M A I C H MATCH Commun. Math. Comput. Chem. 91 (2024) 489-497

L . . ISSN: 0340-6253
Communications in Mathematical )
and in Computer Chemistry doi: 10.46793/match.91-2.489A

New Bounds on the Energy of a Graph

Noor A’lawiah Abd Aziz®**, Nader Jafari Rad’,
Hailiza Kamarulhaili®

@School of Mathematical Science, Universiti Sains Malaysia, 11800 USM
Penang, Malaysia
b Department of Mathematics, Shahed University, Tehran, Iran
¢School of Mathematical Science, Universiti Sains Malaysia, 11800 USM
Penang, Malaysia

nooralawiah@gmail.com, n.jafarirad@gmail.com, hailizaQusm.my

(Received July 21, 2023)

Abstract

The energy of a graph G, denoted by £(G), is defined as the sum
of the absolute values of all eigenvalues of G. It is proved in [MATCH
Commun. Math. Comput. Chem. 79 (2018), 287-301] that £(G) <
2+ +/(n —1)(2m — 4) if G is a connected unicyclic graph. We prove
a generalization of the above bound for all graphs G. We then prove
a new sharp upper bound for the energy of bipartite graphs, and in
particular we improve the famous bound £(G) < %(\/ﬁ +1/2) of
Koolen and Moulton on bipartite graphs given in [Graphs Combin.
19 (2003), 131-135] under certain conditions. We also prove upper
and lower bounds for the energy of graphs arisen by the Mycielski
construction.

1 Introduction

Let G = (V, E) be a simple undirected graph with vertex set V = V(G) =
{v1,v2,....,u,} and edge set E(G), | E(G) |= m. The order and size of

G are n = |V| and m = |E|, respectively. For a vertex v; € V, the degree
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of v;, denoted by deg(v;) (or just d;), is the number of edges incident to v.
We denote by K;,—1 an star of order n and by K, a complete graph of
order n. A wunicyclic graph is a graph with precisely one cyclic. A cactus
graph is a graph that any two cycles of G have at most one common
vertex. The adjacency matriz A(G) of a graph G is defined by its entries
as a;; = lif vv; € E(G) and 0 otherwise. Let Ay = Ao > - 2 Aiq = Ay
denote the eigenvalues of A(G). Then A; is called the spectral radius of
G. For a graph G Mycielski's construction produces a graph M (G) with
V(M(G)) =VUUU{w} where V =V (G) = {v1,...,von}, U = {u1, ..., un}
and E(M(G)) = E(G) U {u;v : v € Ng(v;) U{w},i = 1,...,n}. We
define the k-th Mycielski graph of G, recursively by M%(G) = G and
MM1(G) = M(M*(Q)) for k > 1.

The graph energy is an invariant that was defined by Gutman [8] in his

studies of mathematical chemistry. The energy of a graph G is defined as

n

EG) =Y 1Al

i=1

This concept is now a well studied concept, ( [4,7,9,10,12,13]). Many
researchers presented bounds for the energy of a graph. Recently, Alawiah
et al. [2] proved the following upper bound for the energy of unicyclic
graphs.

Theorem 1 ( [2]). Let G be a non-empty, connected unicyclic graph with

n vertices and m edges. Then

E(G) <24/ (n—1)2m —4), (1)
equality holds if and only if G = Cj.

Koolen and Moulton [6] proved the following upper bound for the en-
ergy of a bipartite graph.

Theorem 2 ( [6]). Let G be a bipartite graph on n > 2 vertices. Then

£@) < — (Vn+ \/5)

vl
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We prove a generalizations of Theorem 1 for all graphs. The general-
ization is for any graph of order n having size n — 1 + k for each k& > 1.
We then prove a new sharp upper bound for the energy of bipartite graphs
that improves Theorem 2 for bipartite graphs of order n and size at least
n under certain conditions. We also prove upper and lower bounds for the
energy of graphs arisen by the Mycielski construction.

We use the following known results.

Theorem 3 ( [1]). (i) If H1, ...,Hy, is an edge partition of G, then E(G) <
k

2im1 E(Hy).

(i) If Hy, ...,Hy, is a vertex partition of G, then £(G) > Zle E(H;).

Theorem 4 ( [3]). If G is a graph with degree sequence dy > dg > -+ > d,

then E(G) < X", V/d;.

Theorem 5 ( [11]). If G is a connected unicyclic graph, then Ay > 2.

2 A new bound on general graphs

In view of Theorem 1, clearly m = n = (n — 1) + 1 for a uncyclic graph
G of order n and size m. We thus deduce a new type of Theorem 1 by
replacing m with n to read that if G is a non-empty connected unicyclic

graph with n vertices, then

E(G)<24++/(n—1)2n—4), (2)
with equality if and only if G 22 Cj3. In the following we generalize this for
any graph G.

Theorem 6. If G is a non-empty connected graph of order n and size
m = (n—1)+k, where k > 1, then

E(G) <2k ++/(n—1)(2n + 2k — 6), (3)

with equality if and only if G = Cs.

Proof. We use an induction on k. The base step for & = 1 holds by
Theorem 1. Thus assume that k& > 1. Assume the result holds for all
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connected graphs of order n and size m’ = (n — 1) + k/, where 1 < k' < k.
Now consider the graph G of order n and size m = (n — 1) + k. Observe
that G has at least two cycles, sincem=n—1+k >n+ 1. Let e be an
edge of a cycle of G. Let G’ = G —e. Then G’ has size m' = (n — 1) + &/,
where k' = k — 1. By Theorem 3 (i),

E(G) < 24+&EG) <242 +/(n—1)2n+2K —6)  (4)
= 2k++/(n—1)(2n+ 2k —8) (5)
< 2k++/(n—1)2n+ 2k —6), (6)

as desired. For the equality part, following the above proof, from (6), we
find that £ = 1. Now the result follows from Theorem 1. |

3 A new bound on bipartite graphs

In this section, we prove a new sharp upper bound for the energy of bi-

partite graphs.

Theorem 7. If G is a bipartite graph of order n and size m =n — 1+ k,
where k > 1, then

E(GQ) < 2k+2++/(n—2)(2m —2k—6) .

This bound is sharp for a cycle Cy.

Proof. The proof is by an induction on the number k. For the basis of the
induction, assume that k = 1, that is, G is a unicyclic bipartite graph. Let
A1 > A9 > ... > )\, be the eigenvalues of G. Then A\, = —\q, since G is
bipartite. By the Cauchy-Schwartz inequality,

n—1
221 + Z [l
i—2

201 + 4| (R — 2)% [A2| = 2X1 + \/(n —2)(2m — 2)2).

It is evident that the function f(z) = 2z + /(n — 2)(2m — 222) is de-

£(a) :ZIM

IA
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creasing for /22 < z < /m. Since >; ;A? = 2m, we find that
A1 < /m. Note that clearly, n < 2m. Thus by Theorem 5, we find
that ,/277” <2< A < /m. Now,

E(G) < f(M) < f(2) =4+ (n=2)(2m —8) .

Thus the base step of the induction holds. Assume that £ > 1 and the

result is valid for all biprtite graphs of order n and size m = n — 1 + K/,

where 1 < k' < k. Now consider the bipartite graph G of order n and
size m = n — 1 + k. Observe that G has at least two cycles, since m =
n—1+4+k>n+1. Let G’ be a bipartite graph arisen from G by removal
of an edge e of a cycle of G. Then G’ has the same order n and size
m' ' =m-—1=mn—1+4+Fk, where ¥ = k — 1. Applying the inductive
hypothesis, by Theorem 3,

£@) < 2—|—<2k’+2+\/(n—2)(2m’—2k’—6)>
= 2k+2++/(n—2)(2m —2k—6) .

as desired.

To see the sharpness of this bound, consider a cycle Cy, where n = m =
4 and k = 1, and note that £(Cy) = 4 and 2k+2++/(n — 2)(2m — 2k — 6)
= 4. |

Corollary 1. If G is a bipartite graph of order n and size m =n—1+k,
where k > 1, then

E@G) < 2k+2+/(n—2)2n—8) .

This bound is sharp.

Comparing the bound of Corollary 1 with the bound of Theorem 2,
it is evident that for a wide range of graphs the bound of Corollary 1 is

better than the bound of Theorem 2. More precisely, if k& < 2"%(\/77 +

V2) — 1(y/(n—2)(2n — 8) — 2), then the bound of Corollary 1 is bet-
ter than the bound of Theorem 2. It is evident that QL\/g(\/ﬁ +2) —

1(v/(n—2)(2n — 8) — 2) — oo as n — oo, thus we have a wider range of
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ks as the order of graph increases. In particular, this happens for graphs
with very few edges.
4 Bounds for the energy of Mycielski graphs

We begin with the following observation

Observation 1. If G is a graph of order n, size m, then

E(M(G)) < v/n+ V2mn+n? + Vdmn.

Proof. Let G be a graph of order n, size m, and V(G) = {v,...,v,}. By
Theorem 4 and the Cauchy-Schwartz inequality we have

E(M(G)) < Z \/degar(e (v)
veV(M(G))
= \/degy ) (w —I—Z,/degM(G) U +Zq/degM(G) v;)
= ﬁ+2\/di+1+2\/2di
i=1 i=1
<

Vit [ n) (di+ 1)+ |n ) 2d;
=1

i=1

= /n+V2mn+n? 4+ Vdmn.

We next prove upper and lower bounds for the energy of M (G) in terms

of the energy of G.

Theorem 8. Let G be a graph of order n, size m, and degree sequence
dl Z d2 Z Z dn Then

E(G) +2vn < EM(G)) < E(Q) +min{2\/ﬁ+22ﬂ:\/d7,22n:\/di + 1}.

Proof. We first prove the upper bound. We partition the edge set of M (G)

into n + 2 partitions as follows. Let K, ,, be a star centered at w, and for
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each vertex v; € V(G) let K geg . (v;) be a star centered at u; and its leaves
are Ng(v;). By Theorem 3 (i),

EM(G)) < EG) +E(E1n) + Y E(K1 degy(o))-

i=1

Noting that £(K1,) = 2y/n and E(K1 deg.(v)) = 2v/degg(vi), we find
that E(M(G)) < E(G) +2y/n+ 23", V/d;. We next partition the edge
set of M(G) into n + 1 partitions as follows. For each vertex v; € V(G)
let K} qeg,,(v;)+1 De a star centered at u; and its leaves are Ng(v;) U {w}.
By Theorem 3 (i),

n

EM(@)) <EG) + Z‘g(Kl,degG(vi)Jrl)'
i=1
Noting that &(K1 geg,(v;)) = 2v/degg(vi) + 1, we find that £(M(G)) <
E(G)+2Y" ,v/d; + 1. Thus the upper bound follows.

We next prove the lower bound. We partition the vertex set of G
into two partitions V(G) and V(M (G)) — V(G). Note that the subgraph
induced by V(M(G)) — V(G) is K;,. By Theorem 3 (i), £E(M(G)) >
E(G) + E(K1,,). Now the result follows, since £(K7 ,,) = 24/n. |

We note that both upper and lower bounds given in Theorem 8 can be

achieved, for example if G is an edgeless graph.

Corollary 2. Let G be a graph of order n, size m, and degree sequence
d1 Z dg 2 2 dn Then

(i)  EM(G)) <2vn+3 i Vd;.

(i)  EM(G)) < V2n(V2 4;3%).
(iii)  E(M(GQ)) < E(G) + 2v/n + 2V/2mn.

n(M(G)) -1
2

(v)  EM(G)) < E(G) + 2y/n(@m + n).

(iv) EM(G)) < (2 +V32m(M(G)) — n(M(G)) + 1).

Proof. (i) This is an immediate consequence of Theorem 4.
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(ii) By (i) and the Cauchy-Schwartz inequality we obtain that

EM(Q)) < 2\/E+3i\/di- <2yn+3 nidi = 2vn + 3v/n(2m).

(iii) This follows by Theorem 8 and the Cauchy-Schwartz inequality.

(iv) This follows from (ii) and the facts that n(M(G)) = 2n(G) + 1 and
m(M(G)) = n(G) + 3(m(G)).

(v) By the Cauchy-Schwartz inequality we obtain that

23 Vdi+1<2,|n> (di+1) =2y/n2m +n).
i=1 i=1

Now the result follows from Theorem 8. [ |

A simple graph G of order n is called hyperenergetic if £(G) > 2(n—1).
Balakrishnan [5] showed that if G is a hyperenergetic regular graph of order
n with £(G) > 3n, then M (G) is hyperenergetic. It can be seen from the
lower bound given in the Theorem 8 that if G is a hyperenergetic graph of
order n with £(G) > 4n — 2¢/n + 1, then M (G) is hyperenergetic.

Acknowledgment: We would like to thank the referees for careful eval-
uation of the paper and helpful comments.
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