Relations between \boldsymbol{p}-Sombor and Other Degree-Based Indices

Laxman Saha*
Department of Mathematics, Balurghat College, Balurghat 733101, India.
laxman.iitkgp@gmail.com

(Received June 29, 2023)

Abstract

The Sombor index (SO) and its extended version p-Sombor index $\left(S O_{p}\right)$ are vertex degree-based topological indices that have potential applications in mathematical chemistry. In this article, we obtain several new relations for these indices. Precisely, we find relations between $S O$ and $S O_{p}$ and characterize the graphs where equality occurs. Also, we present relations for $S O$ and $S O_{p}$ involving other topological indices, such as the first Zagreb, Randić, reciprocal Randić, inverse sum indeg, and Albertson indices. Furthermore, we set up relations between the p-Sombor indices for different values of p.

1 Introduction

Let $G=(V(G), E(G))$ be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. The neighborhood of a vertex v, denoted by $N_{G}(v)$, is the set of all vertices which are adjacent to v. The degree d_{v} of v in G is the cardinality of $N_{G}(v)$. We denote $\Delta=\Delta(G)$ and $\delta=\delta(G)$ for the maximum degree and minimum degree of the graph G, respectively.

Degree-based topological indices have potential applications in mathematical chemistry. At present time, a study on mathematical properties

[^0]and chemical applications of degree-based topological indices is a burning area of research $[1,3,4,6-12,15]$. On the basis of Euclidean metric, Gutman [7] introduced the Sombor index, which is defined by
$$
S O(G)=\sum_{u v \in E(G)} \sqrt{\left(d_{u}^{2}+d_{v}^{2}\right)}
$$

Based on the p-norm, Rêti et al. [17] extended the concept of the Sombor index to p-Symbor index $(p \neq 0)$, which was defined as

$$
S O_{p}(G)=\sum_{u v \in E(G)}\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}}
$$

They also observed that the first Zagreb index $[11,12]$ defined by

$$
M_{1}(G)=\sum_{u v \in E(G)} d_{u}^{2}=\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)
$$

is equals to $S O_{1}(G)$ and the Sombor index is equals to $S O_{2}(G)$. The Inverse sum indeg index is defined as

$$
I S I(G)=\sum_{u v \in E(G)} \frac{2 d_{u} d_{v}}{d_{u}+d_{v}}=2 S O_{-1}(G)
$$

The Randić index [16] and reciprocal Randić index [13] are defined as

$$
\begin{aligned}
R(G) & =\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{u} d_{v}}} \\
R R(G) & =\sum_{u v \in E(G)} \sqrt{d_{u} d_{v}}
\end{aligned}
$$

The Albertston irregularity index [2] is defined as

$$
A l b(G)=\sum_{u v \in E(G)}\left|d_{u}-d_{v}\right|
$$

In this article, we obtain several new relations for $S O_{p}(G)$ and $S O(G)$. Precisely, we find relations between $S O$ and $S O_{p}$ and characterize the
graphs where equality occurs. Also, we present relations for $S O$ and $S O_{p}$ involving other topological indices, such as the first Zagreb, Randić, reciprocal Randić, inverse sum indeg, and Albertson indices. Furthermore, we set up relations between the p-Sombor indices for different values of p.

2 Relations between p-Sombor, first Zagreb and reciprocal Randić indices

Lemma 1. Let G be a simple graph such that $d_{u}=d_{v}$ for all $u v \in E(G)$. Then each component of G is regular. In particular, if G is connected and $d_{u}=d_{v}$ for all $u v \in E(G)$, then G is regular.

Proof. Let C be a component of G. Then C is a connected graph. Since $d_{u}=d_{v}$ for all $u v \in E(G)$ and so any two adjacent vertices in C are of the same degree. Let u be a vertex in C and $\operatorname{deg}(u)=m$, a finite number. Since C is connected, then for any arbitrary vertex $v \in V(C)$, there exists a $u-v$ path in C. Then by condition $\operatorname{deg}(u)=\operatorname{deg}(v)=m$. Therefore, the degree of every vertex v is equal to the degree of u. Hence C is regular. Thus proof is complete.

Recall that $S O_{p}(G)=M_{1}(G)$ for $p=1$. In the following, we represent bounds for $S O_{p}(G)$ in terms of $M_{1}(G)$ and characterize the graphs achieving the bounds.

Theorem 1. For a simple graph G with minimum degree $\delta>0$ and maximum degree Δ,
(a) $\frac{1}{2^{\frac{p-1}{p}}} M_{1}(G) \leq S O_{p}(G) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} M_{1}(G)$ if $p>1$.
(b) $\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} M_{1}(G) \leq S O_{p}(G) \leq \frac{1}{2^{\frac{p-1}{p}}} M_{1}(G)$ if $p<1$.

Moreover, the left-side equality in (a) or reight-side equality in (b) will occur if and only if each component of G is regular, and the right-side equality in (a) or the left-side equality in (b) occurs only when G is a bi-regular.

Proof. Let's consider the following ratio

$$
\begin{equation*}
\frac{\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}}}{d_{u}+d_{v}}=\frac{\left\{1+\left(\frac{d_{u}}{d_{v}}\right)^{p}\right\}^{\frac{1}{p}}}{1+\frac{d_{u}}{d_{v}}}, \quad d_{u}, d_{v} \in[\delta, \Delta] \tag{1}
\end{equation*}
$$

Since $d_{u}, d_{v} \in[\delta, \Delta]$, so $\frac{\delta}{\Delta} \leq \frac{d_{u}}{d_{v}} \leq \frac{\Delta}{\delta}$. In view of expression (1), we take the following function h defined by

$$
h(t)=\frac{\left(1+t^{p}\right)^{\frac{1}{p}}}{1+t}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right]
$$

Then

$$
\begin{align*}
h^{\prime}(t) & =\frac{t^{p-1}\left(1+t^{p}\right)^{\frac{1}{p}-1}-\left(1+t^{p}\right)^{\frac{1}{p}}}{(1+t)^{2}} \\
& =\frac{\left(1+t^{p}\right)^{\frac{1}{p}-1}\left\{(1+t) t^{p-1}-\left(1+t^{p}\right)\right\}}{(1+t)^{2}} \\
& =\frac{\left(1+t^{p}\right)^{\frac{1}{p}-1}\left(t^{p-1}-1\right)}{(1+t)^{2}} \tag{2}
\end{align*}
$$

Case-1: $p>1$. Since $p>1$, from (2) we get that h is monotonically decreasing on $\left[\frac{\delta}{\Delta}, 1\right]$ and monotonically increasing on $\left[1, \frac{\Delta}{\delta}\right]$ and so

$$
\begin{align*}
\frac{1}{2^{\frac{p-1}{p}}} \leq h(t) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} \\
i . e ., \quad \frac{1}{2^{\frac{p-1}{p}}} \leq \frac{\left(1+t^{p}\right)^{\frac{1}{p}}}{1+t} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right] \tag{3}
\end{align*}
$$

From the expression (1) and inequality (3), we have

$$
\begin{equation*}
\frac{1}{2^{\frac{p-1}{p}}} \leq \frac{\left\{1+\left(\frac{d_{u}}{d_{v}}\right)\right\}^{\frac{1}{p}}}{1+\frac{d_{u}}{d_{v}}} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} \tag{4}
\end{equation*}
$$

Then

$$
\begin{aligned}
\frac{1}{2^{\frac{p-1}{p}}} & \leq \frac{\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}}}{d_{u}+d_{v}} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} \\
\frac{1}{2^{\frac{p-1}{p}}}\left(d_{u}+d_{v}\right) & \leq\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta}\left(d_{u}+d_{v}\right)
\end{aligned}
$$

Taking summation over $u v \in E(G)$, we have

$$
\frac{1}{2^{\frac{p-1}{p}}} \sum_{u v \in E(G)}\left(d_{u}+d_{v}\right) \leq\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} \sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)
$$

Therefore,

$$
\begin{equation*}
\frac{1}{2^{\frac{p-1}{p}}} M_{1}(G) \leq S O_{p}(G) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} M_{1}(G) \text { when } p>1 \tag{5}
\end{equation*}
$$

The left-side equality in (3) will occurs only when $t=1$ and so left-side equality of (5) will occurs when $\frac{d_{u}}{d_{v}}=1$, i.e., $d_{u}=d_{v}$. Thus left-side equality in (5) will occurs only when $d_{u}=d_{v}$ for all $u v \in E(G)$, i.e., when each component of G is regular due to Lemma 1. Again right-side equality in (3) will occurs if and only if $t \in\left\{\frac{\Delta}{\delta}, \frac{\delta}{\Delta}\right\}$ and so right-side equality of (4) will occurs only when $\frac{d_{u}}{d_{v}} \in\left\{\frac{\Delta}{\delta}, \frac{\delta}{\Delta}\right\}$, i.e., only when $d_{u}, d_{v} \in\{\delta, \Delta\}$. Thus right equality in (5) will occurs only when $d_{u}, d_{v} \in\{\delta, \Delta\}$ for all $u v \in E(G)$, i.e., only when G is a bi-regular graph.

Case-2: $p<1$. Since $p<1$, from (2) we get that h is monotonically increasing on $\left[\frac{\delta}{\Delta}, 1\right]$ and monotonically decreasing on $\left[1, \frac{\Delta}{\delta}\right]$ and so

$$
\begin{gather*}
\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} \leq h(t) \leq \frac{1}{2^{\frac{p-1}{p}}} \\
i . e ., \quad \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} \leq \frac{\left(1+t^{p}\right)^{\frac{1}{p}}}{1+t} \leq \frac{1}{2^{\frac{p-1}{p}}}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right] \tag{6}
\end{gather*}
$$

Notice that (6) is the reverse of the inequality (3) and so we get the following reverse inequality of (4)

$$
\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} \leq \frac{\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}}}{d_{u}+d_{v}} \leq \frac{1}{2^{\frac{p-1}{p}}}
$$

By employing similar type calculations as of Case-1, we get

$$
\begin{equation*}
\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\delta+\Delta} M_{1}(G) \leq S O_{p}(G) \leq \frac{1}{2^{\frac{p-1}{p}}} M_{1}(G) \tag{7}
\end{equation*}
$$

By a similar explanation of Case-1, the right-side equality of (5) occurs only when G is regular, and the left-side equality occurs only when G is bi-regular.

Remark. Applying Theorem 1 for an r-regular graph $G, S O_{p}(G)=$ $\frac{1}{2^{\frac{p-1}{p}}} 2 r|E(G)|$.

The following result is a consequence of Theorem 1 for $p=2$.

Corollary. ([5]) For a simple graph $S O_{2}(G) \geq \frac{1}{\sqrt{2}} M_{1}(G)$.
It is well known that for a simple connected graph with n vertices and m edges occurs $M_{1} \geq \frac{4 m^{2}}{n}$. Using this inequality in Theorem 1 , we get the following result.

Corollary. For a simple connected graph G with n vertices and m edges, $S O_{p}(G) \geq \frac{4}{2^{\frac{p-1}{p}}} \frac{m^{2}}{n}$ if $p>1$.

A consequence of Corollary 2 and of Theorem 1 is the following one.

Corollary. ([5]) For a simple connected graph G with n vertices and m edges, $S O_{2}(G) \geq \frac{2 \sqrt{2}}{n} m^{2}$.

Corollary. ([5], [14], [15]) For a simple graph G with minimum degree δ and maximum degree $\Delta, \frac{1}{\sqrt{2}} M_{1}(G) \leq S O_{2}(G) \leq \frac{\left(\delta^{2}+\Delta^{2}\right)^{\frac{1}{2}}}{\delta+\Delta} M_{1}(G)$.

Now we give the bound of $S O_{p}(G)$ in terms of $R R(G)$.
Theorem 2. For a simple graph G with minimum degree $\delta>0$ and maximum degree Δ,
(a) $2^{\frac{2}{p}} R R(G) \leq S O_{p}(G) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\sqrt{\delta \Delta}} R R(G)$ when $p>0$.
(b) $\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\sqrt{\delta \Delta}} R R(G) \leq S O_{p}(G) \leq 2^{\frac{1}{p}} R R(G)$ when $p<0$.

Also, left-side equality in (a) or right-side equality in (b) are held if and only if each component of G is regular and the right-side equality in (a) or lefts-side equality in (b) hold if and only if G is a bi-regular graph.

Proof. Since $d_{u}, d_{v} \in[\delta, \Delta]$, so $\frac{\delta}{\Delta} \leq \frac{d_{u}}{d_{v}} \leq \frac{\Delta}{\delta}$. We consider the ratio,

$$
\frac{\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{2}{p}}}{d_{u} d_{v}}=\frac{\left(1+\left(\frac{d_{u}}{d_{v}}\right)^{p}\right)^{\frac{2}{p}}}{\frac{d_{u}}{d_{v}}}
$$

and an equivalent function corresponding to this expression can be taken as

$$
f(t)=\frac{\left(1+t^{p}\right)^{\frac{2}{p}}}{t}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right]
$$

Then

$$
\begin{aligned}
f^{\prime}(t) & =\frac{2 t^{p}\left(1+t^{p}\right)^{\frac{2}{p}-1}-\left(1+t^{p}\right)^{\frac{2}{p}}}{t^{2}} \\
& =\frac{\left(1+t^{p}\right)^{\frac{2}{p}-1}\left(2 t^{p}-\left(1+t^{p}\right)\right.}{t^{2}} \\
& =\frac{\left(1+t^{p}\right)^{\frac{2}{p}-1}\left(t^{p}-1\right)}{t^{2}} .
\end{aligned}
$$

Case-1: $p>0$. Since $p>0, f$ is monotonically decreasing on $\left[\frac{\delta}{\Delta}, 1\right]$ and monotonically increasing on $\left[1, \frac{\Delta}{\delta}\right]$ and so

$$
\begin{equation*}
2^{\frac{2}{p}} \leq f(t) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{2}{p}}}{\delta \Delta} \tag{8}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
2^{\frac{2}{p}} & \leq \frac{\left(1+\left(\frac{d_{u}}{d_{v}}\right)^{p}\right)^{\frac{2}{p}}}{\frac{d_{u}}{d_{v}}} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{2}{p}}}{\delta \Delta} \tag{9}\\
2^{\frac{1}{p}} \sqrt{d_{u} d_{v}} & \leq\left(d_{u}+d_{v}\right)^{\frac{1}{p}} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\sqrt{\delta \Delta}} \sqrt{d_{u} d_{v}}
\end{align*}
$$

Taking summation over $u v \in E(G)$, and using $S O_{p}(G)=\sum_{u v \in E(G)}\left(d_{u}+\right.$ $\left.d_{v}\right)^{\frac{2}{p}}$ and $R R(G)=\sum_{u v \in E(G)} \sqrt{d_{u} d_{v}}$, we get

$$
\begin{equation*}
2^{\frac{1}{p}} R R(G) \leq\left(S O_{p}(G) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\sqrt{\delta \Delta}} R R(G)\right. \tag{10}
\end{equation*}
$$

The left side equality in (7) holds if and only if $t=1$ and so left side equality of (9) holds if and only if $\frac{d_{u}}{d_{v}}=1, d_{u}=d_{v}$ for all $u v \in E(G)$, i.e., if and only if each component of G is regular due to Lemma 1. Again right side equality in (7) hold if and only if $t \in\left\{\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right\}$ and so right side equality of (9) is hold if and only if $\frac{d_{u}}{d_{v}} \in\left\{\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right\}$, i.e., if and only if $d_{u}, d_{v} \in\{\delta, \Delta\}$. Thus the right-side equality in (10) is hold if and only if $d_{u}, d_{v} \in\{\delta, \Delta\}$ for all $u v \in E(G)$, i.e., if and only if G is bi-regular.

Case-2: $p<0$. Since $p<0, f$ is monotonically increasing on $\left[\frac{\delta}{\Delta}, 1\right]$ and monotonically decreasing on $\left[1, \frac{\Delta}{\delta}\right]$ and so

$$
\begin{equation*}
\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{2}{p}}}{\delta \Delta} \leq f(t) \leq 2^{\frac{2}{p}} \tag{11}
\end{equation*}
$$

which is a reverse inequality of (7).

Therefore,

$$
\begin{align*}
\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{2}{p}}}{\delta \Delta} & \leq \frac{\left(1+\left(\frac{d_{u}}{d_{v}}\right)^{p}\right)^{\frac{2}{p}}}{\frac{d_{u}}{d_{v}}} \leq 2^{\frac{2}{p}} \tag{12}\\
i . e ., \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\sqrt{\delta \Delta}} \sqrt{d_{u} d_{v}} & \leq\left(d_{u}+d_{v}\right)^{\frac{1}{p}} \leq 2^{\frac{1}{p}} \sqrt{d_{u} d_{v}}
\end{align*}
$$

Proceeding similar way as in Case-1, we get the result.
Corollary. ([19]) For a simple graph G with minimum degree $\delta>0$ and maximum degree Δ,

$$
\sqrt{2} R R(G) \leq S O_{2}(G) \leq \sqrt{\frac{\delta}{\Delta}+\frac{\Delta}{\delta}} R R(G)
$$

Moreover, the left-side equality holds if and only if each component of G is regular and the right-side equality holds if and only if G is a bi-regular graph.

Corollary. For a simple graph G with minimum degree $\delta>0$ and maximum degree Δ,

$$
\frac{2 \sqrt{\delta \Delta}}{\delta+\Delta} \leq I S I(G) \leq 2^{\frac{p+1}{p}} R R(G)
$$

Moreover, the right-side equality holds if and only if each component of G is regular and the left-side equality holds if and only if G is a bi-regular graph.

Proof. From definition $I S I(G)=2 S O_{-1}(G)$ and so putting $p=-1$ in Theorem 2, we get

$$
\begin{array}{ll}
& \frac{\left(\delta^{-1}+\Delta^{-1}\right)^{-1}}{\sqrt{\delta \Delta}} R R(G) \leq S O_{-1}(G) \leq 2^{\frac{1}{p}} R R(G) \\
i . e ., \quad & \frac{\sqrt{\delta \Delta}}{\delta+\Delta} \leq \frac{1}{2} I S I(G) \leq 2^{\frac{1}{p}} R R(G)
\end{array}
$$

which completes the proof.

3 Relations between \boldsymbol{p}-Sombor, Sombor, Randić and Albertson indices

Theorem 3. For a simple graph G with minimum degree $\delta>0$ and maximum degree Δ,
(a) $\frac{1}{2^{\frac{p-2}{2 p}}} S O(G) \leq S O_{p}(G) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\sqrt{\delta^{2}+\Delta^{2}}} S O(G)$ if $p>2$;
(b) $\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\sqrt{\delta^{2}+\Delta^{2}}} S O(G) \leq S O_{p}(G) \leq \frac{1}{2^{\frac{p-2}{2 p}}} S O(G)$ if $p<2$.

Also, left-side equality in (a) or right-side equality in (b) are held if and only if each component of G is regular and the right-side equality in (a) or lefts-side equality in (b) hold if and only if G is a bi-regular graph.

Proof. We know that $S O_{p}(G)=\sum_{u v \in E(G)}\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}}$ and $S O(G)=$ $\sum_{u v \in E(G)}\left(d_{u}^{2}+d_{v}^{2}\right)^{\frac{1}{2}}$. In view of the ratio $\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{2}{p}}}{\delta^{2}+\Delta^{2}}$ we take the following function f defined as

$$
f(t)=\frac{\left(1+t^{p}\right)^{\frac{2}{p}}}{1+t^{2}}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right]
$$

Then

$$
\begin{align*}
f^{\prime}(t) & =\frac{\left(1+t^{2}\right) 2 t^{p-1}\left(1+t^{p}\right)^{\frac{2}{p}-1}-\left(1+t^{p}\right)^{\frac{2}{p}} 2 t}{\left(1+t^{2}\right)^{2}} \\
& =\frac{2 t\left(1+t^{p}\right)^{\frac{2}{p}-1}\left\{\left(1+t^{2}\right) t^{p-2}-\left(1+t^{p}\right)\right\}}{\left(1+t^{2}\right)^{2}} \\
& =\frac{2 t\left(1+t^{p}\right)^{\frac{2}{p}-1}\left(t^{p-2}-1\right)}{\left(1+t^{2}\right)^{2}} . \tag{13}
\end{align*}
$$

Case $1: p>2$. In this case f is monotonically decreasing on $\left[\frac{\delta}{\Delta}, 1\right]$ and monotonically increasing on $\left[1, \frac{\Delta}{\delta}\right]$ and so,

$$
\begin{equation*}
\frac{2^{\frac{2}{p}}}{2} \leq f(t) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{2}{p}}}{\delta^{2}+\Delta^{2}} \tag{14}
\end{equation*}
$$

Then,

$$
\begin{gathered}
\frac{1}{2^{\frac{p-2}{p}}} \leq \frac{\left(1+\left(\frac{d_{u}}{d_{v}}\right)^{p}\right)^{\frac{2}{p}}}{1+\left(\frac{d_{u}}{d_{v}}\right)^{2}} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{2}{p}}}{\delta^{2}+\Delta^{2}} \\
i . e ., \quad \frac{1}{2^{\frac{p-2}{2 p}}}\left(d_{u}^{2}+d_{v}^{2}\right)^{\frac{1}{2}} \leq\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\sqrt{\delta^{2}+\Delta^{2}}}\left(d_{u}^{2}+d_{v}^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

Taking summation over $u v \in E(G)$, we have

$$
\begin{equation*}
\frac{1}{2^{\frac{p-2}{2 p}}} S O(G) \leq S O_{p}(G) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\sqrt{\delta^{2}+\Delta^{2}}} S O(G) \tag{15}
\end{equation*}
$$

By a similar argument as described in Theorem 1, the left side equality will occur if and only if G is regular and the right side equality will occur if and only if G is bi-regular.

Case 2: $p<2$. In this case f is a monotonically increasing on $\left[\frac{\delta}{\Delta}, 1\right]$ and monotonically decreasing on $\left[1, \frac{\Delta}{\delta}\right]$ and so

$$
\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{2}{p}}}{\delta^{2}+\Delta^{2}} \leq f(t) \leq \frac{1}{2^{\frac{p-2}{p}}}
$$

which is a reverse inequality of (14) and proceeding by similar arguments of Case 1 we get the following inequality, which is a reverse of the inequality

$$
\begin{equation*}
\frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\sqrt{\delta^{2}+\Delta^{2}}} S O(G) \leq S O_{p}(G) \leq \frac{1}{2^{\frac{p-2}{2 p}}} S O(G) \tag{15}
\end{equation*}
$$

Theorem 4. For graph G be a graph with maximum degree Δ and minimum degree $\delta>0$,
(a) $\delta^{2} R(G) 2^{\frac{1}{p}} \leq S O_{p}(G) \leq \Delta^{2} R(G) 2^{\frac{1}{p}}$ for $p>0$;
(b) $\Delta^{2} R(G) 2^{\frac{1}{p}} \leq S O_{p}(G) \leq \delta^{2} R(G) 2^{\frac{1}{p}}$ for $p<0$.

The bounds are attained if and only if G is a regular graph.

Proof. First we assume that $p>0$. Since $\delta \leq d_{u} \leq \Delta$, so for $p>0$, we get

$$
\begin{aligned}
& \delta \leq \sqrt{d_{u} d_{v}} \leq \Delta \\
& \delta^{p} \leq d_{u}^{p} \leq \Delta^{p} \\
& 2 \delta^{p} \leq d_{u}^{p}+d_{v}^{p} \leq 2 \Delta^{p} \\
& 2^{\frac{1}{p}} \delta \leq\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}} \leq 2^{\frac{1}{p}} \Delta
\end{aligned}
$$

Therefore $\delta^{2} 2^{\frac{1}{p}} \leq \sqrt{d_{u} d_{v}}\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}} \leq \Delta^{2} 2^{\frac{1}{p}}$, which gives

$$
\delta^{2} 2^{\frac{1}{p}} \frac{1}{\sqrt{d_{u} d_{v}}} \leq\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}} \leq \Delta^{2} 2^{\frac{1}{p}} \frac{1}{\sqrt{d_{u} d_{v}}}
$$

Taking summation over $u v \in E(G)$, we get the required inequality for $p>0$. Similarly, we can prove the result for $p<0$.

Putting $p=2$, in the above theorem we get the following result.

Corollary. ([19]) For graph G be a graph with maximum degree Δ and minimum degree $\delta>0$,

$$
\delta^{2} R(G) \sqrt{2} \leq S O_{2}(G) \leq \Delta^{2} R(G) \sqrt{2} .
$$

Theorem 5. For a simple graph G with minimum degree $\delta>0$ and maximum degree $\Delta>\delta$,

$$
S O_{p}(G) \geq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\Delta-\delta} \operatorname{Alb}(G)
$$

Also, equality occurs if and only if G is a bi-regular graph.

Proof. In view of the ratio $\frac{\left|d_{u}-d_{v}\right|}{\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}}}$, let us consider the following function

$$
\begin{aligned}
f(t) & =\frac{|1-t|}{\left(1+t^{p}\right)^{\frac{1}{p}}}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right] ; \\
& = \begin{cases}\frac{1-t}{\left(1+t^{p}\right)^{\frac{1}{p}}}, & \text { if } \frac{\delta}{\Delta} \leq t \leq 1 ; \\
\frac{t-1}{\left(1+t^{p}\right)^{\frac{1}{p}}}, & \text { if } 1 \leq t \leq \frac{\Delta}{\delta} .\end{cases}
\end{aligned}
$$

For $t=1, f(t)=0$ and for others values of $t, f^{\prime}(t)$ are as follows.
For $t<1$,

$$
\begin{aligned}
f^{\prime}(t) & =\frac{\left(1+t^{p}\right)^{\frac{1}{p}}(-1)-t^{p-1}\left(1+t^{p}\right)^{\frac{1}{p}-1}}{\left(1+t^{p}\right)^{\frac{2}{p}}} \\
& =-\frac{\left(1+t^{p}\right)^{\frac{1}{p}-1}\left(1+t^{p}+t^{p-1}\right)}{\left(1+t^{p}\right)^{\frac{2}{p}}}<0
\end{aligned}
$$

and for $t>1$,

$$
\begin{aligned}
f^{\prime}(t) & =\frac{\left(1+t^{p}\right)^{\frac{1}{p}} \cdot 1-t^{p-1}\left(1+t^{p}\right)^{\frac{1}{p}-1}}{\left(1+t^{p}\right)^{\frac{2}{p}}} \\
& =\frac{\left(1+t^{p}\right)^{\frac{1}{p}-1}\left\{1+t^{p-1}(t-1)\right\}}{\left(1+t^{p}\right)^{\frac{2}{p}}}>0
\end{aligned}
$$

Therefore, f is monotonically decreasing on $\left[\frac{\delta}{\Delta}, 1\right]$ and monotonically increasing on $\left[1, \frac{\Delta}{\delta}\right]$. Thus the maximum of f attains at $t=\frac{\delta}{\Delta}$ or $t=\frac{\Delta}{\delta}$ or at both the points. Clearly, $f\left(\frac{\delta}{\Delta}\right)=\frac{|\delta-\Delta|}{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}=f\left(\frac{\Delta}{\delta}\right)$.
Therefore,

$$
\begin{align*}
f(t) & \leq \frac{|\delta-\Delta|}{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}} \text { for all } t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right] \tag{16}\\
\frac{\left|1-\frac{d_{v}}{d_{u}}\right|}{\left(1+\frac{d_{v}}{d_{u}}\right)^{\frac{1}{p}}} & \leq \frac{|\delta-\Delta|}{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}} \text { for all } \frac{d_{v}}{d_{u}} \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right] \tag{17}
\end{align*}
$$

By simple calculation and taking summation over $u v \in E(G)$, we get

$$
\begin{gather*}
\operatorname{Alb}(G) \leq \frac{\Delta-\delta}{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}} S O_{p}(G) \\
i . e ., \quad \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\Delta-\delta} A l b(G) \leq S O_{p}(G) \tag{18}
\end{gather*}
$$

Equality in (16) hold if and only if $t \in\left\{\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right\}$ and so equality of (17) is hold if and only if $\frac{d_{u}}{d_{v}} \in\left\{\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right\}$, i.e., if and only if $d_{u}, d_{v} \in\{\delta, \Delta\}$. Thus the equality in (18) is hold if and only if $d_{u}, d_{v} \in\{\delta, \Delta\}$ for all $u v \in E(G)$, i.e., if and only if G is bi-regular.

4 Relations between p-Sombor indices with different values of p

Theorem 6. For $p>0$ and a simple graph G with minimum degree $\delta>0$ and maximum degree Δ,

$$
2^{\frac{2}{p}} S O_{-p}(G) \leq S O_{p}(G) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{2}{p}}}{\delta \Delta} S O_{-p}(G)
$$

Also, the left-side equality holds if and only if G is regular, and the rightside equality holds if and only if G is a bi-regular graph.
Proof. In view of the ratio $\frac{\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}}}{\left(d_{u}^{-p}+d_{v}^{-p}\right)^{\frac{-1}{p}}}=\frac{\left(1+\left(\frac{d_{v}}{d_{u}}\right)^{p}\right)^{\frac{1}{p}}}{\left(1+\left(\frac{d_{v}}{d_{u}}\right)^{-p}\right)^{\frac{-1}{p}}}$ of the terms in $S O_{p}(G)$ and $S O_{-p}(G)$, we consider a function f defined by

$$
\begin{aligned}
f(t) & =\frac{\left(1+t^{p}\right)^{\frac{1}{p}}}{\left(1+t^{-p}\right)^{-\frac{1}{p}}}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right] \\
& =\left(1+t^{p}\right)^{\frac{1}{p}} \cdot\left(1+\frac{1}{t^{p}}\right)^{\frac{1}{p}} \\
& =\frac{\left(1+t^{p}\right)^{\frac{2}{p}}}{t}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{\prime}(t) & =\frac{t \cdot 2 t^{p-1}\left(1+t^{p}\right)^{\frac{2}{p}-1}-\left(1+t^{p}\right)^{\frac{2}{p}} \cdot 1}{t^{2}} \\
& =\frac{\left(1+t^{p}\right)^{\frac{2}{p}-1}\left\{2 t^{p}-\left(1+t^{p}\right)\right\}}{t^{2}}=\frac{\left(1+t^{p}\right)^{\frac{2}{p}-1}\left(t^{p}-1\right)}{t^{2}}
\end{aligned}
$$

Since $p>0, f$ is monotonically decreasing on $\left[\frac{\delta}{\Delta}, 1\right]$ and monotonically increasing on $\left[1, \frac{\Delta}{\delta}\right]$ and so,

$$
2^{\frac{2}{p}} \leq f(t) \leq \frac{\left(\delta^{2}+\Delta^{2}\right)^{\frac{2}{p}}}{\delta \Delta}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right]
$$

Consequently, we have

$$
2^{\frac{2}{p}} \leq \frac{\left(1+\left(\frac{d_{v}}{d_{u}}\right)^{p}\right)^{\frac{1}{p}}}{\left(1+\left(\frac{d_{v}}{d_{u}}\right)^{-p}\right)^{\frac{-1}{p}}} \leq \frac{\left(\delta^{2}+\Delta^{2}\right)^{\frac{2}{p}}}{\delta \Delta}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right]
$$

which is equivalent to

$$
2^{\frac{2}{p}} \leq \frac{\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}}}{\left(d_{u}^{-p}+d_{v}^{-p}\right)^{\frac{-1}{p}}} \leq \frac{\left(\delta^{2}+\Delta^{2}\right)^{\frac{2}{p}}}{\delta \Delta}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right]
$$

Taking summation over $u v \in E(G)$, we get

$$
2^{\frac{2}{p}} S O_{-p}(G) \leq S O_{p}(G) \leq \frac{\left(\delta^{2}+\Delta^{2}\right)^{\frac{2}{p}}}{\delta \Delta} S O_{-p}(G)
$$

Theorem 7. For a simple graph G with minimum degree $\delta>0$ and maximum degree Δ,

$$
\frac{1}{2^{\frac{p-q}{p q}}} S O_{q}(G) \leq S O_{p}(G) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\left(\delta^{q}+\Delta^{q}\right)^{\frac{1}{q}}} S O_{q}(G), \quad \text { provided } p>q
$$

Also, the left-side equality holds if and only if G is regular, and the right-
side equality holds if and only if G is a bi-regular graph.
Proof. Consider the following function $f(t)=\frac{\left(1+t^{p}\right)^{\frac{1}{p}}}{\left(1+t^{q}\right)^{\frac{1}{q}}}, \quad t \in\left[\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right]$. Then,

$$
\begin{align*}
f^{\prime}(t) & =\frac{\left(1+t^{q}\right)^{\frac{1}{q}} \cdot t^{p-1} \cdot\left(1+t^{p}\right)^{\frac{1}{p}-1}-\left(1+t^{p}\right)^{\frac{1}{p}} \cdot t^{q-1} \cdot\left(1+t^{q}\right)^{\frac{1}{q}-1}}{\left(1+t^{q}\right)^{\frac{2}{q}}} \\
& =\frac{\left(1+t^{q}\right)^{\frac{1}{q}-1}\left(1+t^{p}\right)^{\frac{1}{p}-1}\left\{t^{p-1}\left(1+t^{q}\right)-t^{q-1}\left(1+t^{p}\right)\right\}}{\left(1+t^{q}\right)^{\frac{2}{q}}} \\
& =\frac{\left(1+t^{q}\right)^{\frac{1}{q}-1}\left(1+t^{p}\right)^{\frac{1}{p}-1}\left(t^{p-1}-t^{q-1}\right)}{\left(1+t^{q}\right)^{\frac{2}{q}}} \\
& =\frac{\left(1+t^{q}\right)^{\frac{1}{q}-1}\left(1+t^{p}\right)^{\frac{1}{p}-1} t^{q-1}\left(t^{p-q}-1\right)}{\left(1+t^{q}\right)^{\frac{2}{q}}} \tag{19}
\end{align*}
$$

Since $p>q$, from (19) we obtain that f is monotonically decreasing in $\left[\frac{\delta}{\Delta}, 1\right]$ and monotonically increasing on $\left[1, \frac{\Delta}{\delta}\right]$. Thus the minimum of f will attained by $t=1$ and the maximum will attained at $t \in\left\{\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right\}$. Therefore,

$$
\begin{align*}
\frac{2^{\frac{1}{p}}}{2^{\frac{1}{q}}} & \leq f(t) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\left(\delta^{q}+\Delta^{q}\right)^{\frac{1}{q}}} \tag{20}\\
\frac{1}{2^{\frac{1}{q}-\frac{1}{p}}} & \leq \frac{\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}}}{\left(d_{u}^{q}+d_{v}^{q}\right)^{\frac{1}{q}}} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\left(\delta^{q}+\Delta^{q}\right)^{\frac{1}{q}}} \quad\left(\text { by putting } t=\frac{d_{u}}{d_{v}}\right) \\
\frac{1}{2^{\frac{p-q}{p q}}}\left(d_{u}^{q}+d_{v}^{q}\right)^{\frac{1}{q}} & \leq\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}} \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\left(\delta^{q}+\Delta^{q}\right)^{\frac{1}{q}}}\left(d_{u}^{q}+d_{v}^{q}\right)^{\frac{1}{q}} \tag{21}
\end{align*}
$$

Taking summation over $u v \in E(G)$, and using $S O_{p}(G)=\sum_{u v \in E(G)}\left(d_{u}^{p}+d_{v}^{p}\right)^{\frac{1}{p}}$ and $S O_{q}(G)=\sum_{u v \in E(G)}\left(d_{u}^{q}+d_{v}^{q}\right)^{\frac{1}{q}}$, we get

$$
\begin{equation*}
\frac{1}{2^{\frac{p-q}{p q}}} S O_{q}(G) \leq S O_{p}(G) \leq \frac{\left(\delta^{p}+\Delta^{p}\right)^{\frac{1}{p}}}{\left(\delta^{q}+\Delta^{q}\right)^{\frac{1}{q}}} S O_{q}(G) \tag{22}
\end{equation*}
$$

The left side equality in (20) holds if and only if $t=1$ and so left side
equality of (21) holds if and only if $\frac{d_{u}}{d_{v}}=1$, i.e., $d_{u}=d_{v}$. Thus the left side equality of (22) holds if and only if $d_{u}=d_{v}$ for all $u v \in E(G)$, i.e., if and only if G is regular. Again right side equality in (20) hold if and only if $t \in\left\{\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right\}$ and so right side equality of (21) is hold if and only if $\frac{d_{u}}{d_{v}} \in\left\{\frac{\delta}{\Delta}, \frac{\Delta}{\delta}\right\}$, i.e., if and only if $d_{u}, d_{v} \in\{\delta, \Delta\}$. Thus the right-side equality in (22) hold if and only if $d_{u}, d_{v} \in\{\delta, \Delta\}$ for all $u v \in E(G)$, i.e., if and only if G is bi-regular.

Corollary. For a simple graph G with minimum degree $\delta>0$ and maximum degree Δ,

$$
\frac{1}{\sqrt{2}} S O_{1}(G) \leq S O_{2}(G) \leq \frac{\left(\delta^{2}+\Delta^{2}\right)^{\frac{1}{2}}}{(\delta+\Delta)} S O_{1}(G)
$$

Also, the left-side equality holds if and only if G is regular, and the rightside equality holds if and only if G is a bi-regular graph.

Corollary. [18] For a simple graph G with minimum degree $\delta>0$ and maximum degree Δ,

$$
2 I S I(G) \leq M_{1}(G) \leq \frac{(\delta+\Delta)^{2}}{2 \delta \Delta} I S I(G)
$$

Also, the left-side equality holds if and only if G is regular, and the rightside equality holds if and only if G is a bi-regular graph.

Proof. Putting $p=1$ and $q=-1$ in Theorem 7, we have

$$
\frac{1}{2^{-2}} S O_{-1}(G) \leq S O_{1}(G) \leq \frac{(\delta+\Delta)}{\left(\frac{1}{\delta}+\frac{1}{\Delta}\right)^{-1}} S O_{-1}(G)
$$

Since $I S I(G)=2 S O_{-1}(G)$, so we get

$$
2 I S I(G) \leq M_{1}(G) \leq \frac{(\delta+\Delta)^{2}}{2 \delta \Delta} I S I(G)
$$

which completes the proof.

Corollary. For a simple graph G with minimum degree $\delta>0$ and maximum degree Δ,

$$
\sqrt{2} I S I(G) \leq S O_{2}(G) \leq \frac{\sqrt{\delta^{2}+\Delta^{2}}(\delta+\Delta)}{2 \delta \Delta} \operatorname{ISI}(G)
$$

Also, the left-side equality holds if and only if G is regular, and the rightside equality holds if and only if G is a bi-regular graph.

Proof. Putting $p=2$ and $q=-1$ in Theorem 7, we have

$$
\frac{1}{2^{-3 / 2}} S O_{-1}(G) \leq S O_{2}(G) \leq \frac{\left(\delta^{2}+\Delta^{2}\right)^{1 / 2}}{\left(\frac{1}{\delta}+\frac{1}{\Delta}\right)^{-1}} S O_{-1}(G)
$$

The results follows immediately as $\operatorname{ISI}(G)=2 \mathrm{SO}_{-1}(G)$.

Acknowledgment: The author is grateful to Professor Ivan Gutman for his valuable comments and suggestions, which led to an improvement of the original manuscript.

References

[1] A. Aashtab, S. Akbari, S. Madadinia, M. Noei, F. Salehi, On the graphs with minimum Sombor index, MATCH Commun. Math. Comput. Chem. 88 (2022) 553-559.
[2] M. O. Albertson, The irregularity of a graph, ARS Comb. 46 (1997) 219-225.
[3] H. Chen, W. Li, J. Wang, Extremal values on the Sombor index of trees, MATCH Commun. Math. Comput. Chem. 87 (2022) 23-49.
[4] R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem. 59 (2021) 1098-1116.
[5] S. Filipovski, Relations between Sombor index and some degree-based topological indices, Iran. J. Math. Chem. 12 (2021) 19-26.
[6] I. Gutman, Sombor index - one year later, Bull. Acad. Serb. Sci. Arts. 153 (2020) 43-55.
[7] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.
[8] I. Gutman, Some basic properties of Sombor indices, Open J. Discr. Appl. Math. 4 (2021) 1-3.
[9] I. Gutman, Spectrum and energy of the Sombor matrix, Military Tech. Courier 69 (2021) 551-561.
[10] I. Gutman, Comparing degree-based energies of trees, Contrib. Math. 4 (2021) 1-5.
[11] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[12] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[13] I. Gutman, B. Furtula, C. Elphick, Three new/old vertex-degreebased topological indices, MATCH Commun. Math. Comput. Chem. 72 (2014) 617-632.
[14] J. A. Méndez-Bermúdez, R. Aguilar-Sánchez, E. D. Molina, J. M. Rodríguez, Mean Sombor index, Discr. Math. Lett. 9 (2022) 18-25.
[15] J. Rada, J. M. Rodriguez, J. M. Sigarreta, General properties on Sombor indices, Discr. Appl. Math. 299 (2021) 87-97.
[16] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[17] T. Réti, T. Došlić, A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021) 11-18.
[18] J. Sedlar, D. Stevanović, A. On the inverse sum indeg index, Discr. Appl. Math. 84 (2015) 202-212.
[19] Z. Wang, Y. Mao, Y. Li, B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math. Comput. 68 (2022) $1-17$.

[^0]: *Corresponding author.

