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Abstract

The question of finding extremal structures with respect to
various graph indices has received a lot of attention. Among these
indices, a large number are defined on vertex degrees. We consider a
typical generalization of the vertex-degree based indices of a graph
G defined by

LG = > fldw),dw)),

uweE(G)

where f(z,y) is symmetric bivariate function. We define a property
concerning f(z,y) and show that if f(x,y) admits this property and
G has a given matching number, then I;(G) is upper bounded by
a graph with certain structure. Further, we show that the above
property is admitted by a large number of degree-based indices.
This means that the extremal structures of the graphs that have
given matching number and attain the maximum values of these
indices are the same.
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1 Introduction

In mathematical chemistry, particularly in QSPR/QSAR (quantitative
structure-property/activity relationship) investigation, a large number of
topological indices were introduced in an attempt to characterize the phy-
sico-chemical properties of molecules. In terms of graph theory, a molec-
ular is conveniently modeled as a graph or chemical graph and, thus, a
topological index can be measured by the distances between vertices, the
graph spectra or the degrees of the vertices in the graph. Among these
indices, the vertex-degree-based indices play important roles. Indeed, sev-
eral dozens of vertex-degree-based indices have been introduced and exten-
sively studied in the literature [16,27,40]. Probably the most studied are
the Randi¢ connectivity index R and the first and second Zagreb indices
My and Ms, respectively, which were introduced for the total m-energy of
alternant hydrocarbons [14,17].

A natural consideration in studying various degree-based indices is to
find a general approach that can be applied to as many indices as possible
in some way [25]. To this end, a general form of the degree-based indices
of a graph G was introduced [32], which is represented as the sum of a
function f(d(u),d(v)) among all the edges of G, i.e.,

IH(G) = > fd(u),d(v)), (1)

uwweE(G)

where f(z,y) is a real function with f(z,y) = f(y,z) > 0, E(G) is the edge
set of G and, for a vertex v of G, d(v) is the degree of v. In the literature,
I;(G) is also called the connectivity function [36] or bond incident degree
index [3, 38].

In this paper, we focus on the maximum value of I;(G) for the graphs G
with given matching number. In fact, for some particular functions f(z,y),
the extremal value of I;(G) received much attention in the literature. In
particular, when f(z,y) = z+y or f(x,y) = zy, I;(G) is known as the first
Zagreb index M;(G) or second Zagreb index My(G), respectively. In [8],
Feng and Ili¢ showed that if G is a graph with matching number 5 (the
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size of a maximum matching), then
Ml(G) S max {Ml(Hl),Mz(Hg)}, ’L = 1,2,

and the equality holds if and only if G = H; or G = Hg, where H; =
Ky v (K23,1 UM) and Hg = Kﬁ \/m.

Other particular forms of I;(G) were also considered. In [37], using
the majorization of degree sequence, Yao et al. determined the extremal
graphs for general sum-connectivity index where f(z,y) = (x4+y)* (a > 1)
and the reformulated Zagreb index where f(z,y) = (x +y — 2)* among
the class of trees, unicyclic graphs and bicyclic graphs with fixed matching
number, respectively.

Motivated by the results above, we try to give a universal method
to characterize the extremal structures of the graphs with given matching
number that attain the maximum value of I;(G). To this end, we introduce
the notion of the property P as follows:

Property P: A real function f(z,y) is called satisfying Property P if

fla.y) >0, 2 > 0, SHat > 0 and L=l > 0

dx?

for any x > 1 and y > 1.
For two positive integers ¢ and /3, define the graph H; as

H,=K;V (K25+1—2z' U Kn—25—1+i) .

Let
Q(m):@f(n—l,n—1)+x(26—2m+1)f(26—x,n—1)
. (25—236—1—21)(2/6’—21‘)}0(25_%2[3_%)

+zx(n—28—-1+2z)f(x,n—1).

We note that Q(i) = I¢(H;) for any i € {1,2,...,5}. In the following
section, we show that if f(z,y) satisfies Property P in the interval [1, 8] x
[1,8], then for any graph G with given matching number 8, I;(G) <

max{I;(H;) : i = 1,2,...,5}. In addition, if dig(f) > 0 for z € [1, /],
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then If(G) < max{If(Hl),If(Hﬁ)}.

2 Main results

Let G be a simple graph. As usual, we use V(G) and E(G) to denote the
vertex set and edge set of G. For e € E(G) (resp. ¢ ¢ E(G)), we denote
by G — e (resp. G + e) the graph obtained from G by removing (resp.
adding) the edge e. A set M of edges in G is called a matching if M is
independent. In particular, if a matching M has |V (G)|/2 edges, then we
call M a perfect matching. The matching number B(G) of G is the number
of edges in a maximum matching.

A component of G is a maximal connected subgraph of G. For an
integer n > 0, we denote by K, and K, the complete graph and the
empty graph of n vertices, respectively. A component is called even (resp.,
odd) if it has an even (resp., odd) number of vertices. Let o(G) be the
number of odd components of G.

For two disjoint graphs G and H , we use GU H to denote the union of
G and H, that is, V(GUH) = V(G)UV(H) and E(GUH) = E(G)UE(H).
Let G V H denote the graph obtained from G U H by adding an edge zy
for any z € V(G) and y € V(H), that is, V(GV H) = V(G) UV (H) and
E(GVH)=EGUEMH)U{(z,y):z€V(G),ye V(H)}.

Before proving the main result, we introduce some known results, which

will be used in our forthcoming argument.

Theorem 1. (Tutte-Berge formula, [28]) Let G be a graph with n vertices.
Then

B(G) = %(n —max{o(G — §) — |S] : S € V(G)}). )

For a real function f(z), in the following we also use f’(x) and f”(x)

af d*f(x)

to denote % and —5-5~, respectively, if no confusion can occur.

Lemma 1. Let f(z) and g(x) be two real functions in the same domain.
If f(z) > 0, f'(x) > 0, f'(x) > 0 and g(x) > 0, ¢'x) > 0, ¢"(x) >0,
then f(x)g(x) and f(x) + g(x) are both convex. Further, if f"'(x) > 0 or
g"(x) >0, then f(x)g(x) is strictly convex.
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Proof. Let h(z) = f(x).g(z) and k(x) = f(x) + g(z). Then

K(z) = f'(z) + g'(x), K" (x) = f"(x) + 9" ().
Therefore, the lemma follows immediately. ]

Lemma 2. Let G be a graph and e ¢ E(G). If f(x,y) satisfies Property
P, then
If(G) < If(G + 6).

Proof. Since adding new edges in a graph increases some vertex degrees,

the lemma obviously holds. |
Based on the above two results, we now give our main result as follows:

Theorem 2. Let G be a connected graph with n vertices and matching
number 8, n > 2. If f(x,y) is a symmetric bivariate function with Prop-
erty P, then

15(G) < mavx {1;(H)}.

Further, a graph G attains the mazimum value of I;(G) if and only if
G is one in {Hy, Ha,...,Hg} that attains 1rga<xﬂ{If(Hi)}.

Proof. We may assume that G admits the maximum value of I;(G). By

Theorem 1, G has a set Sy of vertices such that
1
B = 5(” —o(G = Sp) + [Sol)-

Denote i = |Sp| and ¢ = o(G—Sp). Then n—28 = g—i. Let G1,Ga, ..., G,
be all the odd components of G — Sy. If G — Sy has an even component,
then we obtain a new graph G* by adding an edge in G between a vertex
of an even component and a vertex of an odd component of G — Sy, then
B(G*) > Band B(G*) < L(n—0(G*—S0)+|So]) = L (n—o0(G—S0)+S0l) =
B. Further, by Lemma 2, I;(G*) > I¢(G), which is a contradiction to the

maximality of G. Therefore, G — Sy does not contain any even component.
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Let |V(G;)| = n; for j =1,2,...,q. We note that adding an edge in

any component G; or the subgraph induced by Sy does not increase the

matching number but increases the value of I7(G) by Lemma 2. So, again

by the maximality of G, we have

G=KVv(|J En).

1<j<q

Without loss of generality, we assume that ny >no > ... >n

a-
Claim 1. np =n3 =---=n4 = 1.

Proof. Recall that nq,ng,...,n, are all odd. Suppose to the contrary that
ne > 3. Let

G = K; Vv (Knl+2 @] Kn2,2 @] U Kn])
3<7<q

Let E* be the set of edges incident with no vertex in V(G UG2). We note
that, for any wv € E*, f(dg(u),dg(v)) = f(dg/(u),de (v)). Recall that G
is a connected graph and f(z,y) is a nonnegative symmetric function. We
may assume that y > x > 1. Then by (1) and a direct computation, we

have

Ir(G) =ini f(m +i—1L,n—=1) 4+ () f(ni +i—1,n; +i—1)
+ingf(ne+i—1,n—1)+ (") f(ng+i—1,ng+i—1)
+ Y fld(u),d(v))

uveE*
and
(@) =it +2)f(m +i+1Ln—1)+ (") f(n+i+1,m +i+1)
+i(ne —2)f(na +i—3,n—1)+ (") f(na +i—3,n2+i—3)
+ > fd(u),d(v)).

uveE*
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Thus,

/(G = I;(G)=ilmi+2) f(ni+i+1,n—1)—in; f(ny +i—1,n— 1)
+i(ng —2)f(na+i—3,n—1)—ingf(na+i—1,n—1)
+ (M) fny i1y +i+ 1) — () fln +i—Ling +i—1)
+ (") fne+i—3,ma+i—3) — () f(na+i—1,ng+i—1).

Let S(z) =zf(z+i—1,n—1) and T(z) = @f(x—i—i—l,x—&—i—l).
Recall that f(z,y) satisfies Property P, i.e.,

0f(r.y) _ ) Pile.x)
Or — 7 dx?

d*f(z,n—1)

>0 and 122

>0

for any z > 1 and y > 1. Thenwehavewzo,wzo

and dfgf) > 0, dQJ;Sg’I) > (. Note that % (@) =z—3>0and

1
2
% (@) =1> 0. So by Lemma 1, S(z) is convex and T'(x) is strictly

convex. Therefore, we have
S(n1+2) — S(n1) > S(nz) — S(na — 2)
and
T(ny +2)—T(ny) > T(ng) — T(ng — 2).
It follows that

If(G,) — If(G) = Z(S(’Ill + 2) — S(nl) + S(ng - 2) — S(’Ilz))
+ T(nl + 2) — T(nl) + T(?’LQ — 2) - T(ng)

>0,
which contradicts the maximality of G. |
By Claim 1, ng =ng=---=ng=1and thusni =n—-i—(¢—1) =

28 — 2i 4+ 1. Therefore

G=H; =K;V (Kyp—2i11UKp_254i-1)
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where 1 < i < 3. As a result,

If(H) = () f(n—1n—1)+i(28 —2i+ 1) f(28 —i,n — 1)

4 (PN F28 - 0,28 — i) +i(n—28+i—1)f(i,n—1)

and we deduce that
I+(G) < max {I;(H;)}.

~ 1<i<p
The second part of the theorem follows directly from the argument

above, which completes our proof. |
The following corollary is a direct consequence of Theorem 2.

Corollary 1. Let G be a connected graph, and let f(z,y) be a real sym-
2
metric function satisfying Property P and %(f) > 0 for any real number

xwith1§x§ﬁ<%. Then
I+(G) < max{Hy(H1),H¢(Hg)}.

The equality holds if and only if G = Ky V (Kop—1 U K;,_23) when
H¢(Hy) > Hf(Hg) or G = KgV K,,_g when Hy(H1) < Hy(Hg) or both
when Hf(Hl) = Hf(HB).

3 Application

In this section we apply Theorem 2 and Corollary 1 to some known degree-
based indices. Recall that Q(1) = Hy(H,) and Q(B8) = Hy(Hp).
Example (Forgotten index F'(G)). Let G be a connected graph of order n
with n > 10 and matching number 5. The Forgotten index of G is defined
as [10]
F(G)= Y (di+dy).
wveE(G)

Let r be the largest real root of

1727 + (—n — 15)2® + (9 = n)a + 3n® — n® — 4n = 0.
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Then F(G) < Q(B) if B <r and F(G) < Q(1) if 8 > r, where

Q(B) = —B* + °n+ pn’® — 36n* + 36n — 3,
Q(1) = 168* — 328% 4+ 2482 — 108 + n® — 3n® + 4n.

The two upper bounds are attained only by Hg or H;, respectively.

Proof. The weight function of F(G) is f(z,y) = 2% + y%. By a direct
calculation, we have 0f(z,y)/0z = 2x > 0, d*f(x,z)/dz? = 4 > 0 and
d*f(x,n —1)/dz? = 2 > 0. This means that f(x,y) satisfies Property P.

Further, again by a direct calculation, we have

Q(i)=i(i—1)(n—1)? +i(28 —2i + 1) ((28 —i)* + (n — 1)?)

+2(28 - 2i+1)(B—i)(28 —i)* +i(n —28+i—1) (i + (n — 1)?),

10
2@ = —408% +126% (6i — 1) + 123(1 — 4i)i +n?
1
—3n*+3n (i +1) +124° — 6i° — 1,
d*Q(i
;?2(1) = 7287 — 968 + 125 + 6ni + 36i% — 12i.

Since 1 <7 < 8 < 5,128 — 127 > 0. In addition, we have

72/8% + 36i% > 12V/726i > 963i.

2?Q(i)
di?

Corollary 1, we have

Then we obtain > 0. Hence, Q(%) is strictly convex function. So by

F(G) <max{Q(1),Q(8)} (3)

with equality only if G = H; or Hg. Further, we can see by a direct
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calculation that

Q(1) = 1658* — 325 + 2487 — 108 + n® — 3n” + 4n,
Q(B) = —B* + B°n + pn® — 38n* + 36n — B.

Therefore,

Q1) — Q(B) = 175" — B°n — 328° + 248% — Bn® + 34n°
—38n—98+n°—3n%+4n
=(B-1) (178° + (—n —15)8° + (9 —n)B — n’ + 3n® — 4n)..

Let H(x) = 172% + (=n — 15)22 + (9 — n)x + (—n3 + 3n? — 4n) and
H'(z) = 5122 —10(2n+ 3)z + 9 — n = 0. Then, by a direct calculation we
obtain that for n > 10, there are two real roots

1
51

1
o (\/100112 3510 — 234+ 100 + 15) > 0.

1 (—\/100n2 3510 — 234 + 100 + 15) <0,

Therefore, H'(xz) > 0 in the interval (—oo,z1), H'(z) < 0 in the in-
terval (x1,22) and H'(x) > 0 in the interval (x9,+00). Let s(n) =
5% (\/100712 + 351n — 234 + 10n + 15). It is easy to see for n > 4, zo >
s(4) > 2. Further, for n > 10, we have H(0) = —n3 + 3n? — 4n < 0,
which implies H(z2) < 0, and H(%) = §n(7n? — 10n +4) > 0 by a di-

rect calculation. Recall that r is the largest root of H(z) = 0, meaning

that r lies in (22, §) and, hence r > x5 > 2. Therefore, r is the largest
root of @Q(1) — Q(x) = 0. As a result, we have Q(1) < Q(p) if § < r and
Q1) > Q(p) if B > r. Combining with (3), the proof is completed. |

In the following table we list some vertex-degree-based indices and give
the calculating results for whether these indices satisfy Property P and
further satisfy % > 0 (in the table, the degree d(v) of a vertex v is

written by d, for simplicity).
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Table 1. Some vertex-degree-based indices, Property P and Q" (7).

Indices f(du,dy) P Q") >0
Augmented Zagreb index (9] AZIG)= X (%)3 No Yes
weEB(G) Y
Atom-bond connectivity index [5] ABC(G)= > (%)1/2 No No
wweE(G)
Albertson index (2] Alb(G) = > |duy —dy| No No
wvEEB(G)
Dharwad index [19] DG)= > Jdi+d Yes ?
wweB(G)
Extended Estrada index [26] EEG) = X (% + 3—”)/2 No ?
wweB(G) U "
First Zagreb index [17] Z1(G) = > dy +dy Yes Yes
wwEE(G)
First hyper-Zagreb index [31] HM(G)= 3 (dy +dy)? Yes Yes
wEE(G)
Forgotten index [10] F(G)= Y (du)?®= X (d2+d?) | Yes Yes
weV(Q) wwEB(G)
First Gourava index [20] GO1(G) = > (du +dy + dudy) Yes Yes
wweB(G)
First hyper-Gourava index [21] HGO:(G) = > (du+do + dydy)? Yes Yes
wveB(G)
General Sum connectivity index [41] Xa(G)= Y (du+dy)¥, a>1 Yes Yes
uve€ B(G)
Generalized Randi¢ index [4] R(G)= Y (dudy)® a>1 Yes Yes
wweB(G)
Geometric-arithmetic index [34] GAG)= X (%‘i%ﬁ /2 No Yes
wv€E(G)
Hyper F-index [11] HF(G)= Y (d2+d2)? Yes Yes
woEE(G)
Harmonic index [6] H(G) = X ﬁ No Yes
wweB(G) Y
Inverse sum Indeg Index [35] IS1(G) = d,“fﬁ’{ No Yes
weB(G) Y
Modified second Zagreb index [33] M;(G)= ¥ T4 No No
weE(G) Y
Modified Albertson index [39] AWY(G) = > |dI —d?Z| No No
wweB(G)
Nirmala index [22] NG)= > Vdu+d, No No
wwEE(G)
Product connectivity Gourava index [23] PGOG) = ¥ —r-I=t No ?
woiB(a) Vit o) (@udy)
Randié¢ connectivity index [30] RG)= Y —— No No
wveB(G) Viudy
Reformulated Zagreb index [29] Z(G)= ¥ (dy+d, —2)? Yes Yes
wv€E(G)
Reciprocal Randi¢ index [12] RR(G)= X dyd, No Yes
wwEE(G)
Second Zagreb index [17] Z5(G) = > dudy Yes Yes
wweB(G)
Sum connectivity index [18 SCI(G) = —L No Yes
Y (8] @) r,.L-e%(G) Vdutdy
Sigma index [15] o(G)= 5 (du—dy)? No Yes
uwveE(G)
Sombor index [13] So@G)= X d2 +d? Yes ?
weB(G)
Second Gourava index [20] GO2(G) = > (duy+dy)dud, Yes Yes
wweB(G
Second hyper-Gourava index [21] HGO2(G) = Y [(du 4 dy)dudy)? Yes Yes
uwveE(G)
Sum connectivity Gourava index [24] sGoG) = ¥ —2L No ?
wwlB(G) VAt dotdudy
Second hyper-Zagreb index [7] HZ>(G)= Y (dudy)? Yes ?
wvEE(G)
Y-index [1] Y(G)= ¥ di= ¥ (@ +dd) Yes Yes
ueV(G) uwveE(G)
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