Extremal Graphs for Vertex-Degree-Based Indices with Given Matching Number

Mihrigul Wali ${ }^{a, b}$, Jianguo Qian ${ }^{a, c}$, Chao Shi ${ }^{a, *}$
${ }^{a}$ School of Mathematical Sciences, Xiamen University, Xiamen 361005, P. R. China
${ }^{b}$ School of Statistics \& Data Science, Xinjiang University of Finance \& Economics, Xinjiang 830012, P. R. China
${ }^{c}$ School of Mathematics \& Statistics, Qinghai Minzu University, Xining 810007, P. R. China
layla224@sina.com, jgqian@xmu.edu.cn, cshi@aliyun.com

(Received January 20, 2023)

Abstract

The question of finding extremal structures with respect to various graph indices has received a lot of attention. Among these indices, a large number are defined on vertex degrees. We consider a typical generalization of the vertex-degree based indices of a graph G defined by $$
I_{f}(G)=\sum_{u v \in E(G)} f(d(u), d(v))
$$ where $f(x, y)$ is symmetric bivariate function. We define a property concerning $f(x, y)$ and show that if $f(x, y)$ admits this property and G has a given matching number, then $I_{f}(G)$ is upper bounded by a graph with certain structure. Further, we show that the above property is admitted by a large number of degree-based indices. This means that the extremal structures of the graphs that have given matching number and attain the maximum values of these indices are the same.

[^0]
1 Introduction

In mathematical chemistry, particularly in QSPR/QSAR (quantitative structure-property/activity relationship) investigation, a large number of topological indices were introduced in an attempt to characterize the phy-sico-chemical properties of molecules. In terms of graph theory, a molecular is conveniently modeled as a graph or chemical graph and, thus, a topological index can be measured by the distances between vertices, the graph spectra or the degrees of the vertices in the graph. Among these indices, the vertex-degree-based indices play important roles. Indeed, several dozens of vertex-degree-based indices have been introduced and extensively studied in the literature $[16,27,40]$. Probably the most studied are the Randić connectivity index R and the first and second Zagreb indices M_{1} and M_{2}, respectively, which were introduced for the total π-energy of alternant hydrocarbons [14, 17].

A natural consideration in studying various degree-based indices is to find a general approach that can be applied to as many indices as possible in some way [25]. To this end, a general form of the degree-based indices of a graph G was introduced [32], which is represented as the sum of a function $f(d(u), d(v))$ among all the edges of G, i.e.,

$$
\begin{equation*}
I_{f}(G)=\sum_{u v \in E(G)} f(d(u), d(v)), \tag{1}
\end{equation*}
$$

where $f(x, y)$ is a real function with $f(x, y)=f(y, x) \geq 0, E(G)$ is the edge set of G and, for a vertex v of $G, d(v)$ is the degree of v. In the literature, $I_{f}(G)$ is also called the connectivity function [36] or bond incident degree index [3, 38].

In this paper, we focus on the maximum value of $I_{f}(G)$ for the graphs G with given matching number. In fact, for some particular functions $f(x, y)$, the extremal value of $I_{f}(G)$ received much attention in the literature. In particular, when $f(x, y)=x+y$ or $f(x, y)=x y, I_{f}(G)$ is known as the first Zagreb index $M_{1}(G)$ or second Zagreb index $M_{2}(G)$, respectively. In [8], Feng and Ilić showed that if G is a graph with matching number β (the
size of a maximum matching), then

$$
M_{i}(G) \leq \max \left\{M_{i}\left(H_{1}\right), M_{i}\left(H_{\beta}\right)\right\}, \quad i=1,2
$$

and the equality holds if and only if $G=H_{1}$ or $G=H_{\beta}$, where $H_{1}=$ $K_{1} \vee\left(K_{2 \beta-1} \cup \overline{K_{n-2 \beta}}\right)$ and $H_{\beta}=K_{\beta} \vee \overline{K_{n-\beta}}$.

Other particular forms of $I_{f}(G)$ were also considered. In [37], using the majorization of degree sequence, Yao et al. determined the extremal graphs for general sum-connectivity index where $f(x, y)=(x+y)^{\alpha}(\alpha \geq 1)$ and the reformulated Zagreb index where $f(x, y)=(x+y-2)^{\alpha}$ among the class of trees, unicyclic graphs and bicyclic graphs with fixed matching number, respectively.

Motivated by the results above, we try to give a universal method to characterize the extremal structures of the graphs with given matching number that attain the maximum value of $I_{f}(G)$. To this end, we introduce the notion of the property \mathcal{P} as follows:
Property \mathcal{P} : A real function $f(x, y)$ is called satisfying Property \mathcal{P} if

$$
f(x, y)>0, \frac{\partial f(x, y)}{\partial x} \geq 0, \frac{d^{2} f(x, x)}{d x^{2}} \geq 0 \text { and } \frac{d^{2} f(x, n-1)}{d x^{2}} \geq 0
$$

for any $x \geq 1$ and $y \geq 1$.
For two positive integers i and β, define the graph H_{i} as

$$
H_{i}=K_{i} \vee\left(K_{2 \beta+1-2 i} \cup \overline{K_{n-2 \beta-1+i}}\right)
$$

Let

$$
\begin{aligned}
Q(x) & =\frac{x(x-1)}{2} f(n-1, n-1)+x(2 \beta-2 x+1) f(2 \beta-x, n-1) \\
& +\frac{(2 \beta-2 x+1)(2 \beta-2 x)}{2} f(2 \beta-x, 2 \beta-x) \\
& +x(n-2 \beta-1+x) f(x, n-1) .
\end{aligned}
$$

We note that $Q(i)=I_{f}\left(H_{i}\right)$ for any $i \in\{1,2, \ldots, \beta\}$. In the following section, we show that if $f(x, y)$ satisfies Property \mathcal{P} in the interval $[1, \beta] \times$ $[1, \beta]$, then for any graph G with given matching number $\beta, I_{f}(G) \leq$ $\max \left\{I_{f}\left(H_{i}\right): i=1,2, \ldots, \beta\right\}$. In addition, if $\frac{d^{2} Q(x)}{d x^{2}} \geq 0$ for $x \in[1, \beta]$,
then $I_{f}(G) \leq \max \left\{I_{f}\left(H_{1}\right), I_{f}\left(H_{\beta}\right)\right\}$.

2 Main results

Let G be a simple graph. As usual, we use $V(G)$ and $E(G)$ to denote the vertex set and edge set of G. For $e \in E(G)$ (resp. $e \notin E(G)$), we denote by $G-e$ (resp. $G+e$) the graph obtained from G by removing (resp. adding) the edge e. A set M of edges in G is called a matching if M is independent. In particular, if a matching M has $|V(G)| / 2$ edges, then we call M a perfect matching. The matching number $\beta(G)$ of G is the number of edges in a maximum matching.

A component of G is a maximal connected subgraph of G. For an integer $n>0$, we denote by K_{n} and \bar{K}_{n} the complete graph and the empty graph of n vertices, respectively. A component is called even (resp., $o d d$) if it has an even (resp., odd) number of vertices. Let $o(G)$ be the number of odd components of G.

For two disjoint graphs G and H, we use $G \cup H$ to denote the union of G and H, that is, $V(G \cup H)=V(G) \cup V(H)$ and $E(G \cup H)=E(G) \cup E(H)$. Let $G \vee H$ denote the graph obtained from $G \cup H$ by adding an edge $x y$ for any $x \in V(G)$ and $y \in V(H)$, that is, $V(G \vee H)=V(G) \cup V(H)$ and $E(G \vee H)=E(G) \cup E(H) \cup\{(x, y): x \in V(G), y \in V(H)\}$.

Before proving the main result, we introduce some known results, which will be used in our forthcoming argument.

Theorem 1. (Tutte-Berge formula, [28]) Let G be a graph with n vertices. Then

$$
\begin{equation*}
\beta(G)=\frac{1}{2}(n-\max \{o(G-S)-|S|: S \subset V(G)\}) \tag{2}
\end{equation*}
$$

For a real function $f(x)$, in the following we also use $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ to denote $\frac{\mathrm{d} f(x)}{\mathrm{d} x}$ and $\frac{\mathrm{d}^{2} f(x)}{\mathrm{d} x^{2}}$, respectively, if no confusion can occur.
Lemma 1. Let $f(x)$ and $g(x)$ be two real functions in the same domain. If $f(x)>0, f^{\prime}(x) \geq 0, f^{\prime \prime}(x) \geq 0$ and $g(x)>0, g^{\prime}(x) \geq 0, g^{\prime \prime}(x) \geq 0$, then $f(x) g(x)$ and $f(x)+g(x)$ are both convex. Further, if $f^{\prime \prime}(x)>0$ or $g^{\prime \prime}(x)>0$, then $f(x) g(x)$ is strictly convex.

Proof. Let $h(x)=f(x) . g(x)$ and $k(x)=f(x)+g(x)$. Then

$$
h^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x), \quad h^{\prime \prime}(x)=f^{\prime \prime}(x) g(x)+f(x) g^{\prime \prime}(x)+2 f^{\prime}(x) g^{\prime}(x)
$$

and

$$
k^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x), k^{\prime \prime}(x)=f^{\prime \prime}(x)+g^{\prime \prime}(x)
$$

Therefore, the lemma follows immediately.
Lemma 2. Let G be a graph and $e \notin E(G)$. If $f(x, y)$ satisfies Property \mathcal{P}, then

$$
I_{f}(G)<I_{f}(G+e)
$$

Proof. Since adding new edges in a graph increases some vertex degrees, the lemma obviously holds.

Based on the above two results, we now give our main result as follows:
Theorem 2. Let G be a connected graph with n vertices and matching number $\beta, n>2 \beta$. If $f(x, y)$ is a symmetric bivariate function with Property \mathcal{P}, then

$$
I_{f}(G) \leq \max _{1 \leq i \leq \beta}\left\{I_{f}\left(H_{i}\right)\right\}
$$

Further, a graph G attains the maximum value of $I_{f}(G)$ if and only if G is one in $\left\{H_{1}, H_{2}, \ldots, H_{\beta}\right\}$ that attains $\max _{1 \leq i \leq \beta}\left\{I_{f}\left(H_{i}\right)\right\}$.

Proof. We may assume that G admits the maximum value of $I_{f}(G)$. By Theorem 1, G has a set S_{0} of vertices such that

$$
\beta=\frac{1}{2}\left(n-o\left(G-S_{0}\right)+\left|S_{0}\right|\right)
$$

Denote $i=\left|S_{0}\right|$ and $q=o\left(G-S_{0}\right)$. Then $n-2 \beta=q-i$. Let $G_{1}, G_{2}, \ldots, G_{q}$ be all the odd components of $G-S_{0}$. If $G-S_{0}$ has an even component, then we obtain a new graph G^{*} by adding an edge in G between a vertex of an even component and a vertex of an odd component of $G-S_{0}$, then $\beta\left(G^{*}\right) \geq \beta$ and $\beta\left(G^{*}\right) \leq \frac{1}{2}\left(n-o\left(G^{*}-S_{0}\right)+\left|S_{0}\right|\right)=\frac{1}{2}\left(n-o\left(G-S_{0}\right)+\left|S_{0}\right|\right)=$ β. Further, by Lemma $2, I_{f}\left(G^{*}\right)>I_{f}(G)$, which is a contradiction to the maximality of G. Therefore, $G-S_{0}$ does not contain any even component.

Let $\left|V\left(G_{j}\right)\right|=n_{j}$ for $j=1,2, \ldots, q$. We note that adding an edge in any component G_{j} or the subgraph induced by S_{0} does not increase the matching number but increases the value of $I_{f}(G)$ by Lemma 2. So, again by the maximality of G, we have

$$
G=K_{i} \vee\left(\bigcup_{1 \leq j \leq q} K_{n_{j}}\right)
$$

Without loss of generality, we assume that $n_{1} \geq n_{2} \geq \ldots \geq n_{q}$.
Claim 1. $n_{2}=n_{3}=\cdots=n_{q}=1$.
Proof. Recall that $n_{1}, n_{2}, \ldots, n_{q}$ are all odd. Suppose to the contrary that $n_{2} \geq 3$. Let

$$
G^{\prime}=K_{i} \vee\left(K_{n_{1}+2} \cup K_{n_{2}-2} \cup \bigcup_{3 \leq j \leq q} K_{n_{j}}\right)
$$

Let E^{*} be the set of edges incident with no vertex in $V\left(G_{1} \cup G_{2}\right)$. We note that, for any $u v \in E^{*}, f\left(d_{G}(u), d_{G}(v)\right)=f\left(d_{G^{\prime}}(u), d_{G^{\prime}}(v)\right)$. Recall that G is a connected graph and $f(x, y)$ is a nonnegative symmetric function. We may assume that $y \geq x \geq 1$. Then by (1) and a direct computation, we have

$$
\begin{aligned}
I_{f}(G) & =i n_{1} f\left(n_{1}+i-1, n-1\right)+\binom{n_{1}}{2} f\left(n_{1}+i-1, n_{1}+i-1\right) \\
& +i n_{2} f\left(n_{2}+i-1, n-1\right)+\binom{n_{2}}{2} f\left(n_{2}+i-1, n_{2}+i-1\right) \\
& +\sum_{u v \in E^{*}} f(d(u), d(v))
\end{aligned}
$$

and

$$
\begin{aligned}
I_{f}\left(G^{\prime}\right) & =i\left(n_{1}+2\right) f\left(n_{1}+i+1, n-1\right)+\binom{n_{1}+2}{2} f\left(n_{1}+i+1, n_{1}+i+1\right) \\
& +i\left(n_{2}-2\right) f\left(n_{2}+i-3, n-1\right)+\binom{n_{2}-2}{2} f\left(n_{2}+i-3, n_{2}+i-3\right) \\
& +\sum_{u v \in E^{*}} f(d(u), d(v))
\end{aligned}
$$

Thus,

$$
\begin{aligned}
I_{f}\left(G^{\prime}\right) & -I_{f}(G)=i\left(n_{1}+2\right) f\left(n_{1}+i+1, n-1\right)-i n_{1} f\left(n_{1}+i-1, n-1\right) \\
& +i\left(n_{2}-2\right) f\left(n_{2}+i-3, n-1\right)-i n_{2} f\left(n_{2}+i-1, n-1\right) \\
& +\binom{n_{1}+2}{2} f\left(n_{1}+i+1, n_{1}+i+1\right)-\binom{n_{1}}{2} f\left(n_{1}+i-1, n_{1}+i-1\right) \\
& +\binom{n_{2}-2}{2} f\left(n_{2}+i-3, n_{2}+i-3\right)-\binom{n_{2}}{2} f\left(n_{2}+i-1, n_{2}+i-1\right)
\end{aligned}
$$

Let $S(x)=x f(x+i-1, n-1)$ and $T(x)=\frac{x(x-1)}{2} f(x+i-1, x+i-1)$. Recall that $f(x, y)$ satisfies Property \mathcal{P}, i.e.,

$$
\frac{\partial f(x, y)}{\partial x} \geq 0, \frac{d^{2} f(x, x)}{d x^{2}} \geq 0 \text { and } \frac{d^{2} f(x, n-1)}{d x^{2}} \geq 0
$$

for any $x \geq 1$ and $y \geq 1$. Then we have $\frac{\mathrm{d} f(x, n-1)}{d x} \geq 0, \frac{d^{2} f(x, n-1)}{d x^{2}} \geq 0$ and $\frac{d f(x, x)}{d x} \geq 0, \frac{d^{2} f(x, x)}{d x^{2}} \geq 0$. Note that $\frac{d}{d x}\left(\frac{x(x-1)}{2}\right)=x-\frac{1}{2}>0$ and $\frac{d^{2}}{d x^{2}}\left(\frac{x(x-1)}{2}\right)=1>0$. So by Lemma $1, S(x)$ is convex and $T(x)$ is strictly convex. Therefore, we have

$$
S\left(n_{1}+2\right)-S\left(n_{1}\right) \geq S\left(n_{2}\right)-S\left(n_{2}-2\right)
$$

and

$$
T\left(n_{1}+2\right)-T\left(n_{1}\right)>T\left(n_{2}\right)-T\left(n_{2}-2\right)
$$

It follows that

$$
\begin{aligned}
I_{f}\left(G^{\prime}\right)-I_{f}(G)= & i\left(S\left(n_{1}+2\right)-S\left(n_{1}\right)+S\left(n_{2}-2\right)-S\left(n_{2}\right)\right) \\
& +T\left(n_{1}+2\right)-T\left(n_{1}\right)+T\left(n_{2}-2\right)-T\left(n_{2}\right) \\
> & 0
\end{aligned}
$$

which contradicts the maximality of G.
By Claim 1, $n_{2}=n_{3}=\cdots=n_{q}=1$ and thus $n_{1}=n-i-(q-1)=$ $2 \beta-2 i+1$. Therefore

$$
G=H_{i}=K_{i} \vee\left(K_{2 \beta-2 i+1} \cup \overline{K_{n-2 \beta+i-1}}\right)
$$

where $1 \leq i \leq \beta$. As a result,

$$
\begin{aligned}
I_{f}\left(H_{i}\right) & =\binom{i}{2} f(n-1, n-1)+i(2 \beta-2 i+1) f(2 \beta-i, n-1) \\
& +\binom{2 \beta-2 i+1}{2} f(2 \beta-i, 2 \beta-i)+i(n-2 \beta+i-1) f(i, n-1)
\end{aligned}
$$

and we deduce that

$$
I_{f}(G) \leq \max _{1 \leq i \leq \beta}\left\{I_{f}\left(H_{i}\right)\right\}
$$

The second part of the theorem follows directly from the argument above, which completes our proof.

The following corollary is a direct consequence of Theorem 2.
Corollary 1. Let G be a connected graph, and let $f(x, y)$ be a real symmetric function satisfying Property \mathcal{P} and $\frac{d^{2} Q(x)}{d x^{2}} \geq 0$ for any real number x with $1 \leq x \leq \beta<\frac{n}{2}$. Then

$$
I_{f}(G) \leq \max \left\{H_{f}\left(H_{1}\right), H_{f}\left(H_{\beta}\right)\right\}
$$

The equality holds if and only if $G=K_{1} \vee\left(K_{2 \beta-1} \cup \overline{K_{n-2 \beta}}\right)$ when $H_{f}\left(H_{1}\right)>H_{f}\left(H_{\beta}\right)$ or $G=K_{\beta} \vee \overline{K_{n-\beta}}$ when $H_{f}\left(H_{1}\right)<H_{f}\left(H_{\beta}\right)$ or both when $H_{f}\left(H_{1}\right)=H_{f}\left(H_{\beta}\right)$.

3 Application

In this section we apply Theorem 2 and Corollary 1 to some known degreebased indices. Recall that $Q(1)=H_{f}\left(H_{1}\right)$ and $Q(\beta)=H_{f}\left(H_{\beta}\right)$.
Example (Forgotten index $F(G)$). Let G be a connected graph of order n with $n \geq 10$ and matching number β. The Forgotten index of G is defined as [10]

$$
F(G)=\sum_{u v \in E(G)}\left(d_{u}^{2}+d_{v}^{2}\right)
$$

Let r be the largest real root of

$$
17 x^{3}+(-n-15) x^{2}+(9-n) x+3 n^{2}-n^{3}-4 n=0
$$

Then $F(G) \leq Q(\beta)$ if $\beta<r$ and $F(G) \leq Q(1)$ if $\beta>r$, where

$$
\begin{aligned}
& Q(\beta)=-\beta^{4}+\beta^{3} n+\beta n^{3}-3 \beta n^{2}+3 \beta n-\beta \\
& Q(1)=16 \beta^{4}-32 \beta^{3}+24 \beta^{2}-10 \beta+n^{3}-3 n^{2}+4 n
\end{aligned}
$$

The two upper bounds are attained only by H_{β} or H_{1}, respectively.
Proof. The weight function of $F(G)$ is $f(x, y)=x^{2}+y^{2}$. By a direct calculation, we have $\partial f(x, y) / \partial x=2 x \geq 0, d^{2} f(x, x) / d x^{2}=4>0$ and $d^{2} f(x, n-1) / d x^{2}=2>0$. This means that $f(x, y)$ satisfies Property \mathcal{P}. Further, again by a direct calculation, we have

$$
\begin{aligned}
Q(i) & =i(i-1)(n-1)^{2}+i(2 \beta-2 i+1)\left((2 \beta-i)^{2}+(n-1)^{2}\right) \\
& +2(2 \beta-2 i+1)(\beta-i)(2 \beta-i)^{2}+i(n-2 \beta+i-1)\left(i^{2}+(n-1)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d Q(i)}{d i}=-40 \beta^{3}+12 \beta^{2}(6 i-1)+12 \beta(1-4 i) i+n^{3} \\
& \quad-3 n^{2}+3 n\left(i^{2}+1\right)+12 i^{3}-6 i^{2}-1 \\
& \frac{d^{2} Q(i)}{d i^{2}}=72 \beta^{2}-96 \beta i+12 \beta+6 n i+36 i^{2}-12 i
\end{aligned}
$$

Since $1 \leq i \leq \beta<\frac{n}{2}, 12 \beta-12 i \geq 0$. In addition, we have

$$
72 \beta^{2}+36 i^{2} \geq 12 \sqrt{72} \beta i>96 \beta i
$$

Then we obtain $\frac{d^{2} Q(i)}{d i^{2}}>0$. Hence, $Q(i)$ is strictly convex function. So by Corollary 1, we have

$$
\begin{equation*}
F(G) \leq \max \{Q(1), Q(\beta)\} \tag{3}
\end{equation*}
$$

with equality only if $G=H_{1}$ or H_{β}. Further, we can see by a direct
calculation that

$$
\begin{aligned}
& Q(1)=16 \beta^{4}-32 \beta^{3}+24 \beta^{2}-10 \beta+n^{3}-3 n^{2}+4 n, \\
& Q(\beta)=-\beta^{4}+\beta^{3} n+\beta n^{3}-3 \beta n^{2}+3 \beta n-\beta .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
Q(1)-Q(\beta) & =17 \beta^{4}-\beta^{3} n-32 \beta^{3}+24 \beta^{2}-\beta n^{3}+3 \beta n^{2} \\
& -3 \beta n-9 \beta+n^{3}-3 n^{2}+4 n \\
& =(\beta-1)\left(17 \beta^{3}+(-n-15) \beta^{2}+(9-n) \beta-n^{3}+3 n^{2}-4 n\right) .
\end{aligned}
$$

Let $H(x)=17 x^{3}+(-n-15) x^{2}+(9-n) x+\left(-n^{3}+3 n^{2}-4 n\right)$ and $H^{\prime}(x)=51 x^{2}-10(2 n+3) x+9-n=0$. Then, by a direct calculation we obtain that for $n \geq 10$, there are two real roots

$$
\begin{aligned}
& x_{1}=\frac{1}{51}\left(-\sqrt{100 n^{2}+351 n-234}+10 n+15\right)<0, \\
& x_{2}=\frac{1}{51}\left(\sqrt{100 n^{2}+351 n-234}+10 n+15\right)>0 .
\end{aligned}
$$

Therefore, $H^{\prime}(x)>0$ in the interval $\left(-\infty, x_{1}\right), H^{\prime}(x)<0$ in the interval $\left(x_{1}, x_{2}\right)$ and $H^{\prime}(x)>0$ in the interval $\left(x_{2},+\infty\right)$. Let $s(n)=$ $\frac{1}{51}\left(\sqrt{100 n^{2}+351 n-234}+10 n+15\right)$. It is easy to see for $n \geq 4, x_{2} \geq$ $s(4)>2$. Further, for $n \geq 10$, we have $H(0)=-n^{3}+3 n^{2}-4 n<0$, which implies $H\left(x_{2}\right)<0$, and $H\left(\frac{n}{2}\right)=\frac{1}{8} n\left(7 n^{2}-10 n+4\right)>0$ by a direct calculation. Recall that r is the largest root of $H(x)=0$, meaning that r lies in $\left(x_{2}, \frac{n}{2}\right)$ and, hence $r>x_{2}>2$. Therefore, r is the largest root of $Q(1)-Q(x)=0$. As a result, we have $Q(1)<Q(\beta)$ if $\beta<r$ and $Q(1)>Q(\beta)$ if $\beta>r$. Combining with (3), the proof is completed.

In the following table we list some vertex-degree-based indices and give the calculating results for whether these indices satisfy Property \mathcal{P} and further satisfy $\frac{d^{2} Q(x)}{d x^{2}} \geq 0$ (in the table, the degree $d(v)$ of a vertex v is written by d_{v} for simplicity).

Table 1. Some vertex-degree-based indices, Property \mathcal{P} and $Q^{\prime \prime}(i)$.

Indices
Augmented Zagreb index [9]
Atom-bond connectivity index [5]
Albertson index [2]
Dharwad index [19]
Extended Estrada index [26]
First Zagreb index [17]

First hyper-Zagreb index [31]
Forgotten index [10]
First Gourava index [20]
First hyper-Gourava index [21]
General Sum connectivity index [41]
Generalized Randić index [4]
Geometric-arithmetic index [34]
Hyper F-index [11]
Harmonic index [6]
Inverse sum Indeg Index [35]
Modified second Zagreb index [33]
Modified Albertson index [39]
Nirmala index [22]
Product connectivity Gourava index [23]
Randić connectivity index [30]
Reformulated Zagreb index [29]
Reciprocal Randić index [12]
Second Zagreb index [17]
Sum connectivity index [18]
Sigma index [15]
Sombor index [13]
Second Gourava index [20]
Second hyper-Gourava index [21]
Sum connectivity Gourava index [24]
Second hyper-Zagreb index [7]
Y-index [1]

$f\left(d_{u}, d_{v}\right)$	\mathcal{P}	$Q^{\prime \prime}(i) \geq 0$
$A Z I(G)=\sum_{u v \in E(G)}\left(\frac{d_{u} d_{v}}{d_{u}+d_{v}-2}\right)^{3}$	No	Yes
$A B C(G)=\sum_{i}\left(\frac{d_{u}+d_{v}-2}{d_{u} d_{v}}\right)^{1 / 2}$	No	No
$\operatorname{Alb}(G)=\sum_{u v \in E(G)}^{u v \in E(G)}\left\|d_{u}-d_{v}\right\|$	No	No
$D(G)=\sum_{u v \in E(G)} \sqrt{d_{u}^{3}+d_{v}^{3}}$	Yes	?
$E E(G)=\sum\left(\frac{d u}{d v}+\frac{d_{v}}{d_{u}}\right) / 2$	No	?
$Z_{1}(G)=\sum d_{u}+d_{v}$	Yes	Yes
$H M(G)=\sum_{\text {E }}\left(d_{u}+d_{v}\right)^{2}$	Yes	Yes
$F(G)=\sum_{u \in V(G)}\left(d_{u}\right)^{3}=\stackrel{u^{3} \in E(G)}{=} \sum_{u v \in E(G)}\left(d_{u}^{2}+d_{v}^{2}\right)$	Yes	Yes
$G O_{1}(G)=\sum_{v}\left(d_{u}+d_{v}+d_{u} d_{v}\right)$	Yes	Yes
$H G O_{1}(G)=\sum_{u v \in E(G)}\left(d_{u}+d_{v}+d_{u} d_{v}\right)^{2}$	Yes	Yes
$\chi_{\alpha}(G)=\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)^{\alpha}, \alpha \geq 1$	Yes	Yes
$R(G)=\sum_{u \in E(G)}\left(d_{u} d_{v}\right)^{\alpha}, \alpha \geq 1$	Yes	Yes
$G A(G)=\sum_{u v \in F(G)}\left(\frac{2 d_{u} d_{v}}{d_{u}+d_{v}}\right)^{1 / 2}$	No	Yes
$H F(G)=\sum_{u v \in E(G)}\left(d_{u}^{2}+d_{v}^{2}\right)^{2}$	Yes	Yes
$H(G)=\sum_{u v \in E(G)} \frac{2}{d_{u}+d_{v}}$	No	Yes
$\operatorname{ISI}(G)=\sum_{\text {(}} \frac{d_{u} d_{v}}{d_{u}+d_{v}}$	No	Yes
$M_{2}^{*}(G)=\sum_{i \in E(G)} \frac{1}{d_{u} d_{v}}$	No	No
$A l b^{*}(G)=\sum_{u v \in E(G)}\left\|d_{u}^{2}-d_{v}^{2}\right\|$	No	No
$N(G)=\sum^{(1)} \sqrt{d_{u}+d_{v}}$	No	No
$P G O(G)=\sum_{\sum_{i} \in E(G)} \frac{1}{\sqrt{\left(d_{u}+d_{v}\right)\left(d_{u} d_{i}\right.}}$	No	?
$R(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{u} d_{v}}}$	No	No
$Z(G)=\sum_{u v \in E(G)}\left(d_{u}+d_{v}-2\right)^{2}$	Yes	Yes
$R R(G)=\sum_{\text {c }} \sqrt{d_{u} d_{v}}$	No	Yes
$Z_{2}(G)=\sum^{\text {a }}$ ($d_{u} d_{v}$	Yes	Yes
$S C I(G)=\sum_{u v \in E(G)}^{u v \in E(G)} \frac{1}{\sqrt{d_{u}+d_{v}}}$	No	Yes
$\sigma(G)=\sum_{u v \in E(G)}\left(d_{u}-d_{v}\right)^{2}$	No	Yes
$S O(G)=\sum \sqrt{d_{u}^{2}+d_{v}^{2}}$	Yes	?
$G O_{2}(G)=\sum_{\text {a }}\left(d_{u}+d_{v}\right) d_{u} d_{v}$	Yes	Yes
$\mathrm{HGO}_{2}(G)=\sum_{\text {cen }}\left[\left(d_{u}+d_{v}\right) d_{u} d_{v}\right]^{2}$	Yes	Yes
$S G O(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{u}+d_{v}+d_{u} d_{v}}}$	No	?
$H Z_{2}(G)=\sum_{* E(G)}\left(d_{u} d_{v}\right)^{2}$	Yes	?
$Y(G)=\sum_{u \in V(G)} d_{u}^{4}{ }_{u}^{u v \in E(G)}=\sum_{u v \in E(G)}\left(d_{u}^{3}+d_{v}^{3}\right)$	Yes	Yes

Acknowledgment: The authors would like to thank the anonymous reviewers for their constructive suggestions. This research was supported by the National Natural Science Foundation of China [Grant number, 11971406].

References

[1] A. Alameri, N. Al-Naggar, M. Al-Rumaima, M. Alsharafi, Y-index of some graph operations, Int. J. Appl. Eng. Res. 15 (2020) 173-179.
[2] M. O. Albertson, The irregularity of a graph, Ars Comb. 46 (1997) 219-225.
[3] A. Ali, D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discr. Appl. Math. 238 (2018) 32-40.
[4] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Comb. 50 (1998) 225-233.
[5] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modeling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849-855.
[6] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Num. 60 (1987) 189-197.
[7] M. R. Farahani, M. R. R. Kanna, R. P. Kumar, On the hyper-Zagreb indices of nano-structures, Asian Acad. Res. J. Multidis. 3 (2016) 115-123.
[8] L. Feng, A. Ilić, Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number, Appl. Math. Lett. 23 (2010) 943-948.
[9] B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370-380.
[10] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
[11] S. Ghobadi, M. Ghorbaninejad, On F-polynomial, multiple and hyper F-index of some molecular graphs, Bull. Math. Sci. Appl. 20 (2018) 36-43.
[12] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
[13] I. Gutman, Geometric approach to degree-based topological indices: Sombor Indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.
[14] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[15] I. Gutman, M. Togan, A. Yurttas, A. S. Cevik, I. N. Cangul, Inverse problem for Sigma index, MATCH Commun. Math. Comput. Chem. 79 (2018) 491-508.
[16] I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors, vertex-degree-based topological indices, J. Serb. Chem. Soc. 78 (2013) 805-810.
[17] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[18] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[19] V. R. Kulli, Dharwad index, Int. J. Eng. Sci. Res. Technol. 10 (2021) 17-21.
[20] V. R. Kulli, The Gourava indices and coindices of graphs, Ann. Pure Appl. Math. 14 (2017) 33-38.
[21] V. R. Kulli, On hyper-Gourava indices and coindices, Int. J. Math. Arch. 8 (2017) 116-120.
[22] V. R. Kulli, Nirmala index, Int. J. Math. Trends Tech. 67 (2021) 8-12.
[23] V. R. Kulli, The product connectivity Gourava index, J. Comp. Math. Sci. 8 (2017) 235-242
[24] V. R. Kulli, On the sum connectivity Gourava index, Int. J. Math. Arch. 8 (2017) 211-217.
[25] X. Li, Indices, polynomials and matrices - A unified viewpoint, Invited talk at the 8th Slovenian Conf. Graph Theory, Kranjska Gora, June 21-27, 2015.
[26] J. Li, Q. Lu, N. Gao, Bounds of the extended Estrada index of graphs, Appl. Math. Comput. 317 (2018) 143-149.
[27] B. Liu, I. Gutman, Upper bounds for Zagreb indices of connected graphs, MATCH Commun. Math. Comput. Chem. 55 (2006) 439446.
[28] L. Lovász, M. D. Plummer, Matching Theory, Akadémiai KiadóNorth Holland, Budapest, 1986.
[29] A. Miličević, S. Nikolić, N. Trinajstić, On reformulated Zagreb indices, Mol. Divers. 8 (2004) 393-399.
[30] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[31] G. H. Shirdel, H. Rezapour, A. M. Sayadi, The hyper-Zagreb index of graph operations, Iran. J. Math. Chem. 4 (2013) 213-220.
[32] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
[33] N. Trinajstić, On modified Zagreb M_{2} index, Reported at the MATH/CHEM/COMP 2002, Dubrovnik, June 24-29, 2002.
[34] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-1376.
[35] D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta. 83 (2010) 243-260.
[36] H. Wang, Functions on adjacent vertex degrees of trees with given degree sequence, Central Eur. J. Math. 12 (2014) 1656-1663.
[37] Y. Yao, M. Liu, K. C. Das, Y. Ye, Some extremal results for vertex-degree-based invariants, MATCH Commun. Math. Comput. Chem. 81 (2019) 325-344.
[38] J. Ye, M. Liu, Y. Yao, K.C. Das, Extremal polygonal cacti for bond incident degree indices, Discr. Appl. Math. 257 (2019) 289-298.
[39] S. Yousaf, A. A. Bhatti, A. Ali, A note on the modified Albertson index, Util. Math. 117 (2020) 139-145.
[40] B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233-239.
[41] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.

[^0]: *Corresponding author.

