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Abstract

The energy of a graph G, denoted by E(G), is defined as the sum
of the absolute values of all eigenvalues ofG. It is proved in [MATCH
Commun. Math. Comput. Chem. 79 (2018), 287–301] that E(G) ≤
2+

√
(n− 1)(2m− 4) if G is a connected unicyclic graph. We prove

a generalization of the above bound for all graphs G. We then prove
a new sharp upper bound for the energy of bipartite graphs, and in
particular we improve the famous bound E(G) ≤ n√

8
(
√
n +

√
2) of

Koolen and Moulton on bipartite graphs given in [Graphs Combin.
19 (2003), 131–135] under certain conditions. We also prove upper
and lower bounds for the energy of graphs arisen by the Mycielski
construction.

1 Introduction

Let G = (V,E) be a simple undirected graph with vertex set V = V (G) =

{v1, v2, . . . . , vn} and edge set E(G), | E(G) |= m. The order and size of

G are n = |V | and m = |E|, respectively. For a vertex vi ∈ V , the degree
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of vi, denoted by deg(vi) (or just di), is the number of edges incident to v.

We denote by K1,n−1 an star of order n and by Kn a complete graph of

order n. A unicyclic graph is a graph with precisely one cyclic. A cactus

graph is a graph that any two cycles of G have at most one common

vertex. The adjacency matrix A(G) of a graph G is defined by its entries

as aij = 1 if vivj ∈ E(G) and 0 otherwise. Let λ1 ⩾ λ2 ⩾ · · · ⩾ λn−1 ⩾ λn

denote the eigenvalues of A(G). Then λ1 is called the spectral radius of

G. For a graph G Mycielski,s construction produces a graph M(G) with

V (M(G)) = V ∪U ∪{w} where V = V (G) = {v1, ..., vn}, U = {u1, ..., un}
and E(M(G)) = E(G) ∪ {uiv : v ∈ NG(vi) ∪ {w}, i = 1, ..., n}. We

define the k-th Mycielski graph of G, recursively by M0(G) = G and

Mk+1(G) = M(Mk(G)) for k ≥ 1.

The graph energy is an invariant that was defined by Gutman [8] in his

studies of mathematical chemistry. The energy of a graph G is defined as

E(G) =

n∑
i=1

| λi | .

This concept is now a well studied concept, ( [4, 7, 9, 10, 12, 13]). Many

researchers presented bounds for the energy of a graph. Recently, Alawiah

et al. [2] proved the following upper bound for the energy of unicyclic

graphs.

Theorem 1 ( [2]). Let G be a non-empty, connected unicyclic graph with

n vertices and m edges. Then

E(G) ≤ 2 +
√
(n− 1)(2m− 4), (1)

equality holds if and only if G ∼= C3.

Koolen and Moulton [6] proved the following upper bound for the en-

ergy of a bipartite graph.

Theorem 2 ( [6]). Let G be a bipartite graph on n > 2 vertices. Then

E(G) ≤ n√
8

(√
n+

√
2
)
.
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We prove a generalizations of Theorem 1 for all graphs. The general-

ization is for any graph of order n having size n − 1 + k for each k ≥ 1.

We then prove a new sharp upper bound for the energy of bipartite graphs

that improves Theorem 2 for bipartite graphs of order n and size at least

n under certain conditions. We also prove upper and lower bounds for the

energy of graphs arisen by the Mycielski construction.

We use the following known results.

Theorem 3 ( [1]). (i) If H1, ...,Hk is an edge partition of G, then E(G) ≤∑k
i=1 E(Hi).

(ii) If H1, ...,Hk is a vertex partition of G, then E(G) ≥
∑k

i=1 E(Hi).

Theorem 4 ( [3]). If G is a graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn,

then E(G) ≤
∑n

i=1

√
di.

Theorem 5 ( [11]). If G is a connected unicyclic graph, then λ1 ≥ 2.

2 A new bound on general graphs

In view of Theorem 1, clearly m = n = (n − 1) + 1 for a uncyclic graph

G of order n and size m. We thus deduce a new type of Theorem 1 by

replacing m with n to read that if G is a non-empty connected unicyclic

graph with n vertices, then

E(G) ≤ 2 +
√
(n− 1)(2n− 4) , (2)

with equality if and only if G ∼= C3. In the following we generalize this for

any graph G.

Theorem 6. If G is a non-empty connected graph of order n and size

m = (n− 1) + k, where k ≥ 1, then

E(G) ≤ 2k +
√
(n− 1)(2n+ 2k − 6) , (3)

with equality if and only if G ∼= C3.

Proof. We use an induction on k. The base step for k = 1 holds by

Theorem 1. Thus assume that k > 1. Assume the result holds for all
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connected graphs of order n and size m′ = (n− 1) + k′, where 1 ≤ k′ < k.

Now consider the graph G of order n and size m = (n − 1) + k. Observe

that G has at least two cycles, since m = n− 1 + k ≥ n+ 1. Let e be an

edge of a cycle of G. Let G′ = G− e. Then G′ has size m′ = (n− 1) + k′,

where k′ = k − 1. By Theorem 3 (i),

E(G) ≤ 2 + E(G′) ≤ 2 + 2k′ +
√
(n− 1)(2n+ 2k′ − 6) (4)

= 2k +
√
(n− 1)(2n+ 2k − 8) (5)

< 2k +
√
(n− 1)(2n+ 2k − 6) , (6)

as desired. For the equality part, following the above proof, from (6), we

find that k = 1. Now the result follows from Theorem 1.

3 A new bound on bipartite graphs

In this section, we prove a new sharp upper bound for the energy of bi-

partite graphs.

Theorem 7. If G is a bipartite graph of order n and size m = n− 1 + k,

where k ≥ 1, then

E(G) ≤ 2k + 2 +
√
(n− 2)(2m− 2k − 6) .

This bound is sharp for a cycle C4.

Proof. The proof is by an induction on the number k. For the basis of the

induction, assume that k = 1, that is, G is a unicyclic bipartite graph. Let

λ1 ≥ λ2 ≥ ... ≥ λn be the eigenvalues of G. Then λn = −λ1, since G is

bipartite. By the Cauchy-Schwartz inequality,

E(G) =

n∑
i=1

|λi| = 2λ1 +

n−1∑
i=2

|λi|

≤ 2λ1 +

√√√√(n− 2)

n−1∑
i=2

|λ2
i | = 2λ1 +

√
(n− 2)(2m− 2λ2

1).

It is evident that the function f(x) = 2x +
√
(n− 2)(2m− 2x2) is de-
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creasing for
√

2m
n ≤ x ≤

√
m. Since

∑n
i=1 λ

2
i = 2m, we find that

λ1 ≤
√
m. Note that clearly, n ≤ 2m. Thus by Theorem 5, we find

that
√

2m
n ≤ 2 ≤ λ1 ≤

√
m. Now,

E(G) ≤ f(λ1) ≤ f(2) = 4 +
√
(n− 2)(2m− 8) .

Thus the base step of the induction holds. Assume that k > 1 and the

result is valid for all biprtite graphs of order n and size m = n − 1 + k′,

where 1 ≤ k′ < k. Now consider the bipartite graph G of order n and

size m = n − 1 + k. Observe that G has at least two cycles, since m =

n− 1 + k ≥ n+ 1. Let G′ be a bipartite graph arisen from G by removal

of an edge e of a cycle of G. Then G′ has the same order n and size

m′ = m − 1 = n − 1 + k′, where k′ = k − 1. Applying the inductive

hypothesis, by Theorem 3,

E(G) ≤ 2 +
(
2k′ + 2 +

√
(n− 2)(2m′ − 2k′ − 6)

)
= 2k + 2 +

√
(n− 2)(2m− 2k − 6) .

as desired.

To see the sharpness of this bound, consider a cycle C4, where n = m =

4 and k = 1, and note that E(C4) = 4 and 2k+2+
√
(n− 2)(2m− 2k − 6)

= 4.

Corollary 1. If G is a bipartite graph of order n and size m = n− 1+ k,

where k ≥ 1, then

E(G) ≤ 2k + 2 +
√
(n− 2)(2n− 8) .

This bound is sharp.

Comparing the bound of Corollary 1 with the bound of Theorem 2,

it is evident that for a wide range of graphs the bound of Corollary 1 is

better than the bound of Theorem 2. More precisely, if k ≤ n
2
√
8
(
√
n +√

2) − 1
2 (
√
(n− 2)(2n− 8) − 2), then the bound of Corollary 1 is bet-

ter than the bound of Theorem 2. It is evident that n
2
√
8
(
√
n +

√
2) −

1
2 (
√
(n− 2)(2n− 8) − 2) → ∞ as n → ∞, thus we have a wider range of
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ks as the order of graph increases. In particular, this happens for graphs

with very few edges.

4 Bounds for the energy of Mycielski graphs

We begin with the following observation

Observation 1. If G is a graph of order n, size m, then

E(M(G)) ≤
√
n+

√
2mn+ n2 +

√
4mn.

Proof. Let G be a graph of order n, size m, and V (G) = {v1, ..., vn}. By

Theorem 4 and the Cauchy-Schwartz inequality we have

E(M(G)) ≤
∑

v∈V (M(G))

√
degM(G)(v)

=
√
degM(G)(w) +

n∑
i=1

√
degM(G)(ui) +

n∑
i=1

√
degM(G)(vi)

=
√
n+

n∑
i=1

√
di + 1 +

n∑
i=1

√
2di

≤
√
n+

√√√√n

n∑
i=1

(di + 1) +

√√√√n

n∑
i=1

2di

=
√
n+

√
2mn+ n2 +

√
4mn.

We next prove upper and lower bounds for the energy ofM(G) in terms

of the energy of G.

Theorem 8. Let G be a graph of order n, size m, and degree sequence

d1 ≥ d2 ≥ ... ≥ dn. Then

E(G) + 2
√
n ≤ E(M(G)) ≤ E(G) + min

{
2
√
n+ 2

n∑
i=1

√
di, 2

n∑
i=1

√
di + 1

}
.

Proof. We first prove the upper bound. We partition the edge set of M(G)

into n+ 2 partitions as follows. Let K1,n be a star centered at w, and for
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each vertex vi ∈ V (G) let K1,degG(vi) be a star centered at ui and its leaves

are NG(vi). By Theorem 3 (i),

E(M(G)) ≤ E(G) + E(K1,n) +

n∑
i=1

E(K1,degG(vi)).

Noting that E(K1,n) = 2
√
n and E(K1,degG(vi)) = 2

√
degG(vi), we find

that E(M(G)) ≤ E(G) + 2
√
n + 2

∑n
i=1

√
di. We next partition the edge

set of M(G) into n + 1 partitions as follows. For each vertex vi ∈ V (G)

let K1,degG(vi)+1 be a star centered at ui and its leaves are NG(vi) ∪ {w}.
By Theorem 3 (i),

E(M(G)) ≤ E(G) +

n∑
i=1

E(K1,degG(vi)+1).

Noting that E(K1,degG(vi)) = 2
√
degG(vi) + 1, we find that E(M(G)) ≤

E(G) + 2
∑n

i=1

√
di + 1. Thus the upper bound follows.

We next prove the lower bound. We partition the vertex set of G

into two partitions V (G) and V (M(G))− V (G). Note that the subgraph

induced by V (M(G)) − V (G) is K1,n. By Theorem 3 (ii), E(M(G)) ≥
E(G) + E(K1,n). Now the result follows, since E(K1,n) = 2

√
n.

We note that both upper and lower bounds given in Theorem 8 can be

achieved, for example if G is an edgeless graph.

Corollary 2. Let G be a graph of order n, size m, and degree sequence

d1 ≥ d2 ≥ ... ≥ dn. Then

(i) E(M(G)) ≤ 2
√
n+ 3

n∑
i=1

√
di.

(ii) E(M(G)) ≤
√
2n(

√
2 + 3

√
m).

(iii) E(M(G)) ≤ E(G) + 2
√
n+ 2

√
2mn.

(iv) E(M(G)) ≤
√

n(M(G))− 1

2

(
2 +

√
3
√

2m(M(G))− n(M(G)) + 1

)
.

(v) E(M(G)) ≤ E(G) + 2
√

n(2m+ n).

Proof. (i) This is an immediate consequence of Theorem 4.
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(ii) By (i) and the Cauchy-Schwartz inequality we obtain that

E(M(G)) ≤ 2
√
n+ 3

n∑
i=1

√
di ≤ 2

√
n+ 3

√√√√n

n∑
i=1

di = 2
√
n+ 3

√
n(2m).

(iii) This follows by Theorem 8 and the Cauchy-Schwartz inequality.

(iv) This follows from (ii) and the facts that n(M(G)) = 2n(G) + 1 and

m(M(G)) = n(G) + 3(m(G)).

(v) By the Cauchy-Schwartz inequality we obtain that

2

n∑
i=1

√
di + 1 ≤ 2

√√√√n

n∑
i=1

(di + 1) = 2
√

n(2m+ n).

Now the result follows from Theorem 8.

A simple graph G of order n is called hyperenergetic if E(G) > 2(n−1).

Balakrishnan [5] showed that if G is a hyperenergetic regular graph of order

n with E(G) > 3n, then M(G) is hyperenergetic. It can be seen from the

lower bound given in the Theorem 8 that if G is a hyperenergetic graph of

order n with E(G) > 4n− 2
√
n+ 1, then M(G) is hyperenergetic.
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