p−q
pq

SOq(G) ≤ SOp(G) ≤ (δp +∆p)
1
p

(δq +∆q)
1
q

SOq(G), provided p > q.

Also, the left-side equality holds if and only if G is regular, and the right-
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side equality holds if and only if G is a bi-regular graph.

Proof. Consider the following function f(t) = (1+tp)
1
p

(1+tq)
1
q
, t ∈

[
δ
∆ , ∆

δ

]
.

Then,

f ′(t) =
(1 + tq)

1
q · tp−1 · (1 + tp)

1
p−1 − (1 + tp)

1
p · tq−1 · (1 + tq)

1
q−1

(1 + tq)
2
q

=
(1 + tq)

1
q−1(1 + tp)

1
p−1

{
tp−1(1 + tq)− tq−1(1 + tp)

}
(1 + tq)

2
q

=
(1 + tq)

1
q−1(1 + tp)

1
p−1(tp−1 − tq−1)

(1 + tq)
2
q

=
(1 + tq)

1
q−1(1 + tp)

1
p−1tq−1(tp−q − 1)

(1 + tq)
2
q

. (19)

Since p > q, from (19) we obtain that f is monotonically decreasing in[
δ
∆ , 1

]
and monotonically increasing on

[
1, ∆

δ

]
. Thus the minimum of f

will attained by t = 1 and the maximum will attained at t ∈
{

δ
∆ , ∆

δ

}
.

Therefore,

2
1
p

2
1
q

≤ f(t) ≤ (δp +∆p)
1
p

(δq +∆q)
1
q

; (20)

1

2
1
q−

1
p

≤ (dpu + dpv)
1
p

(dqu + dqv)
1
q

≤ (δp +∆p)
1
p

(δq +∆q)
1
q

(by putting t = du

dv
);

1

2
p−q
pq

(dqu + dqv)
1
q ≤ (dpu + dpv)

1
p ≤ (δp +∆p)

1
p

(δq +∆q)
1
q

(dqu + dqv)
1
q . (21)

Taking summation over uv ∈ E(G), and using SOp(G) =
∑

uv∈E(G)

(dpu + dpv)
1
p

and SOq(G) =
∑

uv∈E(G)

(dqu + dqv)
1
q , we get

1

2
p−q
pq

SOq(G) ≤ SOp(G) ≤ (δp +∆p)
1
p

(δq +∆q)
1
q

SOq(G). (22)

The left side equality in (20) holds if and only if t = 1 and so left side
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equality of (21) holds if and only if du

dv
= 1, i.e., du = dv. Thus the left

side equality of (22) holds if and only if du = dv for all uv ∈ E(G), i.e.,

if and only if G is regular. Again right side equality in (20) hold if and

only if t ∈
{

δ
∆ , ∆

δ

}
and so right side equality of (21) is hold if and only

if du

dv
∈

{
δ
∆ , ∆

δ

}
, i.e., if and only if du, dv ∈ {δ,∆}. Thus the right-side

equality in (22) hold if and only if du, dv ∈ {δ,∆} for all uv ∈ E(G), i.e.,

if and only if G is bi-regular.

Corollary. For a simple graph G with minimum degree δ > 0 and maxi-

mum degree ∆,

1√
2
SO1(G) ≤ SO2(G) ≤ (δ2 +∆2)

1
2

(δ +∆)
SO1(G).

Also, the left-side equality holds if and only if G is regular, and the right-

side equality holds if and only if G is a bi-regular graph.

Corollary. [18] For a simple graph G with minimum degree δ > 0 and

maximum degree ∆,

2 ISI(G) ≤ M1(G) ≤ (δ +∆)2

2 δ∆
ISI(G).

Also, the left-side equality holds if and only if G is regular, and the right-

side equality holds if and only if G is a bi-regular graph.

Proof. Putting p = 1 and q = −1 in Theorem 7, we have

1

2−2
SO−1(G) ≤ SO1(G) ≤ (δ +∆)(

1
δ + 1

∆

)−1SO−1(G).

Since ISI(G) = 2SO−1(G), so we get

2 ISI(G) ≤ M1(G) ≤ (δ +∆)2

2 δ∆
ISI(G),

which completes the proof.
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Corollary. For a simple graph G with minimum degree δ > 0 and maxi-

mum degree ∆,

√
2 ISI(G) ≤ SO2(G) ≤

√
δ2 +∆2(δ +∆)

2 δ∆
ISI(G).

Also, the left-side equality holds if and only if G is regular, and the right-

side equality holds if and only if G is a bi-regular graph.

Proof. Putting p = 2 and q = −1 in Theorem 7, we have

1

2−3/2
SO−1(G) ≤ SO2(G) ≤ (δ2 +∆2)1/2(

1
δ + 1

∆

)−1 SO−1(G).

The results follows immediately as ISI(G) = 2SO−1(G).
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