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Abstract

Graovac-Ghorbani index is a new version of the atom-bond con-
nectivity index. D. Pacheco et al. [MATCH Commun. Math. Com-
put. Chem. 86 (2021) 429-448] conjectured a sharp lower and upper
bounds to the Graovac-Ghorbani index for all bicyclic graphs. Mo-
tivated by their nice work, in this paper we determine the maximal
Graovac-Ghorbani index of bicyclic graphs and characterize the cor-
responding extremal graphs, which solves one of their Conjectures.

1 Introduction

Molecular descriptors play a significant role in mathematical chemistry
especially in the QSPR/QSAR investigations. Among them, special place
is reserved for so-called topological index [6], where topological index are

numbers associated with chemical structures as a tool for compact and
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effective description of structural formulas used to study and predict the
structure-property correlation of organic compounds [1,15,17,22]. Tt is
known that connectivity index has a widely application [19]. In [8], Estrada
et al. proposed the concept of atom-bond connectivity index (ABC index)

of a simple undirected graph G as

[dy +dy — 2

weE(G)

where E(G) is the edge set of graph G and d,, is the degree of vertex u.
About ABC index, it has proven to be a valuable predictive index in study
of the heat of formation in alkanes [7,8]. Many mathematical properties
of this index are reported in [2-4,9,12,16,23-25].

In [14], Graovac and Ghorbani defined a new version of the atom-bond
connectivity index as follows:
Ny + Ny — 2

ABCag(G) = >

T, T
weE(G) it

where the summation goes over all edges in graph G, n, denotes the num-
ber of vertices of G whose distances to vertex u are smaller than those to
other vertex v of the edge e = wv, and n, defines similarly. This index
is also called the second atom-bond connectivity index of graph G and
is labeled as ABC5(G) [5,13,14,20,21]. In [11], Boris Furtula denoted
this index as ABCgg and called it Graovac-Ghorbani index because of
their essential difference. Therefore, this index is denoted as ABCgg and
is called Graovac-Ghorbani index in this paper. In the chemistry appli-
cations, ABCg¢ is used to model both the boiling point and melting
point of the molecules. Hence, it is also applied to the pharmaceutical
field. There are already many published papers on its mathematical prop-
erties [5,10,11,13,14,20,21]. In [18], D. Pacheco et al. determined the
extremal graph with minimum Graovac-Ghorbani index among all bicyclic
graphs with no pendent vertices. Additionally, they conjectured a sharp
lower and upper bounds to the Graovac-Ghorbani index for all bicyclic

graphs. In this paper, we determine the maximal ABCg¢ index of bi-
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cyclic graphs and characterize the extremal graphs.

2 Preliminaries

In this section we will present two lemmas. For two real numbers z,y > 1

and integer a > 2, let f(x,y) = ,/:”J;yyfz, 9ga(z) = f(z,a0) — f(z,a —1).
Then

ga(aj) = f(x,a) 7f(33,a7 1)

2—x

Vala—1Dz(y/(a—1)(z +a—2)+Ja(z +a—-3))

In [24] R. Xing et al. showed the following lemma.

Lemma 2.1 ( [24]). f(z,1) = /%=1 is strictly increasing for z, f(z,2) =
\/g, and if y > 3, then f(x,y) is strictly decreasing for x.

By Lemma 2.1, we have the following Lemma 2.2, part of which has

been given in [23,24], so we omit its proof herein.

Lemma 2.2 ( [23,24]). Ifa > 2, then g.(z) < ¢94(2) < go(1) for x > 2;
and for fixed x, go(x) is strictly decreasing for a if x = 1, and strictly

increasing for a if x > 3.

3 Bicyclic graphs with maximum ABCgq in-

dex

Let B, be the set of bicyclic graphs with n vertices and p pendent ver-
tices. Clearly, we have that 0 < p < n —4. Let S(mq,---,mg) be the
unicyclic graph with cycle v1vs - - - vxv; and m; pendent vertices adjacent to
vertex v; for all 4 = 1,2,--- k. Let STt(mq, - ,mp_1,n1, -+ ,n4_1,Mo0)
be a bicyclic graph shown in Figure 1. In particular, S3:3(mq,ny,mo) =
S$3:3(ma,0,n1,0,mg).

Part of the following Lemma 3.1 has been shown in [5].

Lemma 3.1. Let x,n be two positive integers with 1 < x < n — 6.
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. T,
Figure 1. S;"(m1,ma,...,mr_1,71,M2, ..., Nt—1,M0)

(1) Ifn="7,x=1, then

/ -3—-x 3
=4/~ 2.
1;—1—1 n—2—w \/x—i—l Y(n—2—x) \/;Jrf

(2) If n =8, then

x n n—3—ac \/7 \/7
z+1 n—2—a: (r+1) n—2—a: \/ 12’

with equality holding if and only if x = 2.
(8) Ifn=29, then

z n—3—x 3
3 2
\/x+1+ n—2—x \/erl (n—2 ;z:)_\[—i_\/;’
with equality holding if and only if x = 3.
(4) If 10 < n < 15, then

T n—3—

x+1 n—2— x—i—l (n— —x)
\/§+ /7175Jr n—3

3 n—4 3(n—4)’

with equality holding if and only if x = 2.




517

(5) If n > 16 , then

T n—3—x n—4
< V2
\/m+1+ n727m \/erl n—2-— )_\[—i_ n—3

with equality holding if and only if x = 1.

Proof. Let f(n,x) \/:_14— \/Z 2 Z 4+ \/(w—&-l)rz'r:EQ—;c)' Thus (1) follows
by direct calculation. If n = 8 then z = 1 or 2, (2) follows by comparing
f(8,1) and f(8,2). If n = 9 then z = 1,2 or 3, (3) also follows by
comparing f(9,1), f(9,2) and f(9,3). Next we need only prove the case
n > 10.

Notice that f(n,z) = f(n,n — 3 — x) for x € [I,n—4]. In [ [5],

Theorem 2.4], the authors show that for 252 S <gp<n-— 4,if 10 <n <15
then f [ +4/2=2 + .,/ T:L 34 —5); if n > 16 then
fln,z) < \f 244/ 5= § f(n,n —4). The above discussion shows that for

all z with 1 <z <n—6,if 10 <n <15 then f(n,z) < \/> n=8 4

3817:34) = f(n,n —5) = f(n,2); if n > 16 then f(n,z) < V2 + V2= =
f(n,n—4) = f(n,1). Hence, (4) and (5) follow. |

Edge-lifting transformation on edge uv of graph G [5]. Let uv
be a cut edge of a connected graph G but uv be not a pendent edge. We
delete edge uv from G at first, then identify vertices v and v, and finally
attach a new isolated vertex to this identified vertex to obtain a new graph.
This graph transformation is called an edge-lifting transformation on edge

uv of graph G. This transformation is pictured in Figure 2.

u v

|

Figure 2. Edge-lifting transformation
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In [5], K. C. Das et al. prove the following lemma for the case when G

is a unicyclic graph. Here, we generalize it to connected graphs.

Lemma 3.2. If G’ is the graph obtained by performing edge-lifting trans-
formation on edge uv of graph G, then

ABCGg(G) < ABCG(;(G/).

Proof. It xy € E(G1) U E(G2) (refer to Figure 2), by the definition of

ABCg¢ index we have that
Ng + Ny — 2
NgNy

contributes the same to ABCgq(G) and ABCga(G'). Since |Gy| > 2,
|G2| > 2 and |G1| + |G2| = |G|, we have

Gi|+ |G2| — 2 G| -2
ABC¢c(G) — ABCqa (G \/ 1|Gl|G22 \/(|C|¥||—1)-1<0'

Thus, ABCGG(G) < ABCGG G/ |

Let S™' be the set of such bicyclic graphs of order n that have two
cycles with length r and ¢, respectively. Furthermore, these two cycles

have unique common vertex.

Lemma 3.3. If G € S"'! is a connected bicyclic graph of order n > 7 and

r+t>7, then
n—2 1
< _ i -
ABCgc(G) < (n 5)”71—1 +6\/;,

with the equality holding only if G = S33(my,ma,ny,n2,mg) for some

mntegers mi, ma,ni,ne, Mgy > 0.

Proof. 1f G is not isomorphic to any S™(mq, -+« ,me_1,n1,"+* ,M4_1,Mg),
then G has a non-pendent edge uv that uwv ¢ E(C,) U E(C}), where C,
and Cy are the two cycles of graph G. By performing edge-lifting trans-

formation on edge uv of G we obtained a new graph G;. From Lemma 3.2
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it follows that ABCgq(G) < ABCea(G1). So, we may assume in what

follows that G = S™(my,--- ,my_1,n1,- -+ ,n4_1,Mmp) for some integers

r,t > 3. Now, two different cases occur.

Case 1. 7 > 3, t > 3. In this case, G hasn —r —t+1 < n — 7 pendent
edges and at least r + ¢ > 8 non-pendent edges. Since r > 3, t > 3, for
each non-pendent edge uv € F(C,) UE Ct ) we have n, > 2 and n, > 2.

By Lemma 2.1, ,/%7;:*2 < \/j < 4/5=f since n > 7 in this case. For

n=t
any pendent edge uv € E(G), / “;7;’0_2 \/ 2=f. Hence,

Ny + Ny — 2 Ny + Ny — 2
ABCao(G) = >, TR X T
u'tv u'tv
uweE(G) weE(G)
d,=1 du,dy#1

IN

(n—r—t+1)\/ﬁ+(r+t)\/g
= (n—5) Z_i+(6—r—t)\/i+(r+t)\/g
< (-5 Z_fﬂs\/g.

Case 2. r > 3, t = 3(the case when ¢ > 3, r = 3 is similar). If

ni,ny > 1, then the above inequality is also true; If ny,no = 0, since r > 4

it follows that (r — 6)y/§ — (r — 5), /222 < 0. Recalling |/} <

deduce that

nu—i-nv n—3
ABCqa(G) = > —
uwweE(Cr) w
-2
+(n—r—2) n_l

IN
|
[\
3
|
o
S|3
[
=N
+
£}
|
=
3
(N
=N
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Finally, if n; > 1,no = 0, then

n_29
\/(n1+1)(n—n1—2 \/7 \/nl—&—l V-1
\/n—n1—3<\/n—2
n—mng —2 n—1
> \/nﬁn”
NNy (n1+1) n—n1—2)

weE(C,)

Rt Ziﬁiiiﬂn—r—m o2
< T\/g+\/g+2\/ﬁ+(n—r—2)\/ﬁ
= 6\E+<T—5)\/g—(r—5)\/ﬁ+(n—5) Z:f
-5/ =2 s 0yL

When r = 4, let f(z) = /255 +\/Z_g_fc +\/(m+1)nr_7,32 7> Where
1<z<n—-6andn>7 ByLemma 3.1, if n =7 and x = 1, then f(1

f+[<f+ﬁ,1fn—8 then f(z) < f(2 f \/7 \/7~

2.3280<\er\/;~2.3400;1fn:9,thenf(:17)_ f3)=V3+,[i~
23444 < V2 + /T ~ 23496, if 10 < n < 15, then f(x) < f(2) =
\[Jr n4+m Let g(n :\ﬁJr Z—*Zﬂ/ﬁﬂff ns
Then g(10) = /2 + /3 + /& — V2~ /5 = ~0.0040 < 0, g(11) =

ViR - va- —~—00034<0g12 \f+\[+ 9
V2= /1~ 00034 < 0, g(13) = \[ \/> N ~

—0.0038 < 0, g(14) = \/; 5 +/5 - f — /5 ~ —0.0043 < 0,

=3B B v2- /5~ 00049 < 0; if 0 > 16, then

and

When r > 5 we have

ABCga(G)

IA




flz) < f+\/;<f+\/> Hence, f(x <\[+\/>f0r

allxw1th1<a;<n—

Ny, + Ny —

ABCqa(G) =

ca(G) Z Ny \/n1+1 Y(n—mny; —2)
wweE(Cr)

n—ny—3 n—2
+4/ —r—2
n1—|—1 n—n1—2+(n " ) n—1
6\/> 5)/ n-2,
(n 71 (n1 4+ 1)( n7n172)
ni n—ny—3 n—2
/ —on /= —
+ nl—i-ljL n—ny —2 \/; n—1
n—2 1
< —5)\/ —— +64/=.
(n ) nfl+ \/;

The proof is finished. |

IN

Lemma 3.4. If G € S3:3(my, ma,n1,n2, mg) has maximal ABCgg index,

then min{my, ma} = 0 and min{ny,na} = 0.

Proof. If n < 6, the lemma is obviously true. So, in what follows we

assume that n > 7. Firstly, we deduce that if mq,n; > 1 then

ABCga(S33(m1,n1,mg))

mq n n—m1—3
my +1 n—m1—2 (mq 4+ 1)( n—m1—2)

ni n—mny—3
Jr(\/nl—i—ljL n—ny —2 \/n1+ n—n1—2)>

+(n —5)

n—1"

If m1,ms > 0, by Lemma 2.1 we have
\/ my + my < \/T <
(m1+1)(m2+1 - - m1—|—1

n—m;—3 <\/T< n—mi;—3
(me+1)(n—m;—me—2) V2~ Vn—mg -2’
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2—3 < n—3
(m1+1)(n —my —may — 2) (mi+1)(n—my—2)°

These inequalities still hold for ny,no > 0.

When m1,mg,n1,ne > 0, we have
ABCeq (523 (m1,ma, n1,na,mo))
B \/ my + mao n n—ms—3
N (my1 +1)(ma +1) (m1 + 1)(n —mq —ma — 2)
L+ n—mp;—3 +\/ n1 + no
(mg 4+ 1)(n —my —msy — 2) (n1 4+ 1)(ne +1)

n n—ns —3 n n—ny—3
(ni+1)(n—ny —ng —2) (ne+1)(n—ny —ng —2)

n—2
n—1
< ABCgq (523 (m1,n1,mo + ma + n2)).

+(n —5)

When exactly one of m1,ms,n1,n2 equals zero, say, ms = 0. Hence,

ABCGG 53 m170 n17n27m0

n—m1—3
m1—|—1 n—m1—2 (mq + 1)( n—m1—2)
+\/ ny + ngy n n—mny—3
(n1 4+ 1)(ne + 1) (n1+1)(n—n1 —ng — 2)

+ n—ny—3 +(n—5) n—2
(ng+1)(n —ny —ng — 2) n—1

< ABng(Si’g(ml,nl,mo + TLQ))

When exactly two of m,mg,n1,ne equal zero, if m; = mo = 0 (the
case when ny = ng = 0 is similar) then G has unique non-pendent edge uv
such that n, = n, = 1, which contributes 0 to the index; G also has two

such non-pendent edges wv and xy that n, = 1 and n, = n — 2, each of
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them contributes \/"7‘+”“_2 = \/" 3 to the index. So,

Mgy Moy

ABCqq(5%3(0,0,n1,m2,m0))

n—3 \/ ni + ng n—mne—3
= 24/ +
n—2 (n1+1)(ne + 1) (n1+1)(n—ny —ng — 2)

n n—ny—3 +(n—5) n—2
(ng+1)(n —ng —ng — 2) n—1

< ABCGG(SE’L’3(m1,n17m£)))~

Since G has maximal ABCg¢ index, it follows that min{n;,ns} = 0 and

min{my, ms} = 0. |

Lemma 3.5. Let G € St be a connected bicyclic graph with n > 6.

(1) If n = 6 then ABCqq(G) < V3 + V2 + \/ng =, with equality
holding if and only if G = 3’3(1 0,0).

(2) If n = 7 then ABC;a(G) < V3+2V2+24/2, with equality holding
if and only if G = S2°(1,1,0).

(3) If n =8 then ABCga(G <\f+\f+\[+\[+ = +34/8,
with equality holding if and only if G = S (2,1,0).

(4) If n = 9 then ABCoa(G) < 2\/§+ 2\/;5+ 2,/4 + 4,1, with
equality holding if and only if G = ‘5”3’3(27 2,0).

(5) If 10 < n < 15 then ABCe(G) gz(\ﬁﬂ/%h/ﬁﬁ
(n —5),/2=2 1, with equality holding if and only if G = 5373(27 2,n—9) .

(6) Ifn>16 then ABCga(G) <2(\f—|—\/ ) 222 with
equality holding if and only if G = S23(1,1,n —

Proof. Let G € 833 be a connected bicyclic graph with maximal ABCgq
index. If n = 6, then G e {5:(0,0,0,0,0),55%(1,0,0), S5(0,0,1)}.

Since

2 1
ABCqa(Sg°(1,0,0)) = V3 + V2 + \/;+ \ﬁ ~ 4.8572,
ABCaa(S5(0,0,0,0,0)) = V3 + 2v/2 ~ 4.5605,
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4
ABCgc(S3%(0,0,1)) = 2V3 + \[5 ~ 4.3585.

It implies that (1) holds.
If n =7, by Lemmas 3.1(1), 3.3, 3.4 and equation (1) we have

ABCo(G) < ABCoo(S(1,1.0) = v+ 23 +2 2

with equality holding if and only if G = S}O”B(l, 1,0).
If n = 8, by Lemma 3.1(1), (2), Lemmas 3.3, 3.4 and equation (1) we

have

2 [3 [4 [5 6
ABCgc(G) < ABCga(S5°(2,1,0)) = \/§+\/;+\/;+\/;+ 12+3\f7

with equality holding if and only if G = S5*(2,1,0).
If n =9, by Lemma 3.1(1), (2), (3), Lemmas 3.3, 3.4 and equation
(1) we have ABCaq(55%(3,1,0) = 2/3 + /2 + /1 + /3 +4,/T =

7.8934 < ABCqa(Sy*(2,2,0)) = 2\/§+ 2,/ + 2\/§+ 4\/2 ~ 8.4284.

So,

2 4
ABCgc(G) < ABCaa(S5°%(2,2,0)) = 2\/;+ 24/ 1% + 2\/;+ 4\/Z

with equality holding if and only if G = 53’3 (2,2,0).
If 10 < n < 15, by equation (1) and Lemma 3.1(4), Lemmas 3.3 and

3.4 we have
ABCGc;(G) < ABCGG 533 2,27n —
f /n—5 n—3 n—2
n—4 3(n—4 n—l

with equality holding if and only if G = S3:3(2,2,n —
Finally, if n > 16, by equation (1) and Lemma 3.1(5), Lemmas 3.3 and
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3.4 we have

ABCga(G) < ABCgq(S23(1,1,n—17))
n—4 n—2
B 2<\f2+\/;>+(n5) n—1

with equality holding if and only if G = S33(1,1,n — 7). |

Let Cy = vivsv3v4v1 be a cycle of order 4 and Q4 = C4 + v1v3. Denote
by B (n1,n2,n3,n4) be the graph obtained from @4 by attaching n;—1 > 0
isolated vertices to v; for all i = 1,2, 3,4 with nqy > ny > ng > ng. Then
By, n—4 is the set of all such graphs By, (n1,n2, n3,n4) with ny +ng +nz +

Tl4:5.

Lemma 3.6. Let G = B, (n1,n2,ns,n4) be a graph with ny,ng,ng,ng > 1.
Then ABCga(G) < ABCga(Bn(ni + 1,n2,n3 — 1,n4)) if no,ng > 2 and
ny > ng > 2; ABCec(G) < ABCga(Bn(ni,ne+1,n3,n4—1)) if ng > ny
>2andng =1.

Proof. Since all pendent edges are contribute the same to the ABCgg

index, it follows that

ABCga(Bn(n1 +1,n2,n3 — 1,n4)) — ABCga(G)
o TL1+7’L2—|—714—1 n1+n2+n4—2
(n1 + 14 n4)ne (n1 + ng)na
n3—|—n2+n4—2 ng+ng+n4 —3
(ng + na)ng (ng — 1+ mn4)nsg

ny+ng+ng—1 \/n1+n2—|—n4—2>

+
(\/ nl +TL2+1) (Tll —|—n2)n4
n2+n3+n472_ ng +ng+ng—3
n2+n3 Ny (n2+n3 — 1)n4
n ny +mns — 2 In1 +mns —2
(ni+1)(ng—1) ning .
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Since ny > ng > 2, it follows that

n1+n372 n1+n372>0
(ni+1)ms—1) V  ning )

Recalling that by Lemma 2.2, g,(x) is strictly increasing for a if x > 3,

and noticing that g,(2) = 0 we deduce that

n1+n2+n471_ n1+n2+n472
(n1 + 14 ng)ng (n1 + ng)ns

B n3+n2+n4—2_ ng+ng+n4 —3

(ng + na)ng (ng — 1+ n4)no

= Gny+na+1(n2) = Gngn, (n2) >0,
n1—|—n2—|—n4—1_ n1—|—n2—|—n4—2
(n1+n2+ 1)ny (n1 + no)ny

B n2+n3+n4—2_ ng +ng+ng4 —3
(n2+n3)n4 (n2+n37 1)714

= Gny+not+1(na) — Inz+no (n4) > 0.

Therefore, the first statement is true. For the second one, we have

ABCGg(Bn(nl, no+1,1,n4 — 1)) — ABCGg(Bn(’I’Ll,’I’Lg, 17714))
. ny+ng +nyg—2 _ ny+ng+ng—2
(n1+n2+1)(ng—1) (n1 4+ ne2)ny
B n1+n2+n4—2_ ny+ng+nyg—2
(n1 + n4)n2 (n1 —+ Nng — 1)(712 —+ 1)
ng +ng —1 ng +ng — 1
+
’I’Lg + 2 n4 — 1) (’I’Lg + 1)”4
n2+n471 n2+n471
n4 no + 1 (714 + 1)712 ’

Since ny > ny4 > 2, it follows that the first, third term are all positive,

_|_
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and the fourth term is nonnegative. The second term is also positive if
ng > ni + ng, and so the second statement is true in this case. In what
follows we consider the other case when ny < nq + ng. It suffices to show

that the sum of the first and second term is nonnegative, or

1 B 1 >
(n1 + n9 + 1)(714 — 1) (n1 =+ ng)n4 -

1 B 1
(TLl + n4)n2 (’I’L1 +nyg — 1)(712 + 1).

Let m = ni+ns+ng = n—1and g(x)

with

= 1 — 1
\/w(mfz) \/(a:Jrl)(mfzfl)
1 <z < %. Then m > 5, and the above inequality becomes g(ns —1) >

g(n2). So, to show the above inequality we need only show that g(x) is

decreasing when 1 < z < % Noticing that

dg m—2x—2 m — 2x

dr  2((z+V)(m—z— 1))  2(e(m— )"

to show Z—g < 0 it suffices to show that

(m —2x)%(x +1)3(m —x — 1) > 2%(m — 2)3(m — 2z — 2)%.
But this is obvious since (x 4+ 1)/(m — ) > z/(m — x — 1) for all x with
1 <z < m/2. And so, the second statement is true. |

The above Lemma tell us that in B,, ,_4, graphs with maximal ABCg¢

index are of the form B, (ni,ns,1,1), where ny,ng > 1.

Lemma 3.7. If G = B,(n1,n2,1,1), then ABCga(G) < 2,/2—:3 +v2+

Z—:g +(n—4) Z—j, with the equality holding if and only if G = B, (n—
3,1,1,1).

Proof. Since

n—3 o ny—1 \/n—3
ABCqa(G) =
ca(G) (n1 4+ 1)ne + n2+1+\/ ny * n—2
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- —4
ABCge(Bn(n—3,1,1,1)) = 2\/” 3+\/n 3

n—2 n—3
n—2
—4 .
+(n—4) —
we have
ABCgc(B -3,1,1,1)) — ABCqa(G

(=)
n—2 n2+1 n1+1
+ \/n —4 _ \/nl —1
n—3 ny '
If ny,ne > 2, then nq,ne <n—4. And so, ABCqc(G) < ABCga(Bn(n—

3,1,1,1)). This observation shows that ABCge(G) = ABCgc(Bn(n —
3,1,1,1)) only if n; = 1 or ng = 1. By direct calculation the above

difference one can show that no = 1. And so, the lemma follows. |

Let B7'(s) be the set of all such n-vertex bicyclic graphs whose two
cycles C. and C} have shortest common path P;, and every vertex not in

these two cycles is pendent, where s > 2 and r >t > 3.

Lemma 3.8. Let G be a connected bicyclic graph of ordern > 5, whose two
cycles C;. and Cy have shortest common path Ps with s > 2 andr >t > 3.
Then ABCGg(G) < ABCGc;(Bn(’n -3,1,1, 1))

Proof. Assume that G has maximal ABCg¢ index in all the graphs pos-
tulated in this lemma. By the Lemma 3.2, G € B! (s).

Ifs>3, thenr>t>4,t—s>1landr+¢t—s>2+s>5. In this
case, Ny, n, > 2 for each uwv € E(C,) U E(C). And so,

nu+nv—2<\/T< n—2
Ny Ny - V2 n—1"
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Hence,
Ny + Ny — 2 Ny + Ny — 2
ABCea(@ = X Tt 2 VT
weE(G) weE(G)
d,=1 du,dy ]
2 1
< (nrt+s),/nl+(r+ts+1)\/;
n—2 n—2
= —4 —r—t+4
(n—4) +(3 r—t+4) —

+(r+t—s—4) \[+5\[
< (n—4)\/i+5\/>
< \/:+W+F N

= ABCga(Bn(n—3,1,1,1))

If s =2 and r,t > 4, then the above inequalities are also true. Finally,
we consider the case when s = 2 and r > 4, ¢ = 3. Assume the number
of pendent vertices adjacent to the vertex of Cy — C). is m. Noticing that

n > 5 in this case, we have

24/3, if m>1,;
ABCoa(G) </ + (n—r—1),/22 +
2 n3, if m=0.
- 5 5 2,/3% if m>1;
<7‘\/;+(3—T) A2+ (n—4)/2= +
2 n3’ if m=0.
- 24/1, if m>1;
<3\/;—|—(TL—4) n— 1+
2,/2=2,  ifm=0.

< ABCgg(Bn(n —3,1,1,1)).
The above discussion shows that G = B,,(n1,n2,n3,n4). And so, the

lemma follows from Lemmas 3.6 and 3.7. [ |

Theorem 3.1. If G isa connected bicyclic graph of order n > 4 then
ABCqa(G) < 2,/2=2 + 2+, /2= + (n—4),/2=2, with equality holding
if and only szan( —3,1,1,1).
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Proof. The case when n = 4 is trivial. Suppose in what follows that
n > 5. If n =5, by the Lemmas 3.6, 3.7 and 3.8, we need only to compare
ABCGG B5 2 1, 1, 1)) and ABCGG(S (0, 0, 0). Since ABCGg(B5(2, 1, 1,

- 2\[+ 3\F+ V3> 4\/3 = ABCe(53%(0.0,0)), the theorem fol-

lows in this case. Theorem is also true when n = 6 since ABCx¢(Bs(3, 1, 1,

1) = V3+vV2+ 242\ /1 > V2+vB+ /244 = ABCaa(53%(1,0,0)).

When n = 7, ABCgq(B7(4,1,1,1)) = 2\/§ + V2 + \/g + 3\/§ ~
6.8077 and ABCec(S3%(1,1,0)) = V3 + 2v2 + 2\@ ~ 6.3862; When
n =8, ABCaa(Bs(5,1,1,1)) = 2\ﬁ+ V3 + \/ZJF 4\ﬁ ~ 7.8377 and

ABCaa(S3*(2,1,0)) = /2 + /3 + /4 + /5 + V2 +3,/% ~ 74141,

When n = 9, ABCi(Bo(6,1,1,1)) = 2\E+ V2 + \/;Jr 5\/; ~ 8.8558

and ABCga(S57°(2,2,0)) = 2\/§+ 20/% +2,/4+4,/T ~8.4284. And

so, the theorem is also true in all these cases.
If 10 < n < 15, by Lemmas 3.5, 3.6, 3.7 and 3.8, we need only to com-

pare ABCqa(Bn(n—3,1,1,1)) = 2,/2=3 +/2+4, /2= +(n—4),/ 2=

ABCao(83°(2,2,n-9) =2 (/2 +,/25 + | [3255) + (n - 5); /g—j.
Since n—1 > n—3 > n—4, by Lemma 2.1 we conclude that ABCgg(Bn(n—

3,1,1,1)) —~ ABCaq(S33(2.2,n-9)) = 2, /255 2, 2+ 32, [5 4
\/%—\/; \/gf n_4>0.Hence,

ABCqq(5833(2,2,n —9)) < ABCga(Bn(n —3,1,1,1)).

Finally, if n > 16, since ABCgq(S33(1,1,n—17)) = 2 (\/5-% %) +
(n—5)/2=2 it follows that ABCgg(Bn(n—3,1,1,1)) = ABCqa(S33(1,1,

n-7)=2,/22 -2+

ABCGg(S (1,1,n— )) < ABCGg(Bn(n—?),l,l,l)).

;g > 0. Hence,

By Lemmas 3.5, 3.6, 3.7 and 3.8, the theorem follows. |
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