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Abstract

The question of finding extremal structures with respect to
various graph indices has received a lot of attention. Among these
indices, a large number are defined on vertex degrees. We consider a
typical generalization of the vertex-degree based indices of a graph
G defined by

If (G) =
∑

uv∈E(G)

f(d(u), d(v)),

where f(x, y) is symmetric bivariate function. We define a property
concerning f(x, y) and show that if f(x, y) admits this property and
G has a given matching number, then If (G) is upper bounded by
a graph with certain structure. Further, we show that the above
property is admitted by a large number of degree-based indices.
This means that the extremal structures of the graphs that have
given matching number and attain the maximum values of these
indices are the same.
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1 Introduction

In mathematical chemistry, particularly in QSPR/QSAR (quantitative

structure-property/activity relationship) investigation, a large number of

topological indices were introduced in an attempt to characterize the phy-

sico-chemical properties of molecules. In terms of graph theory, a molec-

ular is conveniently modeled as a graph or chemical graph and, thus, a

topological index can be measured by the distances between vertices, the

graph spectra or the degrees of the vertices in the graph. Among these

indices, the vertex-degree-based indices play important roles. Indeed, sev-

eral dozens of vertex-degree-based indices have been introduced and exten-

sively studied in the literature [16, 27, 40]. Probably the most studied are

the Randić connectivity index R and the first and second Zagreb indices

M1 and M2, respectively, which were introduced for the total π-energy of

alternant hydrocarbons [14,17].

A natural consideration in studying various degree-based indices is to

find a general approach that can be applied to as many indices as possible

in some way [25]. To this end, a general form of the degree-based indices

of a graph G was introduced [32], which is represented as the sum of a

function f(d(u), d(v)) among all the edges of G, i.e.,

If (G) =
∑

uv∈E(G)

f(d(u), d(v)), (1)

where f(x, y) is a real function with f(x, y) = f(y, x) ≥ 0, E(G) is the edge

set of G and, for a vertex v of G, d(v) is the degree of v. In the literature,

If (G) is also called the connectivity function [36] or bond incident degree

index [3, 38].

In this paper, we focus on the maximum value of If (G) for the graphs G

with given matching number. In fact, for some particular functions f(x, y),

the extremal value of If (G) received much attention in the literature. In

particular, when f(x, y) = x+y or f(x, y) = xy, If (G) is known as the first

Zagreb index M1(G) or second Zagreb index M2(G), respectively. In [8],

Feng and Ilić showed that if G is a graph with matching number β (the
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size of a maximum matching), then

Mi(G) ≤ max {Mi(H1),Mi(Hβ)}, i = 1, 2,

and the equality holds if and only if G = H1 or G = Hβ , where H1 =

K1 ∨ (K2β−1 ∪Kn−2β) and Hβ = Kβ ∨Kn−β .

Other particular forms of If (G) were also considered. In [37], using

the majorization of degree sequence, Yao et al. determined the extremal

graphs for general sum-connectivity index where f(x, y) = (x+y)α (α ≥ 1)

and the reformulated Zagreb index where f(x, y) = (x + y − 2)α among

the class of trees, unicyclic graphs and bicyclic graphs with fixed matching

number, respectively.

Motivated by the results above, we try to give a universal method

to characterize the extremal structures of the graphs with given matching

number that attain the maximum value of If (G). To this end, we introduce

the notion of the property P as follows:

Property P: A real function f(x, y) is called satisfying Property P if

f(x, y) > 0, ∂f(x,y)
∂x ≥ 0, d2f(x,x)

dx2 ≥ 0 and d2f(x,n−1)
dx2 ≥ 0

for any x ≥ 1 and y ≥ 1.

For two positive integers i and β, define the graph Hi as

Hi = Ki ∨
(
K2β+1−2i ∪Kn−2β−1+i

)
.

Let

Q(x) =
x(x− 1)

2
f(n− 1, n− 1) + x(2β − 2x+ 1)f(2β − x, n− 1)

+
(2β − 2x+ 1)(2β − 2x)

2
f(2β − x, 2β − x)

+ x(n− 2β − 1 + x)f(x, n− 1).

We note that Q(i) = If (Hi) for any i ∈ {1, 2, . . . , β}. In the following

section, we show that if f(x, y) satisfies Property P in the interval [1, β]×
[1, β], then for any graph G with given matching number β, If (G) ≤
max{If (Hi) : i = 1, 2, . . . , β}. In addition, if d2Q(x)

dx2 ≥ 0 for x ∈ [1, β],
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then If (G) ≤ max{If (H1), If (Hβ)}.

2 Main results

Let G be a simple graph. As usual, we use V (G) and E(G) to denote the

vertex set and edge set of G. For e ∈ E(G) (resp. e /∈ E(G)), we denote

by G − e (resp. G + e) the graph obtained from G by removing (resp.

adding) the edge e. A set M of edges in G is called a matching if M is

independent. In particular, if a matching M has |V (G)|/2 edges, then we

call M a perfect matching. The matching number β(G) of G is the number

of edges in a maximum matching.

A component of G is a maximal connected subgraph of G. For an

integer n > 0, we denote by Kn and Kn the complete graph and the

empty graph of n vertices, respectively. A component is called even (resp.,

odd) if it has an even (resp., odd) number of vertices. Let o(G) be the

number of odd components of G.

For two disjoint graphs G and H , we use G∪H to denote the union of

G and H, that is, V (G∪H) = V (G)∪V (H) and E(G∪H) = E(G)∪E(H).

Let G ∨H denote the graph obtained from G ∪H by adding an edge xy

for any x ∈ V (G) and y ∈ V (H), that is, V (G ∨H) = V (G) ∪ V (H) and

E(G ∨H) = E(G) ∪ E(H) ∪ {(x, y) : x ∈ V (G), y ∈ V (H)}.
Before proving the main result, we introduce some known results, which

will be used in our forthcoming argument.

Theorem 1. (Tutte-Berge formula, [28]) Let G be a graph with n vertices.

Then

β(G) =
1

2
(n−max{o(G− S)− |S| : S ⊂ V (G)}). (2)

For a real function f(x), in the following we also use f ′(x) and f ′′(x)

to denote df(x)
dx and d2f(x)

dx2 , respectively, if no confusion can occur.

Lemma 1. Let f(x) and g(x) be two real functions in the same domain.

If f(x) > 0, f ′(x) ≥ 0, f ′′(x) ≥ 0 and g(x) > 0, g′(x) ≥ 0, g′′(x) ≥ 0,

then f(x)g(x) and f(x) + g(x) are both convex. Further, if f ′′(x) > 0 or

g′′(x) > 0, then f(x)g(x) is strictly convex.
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Proof. Let h(x) = f(x).g(x) and k(x) = f(x) + g(x). Then

h′(x) = f ′(x)g(x) + f(x)g′(x), h′′(x) = f ′′(x)g(x) + f(x)g′′(x) + 2f ′(x)g′(x)

and

k′(x) = f ′(x) + g′(x), k′′(x) = f ′′(x) + g′′(x).

Therefore, the lemma follows immediately.

Lemma 2. Let G be a graph and e /∈ E(G). If f(x, y) satisfies Property

P, then

If (G) < If (G+ e).

Proof. Since adding new edges in a graph increases some vertex degrees,

the lemma obviously holds.

Based on the above two results, we now give our main result as follows:

Theorem 2. Let G be a connected graph with n vertices and matching

number β, n > 2β. If f(x, y) is a symmetric bivariate function with Prop-

erty P, then

If (G) ≤ max
1≤i≤β

{If (Hi)} .

Further, a graph G attains the maximum value of If (G) if and only if

G is one in {H1, H2, . . . ,Hβ} that attains max
1≤i≤β

{If (Hi)}.

Proof. We may assume that G admits the maximum value of If (G). By

Theorem 1, G has a set S0 of vertices such that

β =
1

2
(n− o(G− S0) + |S0|).

Denote i = |S0| and q = o(G−S0). Then n−2β = q−i. Let G1, G2, . . . , Gq

be all the odd components of G − S0. If G − S0 has an even component,

then we obtain a new graph G∗ by adding an edge in G between a vertex

of an even component and a vertex of an odd component of G− S0, then

β(G∗) ≥ β and β(G∗) ≤ 1
2 (n−o(G∗−S0)+|S0|) = 1

2 (n−o(G−S0)+|S0|) =
β. Further, by Lemma 2, If (G

∗) > If (G), which is a contradiction to the

maximality of G. Therefore, G−S0 does not contain any even component.
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Let |V (Gj)| = nj for j = 1, 2, . . . , q. We note that adding an edge in

any component Gj or the subgraph induced by S0 does not increase the

matching number but increases the value of If (G) by Lemma 2. So, again

by the maximality of G, we have

G = Ki ∨ (
⋃

1≤j≤q

Knj
).

Without loss of generality, we assume that n1 ≥ n2 ≥ . . . ≥ nq.

Claim 1. n2 = n3 = · · · = nq = 1.

Proof. Recall that n1, n2, . . . , nq are all odd. Suppose to the contrary that

n2 ≥ 3. Let

G′ = Ki ∨ (Kn1+2 ∪Kn2−2 ∪
⋃

3≤j≤q

Knj ).

Let E∗ be the set of edges incident with no vertex in V (G1∪G2). We note

that, for any uv ∈ E∗, f(dG(u), dG(v)) = f(dG′(u), dG′(v)). Recall that G

is a connected graph and f(x, y) is a nonnegative symmetric function. We

may assume that y ≥ x ≥ 1. Then by (1) and a direct computation, we

have

If (G) = in1f(n1 + i− 1, n− 1) +
(
n1

2

)
f(n1 + i− 1, n1 + i− 1)

+ in2f(n2 + i− 1, n− 1) +
(
n2

2

)
f(n2 + i− 1, n2 + i− 1)

+
∑

uv∈E∗

f(d(u), d(v))

and

If (G
′) = i(n1 + 2)f(n1 + i+ 1, n− 1) +

(
n1+2

2

)
f(n1 + i+ 1, n1 + i+ 1)

+ i(n2 − 2)f(n2 + i− 3, n− 1) +
(
n2−2

2

)
f(n2 + i− 3, n2 + i− 3)

+
∑

uv∈E∗

f(d(u), d(v)).
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Thus,

If (G
′)− If (G) = i(n1 + 2)f(n1 + i+ 1, n− 1)− in1f(n1 + i− 1, n− 1)

+ i(n2 − 2)f(n2 + i− 3, n− 1)− in2f(n2 + i− 1, n− 1)

+
(
n1+2

2

)
f(n1 + i+ 1, n1 + i+ 1)−

(
n1

2

)
f(n1 + i− 1, n1 + i− 1)

+
(
n2−2

2

)
f(n2 + i− 3, n2 + i− 3)−

(
n2

2

)
f(n2 + i− 1, n2 + i− 1).

Let S(x) = xf(x+ i− 1, n− 1) and T (x) = x(x−1)
2 f(x+ i− 1, x+ i− 1).

Recall that f(x, y) satisfies Property P, i.e.,

∂f(x, y)

∂x
≥ 0,

d2f(x, x)

dx2
≥ 0 and

d2f(x, n− 1)

dx2
≥ 0

for any x ≥ 1 and y ≥ 1. Then we have df(x,n−1)
dx ≥ 0, d2f(x,n−1)

dx2 ≥ 0

and df(x,x)
dx ≥ 0, d2f(x,x)

dx2 ≥ 0. Note that d
dx

(
x(x−1)

2

)
= x − 1

2 > 0 and

d2

dx2

(
x(x−1)

2

)
= 1 > 0. So by Lemma 1, S(x) is convex and T (x) is strictly

convex. Therefore, we have

S(n1 + 2)− S(n1) ≥ S(n2)− S(n2 − 2)

and

T (n1 + 2)− T (n1) > T (n2)− T (n2 − 2).

It follows that

If (G
′)− If (G) = i(S(n1 + 2)− S(n1) + S(n2 − 2)− S(n

2
))

+ T (n1 + 2)− T (n1) + T (n2 − 2)− T (n2)

> 0,

which contradicts the maximality of G.

By Claim 1, n2 = n3 = · · · = nq = 1 and thus n1 = n − i − (q − 1) =

2β − 2i+ 1. Therefore

G = Hi = Ki ∨
(
K2β−2i+1 ∪Kn−2β+i−1

)
,
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where 1 ≤ i ≤ β. As a result,

If (Hi) =
(
i
2

)
f(n− 1, n− 1) + i(2β − 2i+ 1)f(2β − i, n− 1)

+
(
2β−2i+1

2

)
f(2β − i, 2β − i) + i(n− 2β + i− 1)f(i, n− 1)

and we deduce that

If (G) ≤ max
1≤i≤β

{If (Hi)}.

The second part of the theorem follows directly from the argument

above, which completes our proof.

The following corollary is a direct consequence of Theorem 2.

Corollary 1. Let G be a connected graph, and let f(x, y) be a real sym-

metric function satisfying Property P and d2Q(x)
dx2 ≥ 0 for any real number

x with 1 ≤ x ≤ β < n
2 . Then

If (G) ≤ max{Hf (H1), Hf (Hβ)}.

The equality holds if and only if G = K1 ∨ (K2β−1 ∪ Kn−2β) when

Hf (H1) > Hf (Hβ) or G = Kβ ∨Kn−β when Hf (H1) < Hf (Hβ) or both

when Hf (H1) = Hf (Hβ).

3 Application

In this section we apply Theorem 2 and Corollary 1 to some known degree-

based indices. Recall that Q(1) = Hf (H1) and Q(β) = Hf (Hβ).

Example (Forgotten index F (G)). Let G be a connected graph of order n

with n ≥ 10 and matching number β. The Forgotten index of G is defined

as [10]

F (G) =
∑

uv∈E(G)

(d2u + d2v).

Let r be the largest real root of

17x3 + (−n− 15)x2 + (9− n)x+ 3n2 − n3 − 4n = 0.
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Then F (G) ≤ Q(β) if β < r and F (G) ≤ Q(1) if β > r, where

Q(β) = −β4 + β3n+ βn3 − 3βn2 + 3βn− β,

Q(1) = 16β4 − 32β3 + 24β2 − 10β + n3 − 3n2 + 4n.

The two upper bounds are attained only by Hβ or H1, respectively.

Proof. The weight function of F (G) is f(x, y) = x2 + y2. By a direct

calculation, we have ∂f(x, y)/∂x = 2x ≥ 0, d2f(x, x)/dx2 = 4 > 0 and

d2f(x, n − 1)/dx2 = 2 > 0. This means that f(x, y) satisfies Property P.

Further, again by a direct calculation, we have

Q(i) = i(i− 1)(n− 1)2 + i(2β − 2i+ 1)
(
(2β − i)2 + (n− 1)2

)
+ 2(2β − 2i+ 1)(β − i)(2β − i)2 + i(n− 2β + i− 1)

(
i2 + (n− 1)2

)
,

dQ(i)

di
= −40β3 + 12β2 (6i− 1) + 12β(1− 4i)i+ n3

− 3n2 + 3n
(
i2 + 1

)
+ 12i3 − 6i2 − 1,

d2Q(i)

di2
= 72β2 − 96βi+ 12β + 6ni+ 36i2 − 12i.

Since 1 ≤ i ≤ β < n
2 , 12β − 12i ≥ 0. In addition, we have

72β2 + 36i2 ≥ 12
√
72βi > 96βi.

Then we obtain d2Q(i)
di2 > 0. Hence, Q(i) is strictly convex function. So by

Corollary 1, we have

F (G) ≤ max {Q(1), Q(β)} (3)

with equality only if G = H1 or Hβ . Further, we can see by a direct
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calculation that

Q(1) = 16β4 − 32β3 + 24β2 − 10β + n3 − 3n2 + 4n,

Q(β) = −β4 + β3n+ βn3 − 3βn2 + 3βn− β.

Therefore,

Q(1)−Q(β) = 17β4 − β3n− 32β3 + 24β2 − βn3 + 3βn2

− 3βn− 9β + n3 − 3n2 + 4n

= (β − 1)
(
17β3 + (−n− 15)β2 + (9− n)β − n3 + 3n2 − 4n

)
.

Let H(x) = 17x3 + (−n − 15)x2 + (9 − n)x + (−n3 + 3n2 − 4n) and

H ′(x) = 51x2 − 10(2n+3)x+9− n = 0. Then, by a direct calculation we

obtain that for n ≥ 10, there are two real roots

x1 =
1

51

(
−
√
100n2 + 351n− 234 + 10n+ 15

)
< 0,

x2 =
1

51

(√
100n2 + 351n− 234 + 10n+ 15

)
> 0.

Therefore, H ′(x) > 0 in the interval (−∞, x1), H ′(x) < 0 in the in-

terval (x1, x2) and H ′(x) > 0 in the interval (x2,+∞). Let s(n) =
1
51

(√
100n2 + 351n− 234 + 10n+ 15

)
. It is easy to see for n ≥ 4, x2 ≥

s(4) > 2. Further, for n ≥ 10, we have H(0) = −n3 + 3n2 − 4n < 0,

which implies H(x2) < 0, and H(n2 ) = 1
8n(7n

2 − 10n + 4) > 0 by a di-

rect calculation. Recall that r is the largest root of H(x) = 0, meaning

that r lies in (x2,
n
2 ) and, hence r > x2 > 2. Therefore, r is the largest

root of Q(1) − Q(x) = 0. As a result, we have Q(1) < Q(β) if β < r and

Q(1) > Q(β) if β > r. Combining with (3), the proof is completed.

In the following table we list some vertex-degree-based indices and give

the calculating results for whether these indices satisfy Property P and

further satisfy d2Q(x)
dx2 ≥ 0 (in the table, the degree d(v) of a vertex v is

written by dv for simplicity).
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Table 1. Some vertex-degree-based indices, Property P and Q′′(i).

Indices f(du, dv) P Q′′(i) ≥ 0

Augmented Zagreb index [9] AZI(G) =
∑

uv∈E(G)

( dudv
du+dv−2 )

3 No Yes

Atom-bond connectivity index [5] ABC(G) =
∑

uv∈E(G)

( du+dv−2
dudv

)1/2 No No

Albertson index [2] Alb(G) =
∑

uv∈E(G)

|du − dv| No No

Dharwad index [19] D(G) =
∑

uv∈E(G)

√
d3
u + d3

v Yes ?

Extended Estrada index [26] EE(G) =
∑

uv∈E(G)

( du
dv

+ dv
du

)/2 No ?

First Zagreb index [17] Z1(G) =
∑

uv∈E(G)

du + dv Yes Yes

First hyper-Zagreb index [31] HM(G) =
∑

uv∈E(G)

(du + dv)
2 Yes Yes

Forgotten index [10] F (G) =
∑

u∈V (G)

(du)
3 =

∑
uv∈E(G)

(d2
u + d2

v) Yes Yes

First Gourava index [20] GO1(G) =
∑

uv∈E(G)

(du + dv + dudv) Yes Yes

First hyper-Gourava index [21] HGO1(G) =
∑

uv∈E(G)

(du + dv + dudv)
2 Yes Yes

General Sum connectivity index [41] χα(G) =
∑

uv∈E(G)

(du + dv)
α, α ≥ 1 Yes Yes

Generalized Randić index [4] R(G) =
∑

uv∈E(G)

(dudv)
α, α ≥ 1 Yes Yes

Geometric-arithmetic index [34] GA(G) =
∑

uv∈E(G)

( 2dudv
du+dv

)1/2 No Yes

Hyper F-index [11] HF (G) =
∑

uv∈E(G)

(d2
u + d2

v)
2 Yes Yes

Harmonic index [6] H(G) =
∑

uv∈E(G)

2
du+dv

No Yes

Inverse sum Indeg Index [35] ISI(G) =
∑

uv∈E(G)

dudv
du+dv

No Yes

Modified second Zagreb index [33] M∗
2 (G) =

∑
uv∈E(G)

1
dudv

No No

Modified Albertson index [39] Alb∗(G) =
∑

uv∈E(G)

|d2
u − d2

v| No No

Nirmala index [22] N(G) =
∑

uv∈E(G)

√
du + dv No No

Product connectivity Gourava index [23] PGO(G) =
∑

uv∈E(G)

1√
(du+dv)(dudv)

No ?

Randić connectivity index [30] R(G) =
∑

uv∈E(G)

1√
dudv

No No

Reformulated Zagreb index [29] Z(G) =
∑

uv∈E(G)

(du + dv − 2)2 Yes Yes

Reciprocal Randić index [12] RR(G) =
∑

uv∈E(G)

√
dudv No Yes

Second Zagreb index [17] Z2(G) =
∑

uv∈E(G)

dudv Yes Yes

Sum connectivity index [18] SCI(G) =
∑

uv∈E(G)

1√
du+dv

No Yes

Sigma index [15] σ(G) =
∑

uv∈E(G)

(du − dv)
2 No Yes

Sombor index [13] SO(G) =
∑

uv∈E(G)

√
d2
u + d2

v Yes ?

Second Gourava index [20] GO2(G) =
∑

uv∈E(G)

(du + dv)dudv Yes Yes

Second hyper-Gourava index [21] HGO2(G) =
∑

uv∈E(G)

[(du + dv)dudv ]
2 Yes Yes

Sum connectivity Gourava index [24] SGO(G) =
∑

uv∈E(G)

1√
du+dv+dudv

No ?

Second hyper-Zagreb index [7] HZ2(G) =
∑

uv∈E(G)

(dudv)
2 Yes ?

Y-index [1] Y (G) =
∑

u∈V (G)

d4
u =

∑
uv∈E(G)

(d3
u + d3

v) Yes Yes
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