New Bounds on the Energy of a Graph

Noor A’lawiah Abd Aziz ${ }^{a, *}$, Nader Jafari Rad ${ }^{b}$, Hailiza Kamarulhaili ${ }^{c}$

${ }^{a}$ School of Mathematical Science, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
${ }^{b}$ Department of Mathematics, Shahed University, Tehran, Iran
${ }^{c}$ School of Mathematical Science, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
nooralawiah@gmail.com, n.jafarirad@gmail.com, hailiza@usm.my
(Received July 21, 2023)

Abstract

The energy of a graph G, denoted by $\mathcal{E}(G)$, is defined as the sum of the absolute values of all eigenvalues of G. It is proved in [MATCH Commun. Math. Comput. Chem. 79 (2018), 287-301] that $\mathcal{E}(G) \leq$ $2+\sqrt{(n-1)(2 m-4)}$ if G is a connected unicyclic graph. We prove a generalization of the above bound for all graphs G. We then prove a new sharp upper bound for the energy of bipartite graphs, and in particular we improve the famous bound $\mathcal{E}(G) \leq \frac{n}{\sqrt{8}}(\sqrt{n}+\sqrt{2})$ of Koolen and Moulton on bipartite graphs given in [Graphs Combin. 19 (2003), 131-135] under certain conditions. We also prove upper and lower bounds for the energy of graphs arisen by the Mycielski construction.

1 Introduction

Let $G=(V, E)$ be a simple undirected graph with vertex set $V=V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G),|E(G)|=m$. The order and size of G are $n=|V|$ and $m=|E|$, respectively. For a vertex $v_{i} \in V$, the degree

[^0]of v_{i}, denoted by $\operatorname{deg}\left(v_{i}\right)$ (or just d_{i}), is the number of edges incident to v. We denote by $K_{1, n-1}$ an star of order n and by K_{n} a complete graph of order n. A unicyclic graph is a graph with precisely one cyclic. A cactus graph is a graph that any two cycles of G have at most one common vertex. The adjacency matrix $A(G)$ of a graph G is defined by its entries as $a_{i j}=1$ if $v_{i} v_{j} \in E(G)$ and 0 otherwise. Let $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n-1} \geqslant \lambda_{n}$ denote the eigenvalues of $A(G)$. Then λ_{1} is called the spectral radius of G. For a graph G Mycielski's construction produces a graph $M(G)$ with $V(M(G))=V \cup U \cup\{w\}$ where $V=V(G)=\left\{v_{1}, \ldots, v_{n}\right\}, U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $E(M(G))=E(G) \cup\left\{u_{i} v: v \in N_{G}\left(v_{i}\right) \cup\{w\}, i=1, \ldots, n\right\}$. We define the k-th Mycielski graph of G, recursively by $M^{0}(G)=G$ and $M^{k+1}(G)=M\left(M^{k}(G)\right)$ for $k \geq 1$.

The graph energy is an invariant that was defined by Gutman [8] in his studies of mathematical chemistry. The energy of a graph G is defined as

$$
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

This concept is now a well studied concept, ($[4,7,9,10,12,13])$. Many researchers presented bounds for the energy of a graph. Recently, Alawiah et al. [2] proved the following upper bound for the energy of unicyclic graphs.

Theorem 1 ([2]). Let G be a non-empty, connected unicyclic graph with n vertices and m edges. Then

$$
\begin{equation*}
\mathcal{E}(G) \leq 2+\sqrt{(n-1)(2 m-4)} \tag{1}
\end{equation*}
$$

equality holds if and only if $G \cong C_{3}$.
Koolen and Moulton [6] proved the following upper bound for the energy of a bipartite graph.

Theorem 2 ([6]). Let G be a bipartite graph on $n>2$ vertices. Then

$$
\mathcal{E}(G) \leq \frac{n}{\sqrt{8}}(\sqrt{n}+\sqrt{2})
$$

We prove a generalizations of Theorem 1 for all graphs. The generalization is for any graph of order n having size $n-1+k$ for each $k \geq 1$. We then prove a new sharp upper bound for the energy of bipartite graphs that improves Theorem 2 for bipartite graphs of order n and size at least n under certain conditions. We also prove upper and lower bounds for the energy of graphs arisen by the Mycielski construction.

We use the following known results.
Theorem 3 ([1]). (i) If H_{1}, \ldots, H_{k} is an edge partition of G, then $\mathcal{E}(G) \leq$ $\sum_{i=1}^{k} \mathcal{E}\left(H_{i}\right)$.
(ii) If H_{1}, \ldots, H_{k} is a vertex partition of G, then $\mathcal{E}(G) \geq \sum_{i=1}^{k} \mathcal{E}\left(H_{i}\right)$.

Theorem 4 ([3]). If G is a graph with degree sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, then $\mathcal{E}(G) \leq \sum_{i=1}^{n} \sqrt{d_{i}}$.

Theorem 5 ([11]). If G is a connected unicyclic graph, then $\lambda_{1} \geq 2$.

2 A new bound on general graphs

In view of Theorem 1, clearly $m=n=(n-1)+1$ for a uncyclic graph G of order n and size m. We thus deduce a new type of Theorem 1 by replacing m with n to read that if G is a non-empty connected unicyclic graph with n vertices, then

$$
\begin{equation*}
\mathcal{E}(G) \leq 2+\sqrt{(n-1)(2 n-4)}, \tag{2}
\end{equation*}
$$

with equality if and only if $G \cong C_{3}$. In the following we generalize this for any graph G.

Theorem 6. If G is a non-empty connected graph of order n and size $m=(n-1)+k$, where $k \geq 1$, then

$$
\begin{equation*}
\mathcal{E}(G) \leq 2 k+\sqrt{(n-1)(2 n+2 k-6)}, \tag{3}
\end{equation*}
$$

with equality if and only if $G \cong C_{3}$.
Proof. We use an induction on k. The base step for $k=1$ holds by Theorem 1. Thus assume that $k>1$. Assume the result holds for all
connected graphs of order n and size $m^{\prime}=(n-1)+k^{\prime}$, where $1 \leq k^{\prime}<k$. Now consider the graph G of order n and size $m=(n-1)+k$. Observe that G has at least two cycles, since $m=n-1+k \geq n+1$. Let e be an edge of a cycle of G. Let $G^{\prime}=G-e$. Then G^{\prime} has size $m^{\prime}=(n-1)+k^{\prime}$, where $k^{\prime}=k-1$. By Theorem 3 (i),

$$
\begin{align*}
\mathcal{E}(G) & \leq 2+\mathcal{E}\left(G^{\prime}\right) \leq 2+2 k^{\prime}+\sqrt{(n-1)\left(2 n+2 k^{\prime}-6\right)} \tag{4}\\
& =2 k+\sqrt{(n-1)(2 n+2 k-8)} \tag{5}\\
& <2 k+\sqrt{(n-1)(2 n+2 k-6)} \tag{6}
\end{align*}
$$

as desired. For the equality part, following the above proof, from (6), we find that $k=1$. Now the result follows from Theorem 1 .

3 A new bound on bipartite graphs

In this section, we prove a new sharp upper bound for the energy of bipartite graphs.

Theorem 7. If G is a bipartite graph of order n and size $m=n-1+k$, where $k \geq 1$, then

$$
\mathcal{E}(G) \leq 2 k+2+\sqrt{(n-2)(2 m-2 k-6)}
$$

This bound is sharp for a cycle C_{4}.
Proof. The proof is by an induction on the number k. For the basis of the induction, assume that $k=1$, that is, G is a unicyclic bipartite graph. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be the eigenvalues of G. Then $\lambda_{n}=-\lambda_{1}$, since G is bipartite. By the Cauchy-Schwartz inequality,

$$
\begin{aligned}
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| & =2 \lambda_{1}+\sum_{i=2}^{n-1}\left|\lambda_{i}\right| \\
& \leq 2 \lambda_{1}+\sqrt{(n-2) \sum_{i=2}^{n-1}\left|\lambda_{i}^{2}\right|}=2 \lambda_{1}+\sqrt{(n-2)\left(2 m-2 \lambda_{1}^{2}\right)}
\end{aligned}
$$

It is evident that the function $f(x)=2 x+\sqrt{(n-2)\left(2 m-2 x^{2}\right)}$ is de-
creasing for $\sqrt{\frac{2 m}{n}} \leq x \leq \sqrt{m}$. Since $\sum_{i=1}^{n} \lambda_{i}^{2}=2 m$, we find that $\lambda_{1} \leq \sqrt{m}$. Note that clearly, $n \leq 2 m$. Thus by Theorem 5 , we find that $\sqrt{\frac{2 m}{n}} \leq 2 \leq \lambda_{1} \leq \sqrt{m}$. Now,

$$
\mathcal{E}(G) \leq f\left(\lambda_{1}\right) \leq f(2)=4+\sqrt{(n-2)(2 m-8)}
$$

Thus the base step of the induction holds. Assume that $k>1$ and the result is valid for all biprtite graphs of order n and size $m=n-1+k^{\prime}$, where $1 \leq k^{\prime}<k$. Now consider the bipartite graph G of order n and size $m=n-1+k$. Observe that G has at least two cycles, since $m=$ $n-1+k \geq n+1$. Let G^{\prime} be a bipartite graph arisen from G by removal of an edge e of a cycle of G. Then G^{\prime} has the same order n and size $m^{\prime}=m-1=n-1+k^{\prime}$, where $k^{\prime}=k-1$. Applying the inductive hypothesis, by Theorem 3,

$$
\begin{aligned}
\mathcal{E}(G) & \leq 2+\left(2 k^{\prime}+2+\sqrt{(n-2)\left(2 m^{\prime}-2 k^{\prime}-6\right)}\right) \\
& =2 k+2+\sqrt{(n-2)(2 m-2 k-6)}
\end{aligned}
$$

as desired.
To see the sharpness of this bound, consider a cycle C_{4}, where $n=m=$ 4 and $k=1$, and note that $\mathcal{E}\left(C_{4}\right)=4$ and $2 k+2+\sqrt{(n-2)(2 m-2 k-6)}$ $=4$.

Corollary 1. If G is a bipartite graph of order n and size $m=n-1+k$, where $k \geq 1$, then

$$
\mathcal{E}(G) \leq 2 k+2+\sqrt{(n-2)(2 n-8)}
$$

This bound is sharp.
Comparing the bound of Corollary 1 with the bound of Theorem 2, it is evident that for a wide range of graphs the bound of Corollary 1 is better than the bound of Theorem 2. More precisely, if $k \leq \frac{n}{2 \sqrt{8}}(\sqrt{n}+$ $\sqrt{2})-\frac{1}{2}(\sqrt{(n-2)(2 n-8)}-2)$, then the bound of Corollary 1 is better than the bound of Theorem 2. It is evident that $\frac{n}{2 \sqrt{8}}(\sqrt{n}+\sqrt{2})-$ $\frac{1}{2}(\sqrt{(n-2)(2 n-8)}-2) \rightarrow \infty$ as $n \rightarrow \infty$, thus we have a wider range of
$k s$ as the order of graph increases. In particular, this happens for graphs with very few edges.

4 Bounds for the energy of Mycielski graphs

We begin with the following observation
Observation 1. If G is a graph of order n, size m, then

$$
\mathcal{E}(M(G)) \leq \sqrt{n}+\sqrt{2 m n+n^{2}}+\sqrt{4 m n}
$$

Proof. Let G be a graph of order n, size m, and $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. By Theorem 4 and the Cauchy-Schwartz inequality we have

$$
\begin{aligned}
\mathcal{E}(M(G)) & \leq \sum_{v \in V(M(G))} \sqrt{\operatorname{deg}_{M(G)}(v)} \\
& =\sqrt{\operatorname{deg}_{M(G)}(w)}+\sum_{i=1}^{n} \sqrt{\operatorname{deg}_{M(G)}\left(u_{i}\right)}+\sum_{i=1}^{n} \sqrt{\operatorname{deg}_{M(G)}\left(v_{i}\right)} \\
& =\sqrt{n}+\sum_{i=1}^{n} \sqrt{d_{i}+1}+\sum_{i=1}^{n} \sqrt{2 d_{i}} \\
& \leq \sqrt{n}+\sqrt{n \sum_{i=1}^{n}\left(d_{i}+1\right)}+\sqrt{n \sum_{i=1}^{n} 2 d_{i}} \\
& =\sqrt{n}+\sqrt{2 m n+n^{2}}+\sqrt{4 m n} .
\end{aligned}
$$

We next prove upper and lower bounds for the energy of $M(G)$ in terms of the energy of G.

Theorem 8. Let G be a graph of order n, size m, and degree sequence $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$. Then

$$
\mathcal{E}(G)+2 \sqrt{n} \leq \mathcal{E}(M(G)) \leq \mathcal{E}(G)+\min \left\{2 \sqrt{n}+2 \sum_{i=1}^{n} \sqrt{d_{i}}, 2 \sum_{i=1}^{n} \sqrt{d_{i}+1}\right\}
$$

Proof. We first prove the upper bound. We partition the edge set of $M(G)$ into $n+2$ partitions as follows. Let $K_{1, n}$ be a star centered at w, and for
each vertex $v_{i} \in V(G)$ let $K_{1, \operatorname{deg}_{G}\left(v_{i}\right)}$ be a star centered at u_{i} and its leaves are $N_{G}\left(v_{i}\right)$. By Theorem 3 (i),

$$
\mathcal{E}(M(G)) \leq \mathcal{E}(G)+\mathcal{E}\left(K_{1, n}\right)+\sum_{i=1}^{n} \mathcal{E}\left(K_{1, \operatorname{deg}_{G}\left(v_{i}\right)}\right)
$$

Noting that $\mathcal{E}\left(K_{1, n}\right)=2 \sqrt{n}$ and $\mathcal{E}\left(K_{1, \operatorname{deg}_{G}\left(v_{i}\right)}\right)=2 \sqrt{\operatorname{deg}_{G}\left(v_{i}\right)}$, we find that $\mathcal{E}(M(G)) \leq \mathcal{E}(G)+2 \sqrt{n}+2 \sum_{i=1}^{n} \sqrt{d_{i}}$. We next partition the edge set of $M(G)$ into $n+1$ partitions as follows. For each vertex $v_{i} \in V(G)$ let $K_{1, \operatorname{deg}_{G}\left(v_{i}\right)+1}$ be a star centered at u_{i} and its leaves are $N_{G}\left(v_{i}\right) \cup\{w\}$. By Theorem 3 (i),

$$
\mathcal{E}(M(G)) \leq \mathcal{E}(G)+\sum_{i=1}^{n} \mathcal{E}\left(K_{1, \operatorname{deg}_{G}\left(v_{i}\right)+1}\right)
$$

Noting that $\mathcal{E}\left(K_{1, \operatorname{deg}_{G}\left(v_{i}\right)}\right)=2 \sqrt{\operatorname{deg}_{G}\left(v_{i}\right)+1}$, we find that $\mathcal{E}(M(G)) \leq$ $\mathcal{E}(G)+2 \sum_{i=1}^{n} \sqrt{d_{i}+1}$. Thus the upper bound follows.

We next prove the lower bound. We partition the vertex set of G into two partitions $V(G)$ and $V(M(G))-V(G)$. Note that the subgraph induced by $V(M(G))-V(G)$ is $K_{1, n}$. By Theorem 3 (ii), $\mathcal{E}(M(G)) \geq$ $\mathcal{E}(G)+\mathcal{E}\left(K_{1, n}\right)$. Now the result follows, since $\mathcal{E}\left(K_{1, n}\right)=2 \sqrt{n}$.

We note that both upper and lower bounds given in Theorem 8 can be achieved, for example if G is an edgeless graph.

Corollary 2. Let G be a graph of order n, size m, and degree sequence $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$. Then
(i) $\mathcal{E}(M(G)) \leq 2 \sqrt{n}+3 \sum_{i=1}^{n} \sqrt{d_{i}}$.
(ii) $\mathcal{E}(M(G)) \leq \sqrt{2 n}(\sqrt{2}+3 \sqrt{m})$.
(iii) $\quad \mathcal{E}(M(G)) \leq \mathcal{E}(G)+2 \sqrt{n}+2 \sqrt{2 m n}$.
(iv) $\mathcal{E}(M(G)) \leq \sqrt{\frac{n(M(G))-1}{2}}(2+\sqrt{3} \sqrt{2 m(M(G))-n(M(G))+1})$.
$(v) \quad \mathcal{E}(M(G)) \leq \mathcal{E}(G)+2 \sqrt{n(2 m+n)}$.
Proof. (i) This is an immediate consequence of Theorem 4.
(ii) By (i) and the Cauchy-Schwartz inequality we obtain that

$$
\mathcal{E}(M(G)) \leq 2 \sqrt{n}+3 \sum_{i=1}^{n} \sqrt{d_{i}} \leq 2 \sqrt{n}+3 \sqrt{n \sum_{i=1}^{n} d_{i}}=2 \sqrt{n}+3 \sqrt{n(2 m)}
$$

(iii) This follows by Theorem 8 and the Cauchy-Schwartz inequality.
(iv) This follows from (ii) and the facts that $n(M(G))=2 n(G)+1$ and $m(M(G))=n(G)+3(m(G))$.
(v) By the Cauchy-Schwartz inequality we obtain that

$$
2 \sum_{i=1}^{n} \sqrt{d_{i}+1} \leq 2 \sqrt{n \sum_{i=1}^{n}\left(d_{i}+1\right)}=2 \sqrt{n(2 m+n)} .
$$

Now the result follows from Theorem 8.
A simple graph G of order n is called hyperenergetic if $\mathcal{E}(G)>2(n-1)$. Balakrishnan [5] showed that if G is a hyperenergetic regular graph of order n with $\mathcal{E}(G)>3 n$, then $M(G)$ is hyperenergetic. It can be seen from the lower bound given in the Theorem 8 that if G is a hyperenergetic graph of order n with $\mathcal{E}(G)>4 n-2 \sqrt{n}+1$, then $M(G)$ is hyperenergetic.

Acknowledgment: We would like to thank the referees for careful evaluation of the paper and helpful comments.

References

[1] S. Akbari, E. Ghorbani, M. R. Oboudi, Edge addition, singular values, and energy of graphs and matrices, Lin. Algebra Appl. 430 (2009) 2192-2199.
[2] N. Alawiah, N. Jafari Rad, A. Jahanbani, H. Kamarulhaili, New upper bounds on the energy of a graph, MATCH Commun. Math. Comput. Chem. 79 (2018) 287-301.
[3] O. Arizmendi, O. Juarez-Romero, On bounds for the energy of graphs and digraphs, in: F. Galaz-García, J. C. P. Millán, P. Solórzano (Eds.), Contributions of Mexican Mathematicians Abroad in Pure and

Applied Mathematics Contemporary Mathematics, AMS, 2018, pp. 119.
[4] A. Aashtab, S. Akbari, N. Jafari Rad, H. Kamarulhaili, New upper bounds on the energy of a graph, MATCH Commun. Math. Comput. Chem. 90 (2023) 717-728.
[5] R. Balakrishnan,T. Kavaskar, The energy of the Mycielskian of a regular graph, Australas. J. Comb. 52 (2012) 163-171.
[6] J. H. Koolen, V. Moulton, Maximal energy bipartite graphs, Graphs Comb. 19 (2003) 131-135.
[7] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue and A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196-211.
[8] I. Gutman, The energy of a graph. Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978) 1-22.
[9] A. Jahanbani, J. R. Zambrano, Koolen-Moulton-type upper bounds on the energy of a graph, MATCH Commun. Math. Comput. Chem. 83 (2020) 497-518.
[10] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2010.
[11] Y. Hong, On the spectra of unicyclic graph, J. East China Norm. Univ. Natur. Sci. Ed. 1 (1986) 31-34.
[12] X. Ma, A low bound on graph energy in terms of minimum degree, MATCH Commun. Math. Comput. Chem. 81 (2019) 393-404.
[13] B. Zhou, Energy of a graph, MATCH Commun. Math. Comput. Chem. 51 (2004) 111-118.

[^0]: * Corresponding author.

