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Abstract

A kinetic system has an absolute concentration robustness
(ACR) for a molecular species if its concentration remains the same
in every positive steady state of the system. Just recently, a con-
dition that sufficiently guarantees the existence of an ACR in a
rank-one mass-action kinetic system was found. In this paper, it
will be shown that this ACR criterion does not extend in general
to power-law kinetic systems. Moreover, we also discussed in this
paper a necessary condition for ACR in multistationary rank-one
kinetic system which can be used in ACR analysis. Finally, a con-
cept of equilibria variation for kinetic systems which are based on
the number of the system’s ACR species will be introduced here.
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1 Introduction

Robustness is the capacity of a system to maintain essential functions

in the presence of internal or external stresses [18]. It is an important

characteristic that helps biological systems adapt to environmental changes

and thrive. Several types of robustness have already been identified, but

this paper focuses on the kind that requires the positive steady states of a

system to possess certain qualities.

As defined in [27], a biological system has an absolute concentration

robustness (ACR) for a molecular species if in every positive steady state,

the system admits, the concentration of the said species is the same. The

identification of the steady states of a system is not an easy task, mak-

ing this property difficult to determine. Shinar and Feinberg provided a

sufficient condition that guarantees a deficiency-one mass-action kinetic

(MAK) system exhibits an ACR [27]. The said condition requires the cor-

responding network to have two non-terminal complexes that differ only

in a specific species. This structural condition can be easily observed in

most small networks and thus offers some advantages.

In 2018, Fortun et al. showed that the result of Shinar and Feinberg

can be readily extended to deficiency-one power-law kinetic systems with

reactant-determined interactions (PL-RDK) [11]. A PL-RDK system is a

kinetic system that is more general than the MAK system which requires

reactions with the same reactant complex to have identical kinetic order

vectors. In a MAK system, the elements of a kinetic order vector are the

stoichiometric coefficients in the corresponding reactant complex.

The deficiency-one requirement of the results mentioned above is sig-

nificantly limiting when it comes to analyzing the capacity of a system to

admit an ACR. Fortunately, Fortun and Mendoza [12] and Lao et al. [19]

came up with more general results which do not require a network to have

a specific deficiency. Their results utilized the concept of network decom-

position which is done by partitioning the reaction set of the network such

that each partition generates a network (called subnetwork) smaller than

the given network. The analysis then focuses on the low-deficiency sub-

networks (with a deficiency of at most one) that contain a Shinar-Feinberg
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pair (SF-pair). An SF-pair is a pair of reactions with kinetic order vectors

that only differ in a particular species. This result allows the ACR deter-

mination to be confined to the identified subnetworks that are relatively

easier to handle.

Recently, Meshkat et al. [21] provided a necessary and sufficient condi-

tion for the existence of stable ACR in a rank-one MAK system. A system

has a stable ACR if it has an ACR such that each of its positive steady

states is stable. However, this ACR criterion does not extend in general

to PL-RDK systems, in contrast to the sufficient conditions for low defi-

ciency systems by Horn and Jackson in 1972 [16] (as generalized by Fortun

and Mendoza in 2021 [12]) and Shinar and Feinberg in 2010 [27]. Coun-

terexamples and examples of PL-RDK systems for the ACR criterion are

discussed in this paper.

This paper also discussed a necessary condition for ACR in multista-

tionary rank-one kinetic systems. The use of this condition in ACR anal-

ysis is illustrated by examples from classes of multistationary rank-one

mass-action systems introduced by Pantea and Voitiuk in 2022 [28]. In

addition, a concept of equilibria variation for kinetic systems based on the

number of ACR species is introduced here. Its basic properties are de-

rived and a general low bound is computed for deficiency zero PL-RDK

systems. For multistationary rank-one systems, however, the necessary

condition leads to a much sharper lower bound.

This is how this paper was organized. Fundamental concepts on chem-

ical reaction networks, kinetic systems, and robustness are provided in

Section 2. In Section 3, the problem of extending the result of Meshkat

et al. in PLK sytem is presented. A necessary condition for ACR in

rank-one multistationary kinetic system is given in Section 4. ACR and

equilibria variation are discussed in Section 5. A summary and an outlook

are provided in the last section.



456

2 Fundamentals of chemical reaction

networks and kinetic systems

2.1 Structure of chemical reaction networks

We review in this section some necessary concepts and results on chemical

reaction networks, the details of which can be found in [2, 6, 12].

First, we introduce some notations used in this paper. The sets of

real numbers, non-negative real numbers, and positive real numbers are

denoted, respectively, by R,R≥0, and R>0. Given that I is a finite index

set, RI denotes the usual vector space of real-valued functions with do-

main I where addition, subtraction, and scalar multiplication are defined

the usual way. For x ∈ RI and i ∈ I , xi denotes the ith coordinate of x.

If x ∈ RI
>0 and y ∈ RI , then xy ∈ RI

>0 is defined to be xy =
∏
i∈I

xyi

i . We

also define the support of x ∈ RI , denoted by supp x, to be the subset of

I assigned with non-zero components of x, i.e., supp x := {i ∈ I |xi ̸= 0}.

Definition 2.1.1. A chemical reaction network (CRN) is a triple N =

(S ,C ,R) of non-empty finite sets:

1. a set species S ;

2. a set C of complexes, which are non-negative integer linear combi-

nations of the species; and

3. a set R ⊆ C × C of reactions such that

• (y, y) /∈ R for all y ∈ C , and

• for each y ∈ C , there exists a y′ ∈ C such that (y, y′) ∈ R or

(y′, y) ∈ R.

The non-negative coefficients of the species in a complex are referred to

as stoichiometric coefficients. In this paper, a reaction Ri = (yi, y
′
i)

is also denoted by Ri : yi → y′i and yi and y′i are called the reactant

and product complexes of Ri, respectively. Further, we use the symbols

m,n, and r to denote the numbers of species, complexes, and reactions,

respectively.
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The following example shows that a CRN can be represented by a

digraph where the complexes and reactions serve as the digraph’s vertices

and arcs, respectively. We call this digraph representation a reaction

graph of the CRN.

Running example

Let us consider the following CRN:

X1 +X2 +X3 X3

2X1 3X1 +X2 4X1 + 2X2

4X1 +X2 3X1

k1

k2

k3

k4

The ki’s here are called reaction rate constants. We have m = 3 (species),

n = 7 (complexes), and r = 4 (reactions). Here, we can write

S = {X1, X2, X3} , and

C = {X1 +X2 +X3, X3, 2X1, 3X1 +X2, 4X1 + 2X2, 4X1 +X2, 3X1} .

On the other hand, the set of reaction R consists of the following:

R1 : X1 +X2 +X3 → X3

R2 : 3X1 +X2 → 2X1

R3 : 3X1 +X2 → 4X1 + 2X2

R4 : 3X1 → 4X1 +X2.

We denote the CRN as N = (S ,C ,R).

Definition 2.1.2. The linkage classes, whose number is denoted by ℓ,

of a CRN are the subgraphs of a reaction graph where for any complexes

Ci, Cj of the subgraph, there is a path between them. A subset of a
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linkage class where any two vertices are connected by a directed path in

each direction is said to be a strong linkage class.

Considering the CRN in the running example, the number of linkage

classes is three. The linkage classes are:

L1 = {R1} , L2 = {R2, R3} L3 = {R4} .

On the other hand, there are no strong linkage classes.

Definition 2.1.3. A CRN is weakly reversible if every linkage class is

a strong linkage class.

Clearly, the CRN in the running example is not weakly reversible.

Definition 2.1.4. With each reaction y → y′, we associate a reaction

vector obtained by subtracting the reactant complex y from the product

complex y′. The stoichiometric subspace S of a CRN is the linear

subspace of RS defined by

S := span
{
y′ − y ∈ RS | y → y′ ∈ R

}
.

The dimension of S, denoted by s, gives the rank of the CRN. If c ∈ RS
>0,

the corresponding stoichiometric class is the intersection of the coset

c + S with RS
>0. The map of complexes Y : RC → RS

≥ maps the basis

vector ωy to the complex y ∈ C . The incidence map Ia : RR → RC

is defined by mapping for each reaction Ri : y → y′ ∈ R, the basis vector

ωRi (or simply ωi) to the vector ωy′ −ωy ∈ C . The stoichiometric map

N : RR → RS is defined as N = Y ◦ Ia.

In the running example, the matrices Y and Ia are as follows:

Y =

C1 C2 C3 C4 C5 C6 C7 1 0 2 3 4 4 3 X1

1 0 0 1 2 1 0 X2

1 1 0 0 0 0 0 X3



459

Ia =

R1 R2 R3 R4



−1 0 0 0 C1

1 0 0 0 C2

0 1 0 0 C3

0 −1 −1 0 C4

0 0 1 0 C5

0 0 0 1 C6

0 0 0 −1 C7

.

A central concept in the classical study of chemical reaction networks

is the notion of deficiency. We formally define it as follows.

Definition 2.1.5. The deficiency δ is defined as δ = n− l − s.

This non-negative integer, as Shinar and Feinberg pointed out in [26], is

essentially a measure of the linear dependency of the network’s reactions.

In the running example, the deficiency of the network is 3.

2.2 Dynamics of chemical reaction networks

The study of a CRN will not be complete without discussing the accom-

panying dynamics. The dynamics of a CRN requires a certain mapping

called kinetics that associates with each of its reactions some rate function.

Definition 2.2.1. A kinetics is an assignment of a rate function to each

reaction in a CRN. A network N together with a kinetics K is called a

chemical kinetic system (CKS) and is denoted here by (N ,K).

One of the most well-known kinetics is the mass-action kinetics (MAK).

In this paper, we also focus on the kinetics that is more general than MAK,

the power-law kinetics.

Definition 2.2.2. A kinetics K : RS
>0 → RR is a power-law kinetics

(PLK) if

Ki(x) = kix
Fi,· for i = 1, . . . , r
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where ki ∈ R>0, Fi,j ∈ R, and Fi,· is the row of F associated to reaction

Ri. The r ×m matrix F = [Fij ] and the vector k = [ki] ∈ RR
>0 are called

the kinetic order matrix and the rate vector, respectively.

We can classify a PLK system based on the kinetic orders assigned to

its branching reactions (i.e., reactions that share a common reactant

complex).

Definition 2.2.3. A PLK system has reactant-determined kinetics

(of type PL-RDK) if for any two branching reactions Ri, Rj ∈ R, the

corresponding rows of kinetic orders in F are identical, i.e., Fih = Fjh for

h = 1, . . . ,m. Otherwise, a PLK system has non-reactant-determined

kinetics (of type PL-NDK).

Consider the CRN in the running example with the following kinetic

order matrix:

F =

X1 X2 X3


0 0 2 R1

1 1 0 R2

1 1 0 R3

1 0 0 R4

.

Observe that R2 and R3 are two branching reactions whose corresponding

rows in F (or kinetic order vectors) are the same. Hence, the CKS is a

PL-RDK system.

The well-known mass-action kinetic system (MAK) forms a subset

of PL-RDK systems. In particular, MAK is given by Ki(x) = kix
Y.,j for

all reactions Ri : yi → y′i ∈ R with ki ∈ R>0 (called rate constant). The

vector Y.,j contains the stoichiometric coefficients of a reactant complex

yi ∈ C .

Definition 2.2.4. The species formation rate function (SFRF) of a

chemical kinetic system is the vector field

f(c) = NK(c) =
∑

yi→y′
i∈R

Ki(c)(y
′
i − yi),
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where c ∈ RS
≥0 and N is the m × r matrix, called stoichiometric ma-

trix, whose columns are the reaction vectors of the system. The equation

dc/dt = f(c(t)) is the ODE or dynamical system of the chemical kinetic

system. An element c∗ of RS
>0 such that f(c∗) = 0 is called a positive

equilibrium or steady state of the system. We use E+(N ,K) to denote

the set of all positive equilibria of a CKS.

The dynamical system f(x) (or SFRF) of the CKS in the running

example can be written as

 Ẋ1

Ẋ2

Ẋ3

 =

R1 R2 R3 R4 −1 −1 1 1

−1 −1 1 1

0 0 0 0


k1X

2
3

k2X1X2

k3X1X2

k4X1

 = NK(x).

We call a CKS multistationary if there are positive rate constants

where the corresponding ODE system admits at least two distinct stoi-

chiometrically compatible equilibria. Otherwise, it is monostationary.

Analogous to the species formation rate function, we also have the

complex formation rate function.

Definition 2.2.5. The complex formation rate function g : RS
>0 →

RC of a chemical kinetic system is the vector field

g(c) = IaK(c) =
∑

yi→y′
i∈R

Ki(c)(ωy′
i
− ωyi

),

where c ∈ RS
≥0 and Ia is the incidence map. A CKS is complex balanced

if it has a complex balanced steady state, i.e., there is a composition c∗∗ ∈
RS

>0 such that g(c∗∗) = 0. We denote by Z+(N ,K) the set of all complex

balanced steady states of the system.

Theorem 2.2.1 ( [6, 8]). For any kinetic system CKS, not necessarily

mass-action, in which the underlying reaction network has a deficiency of

zero, complex balancing must obtain at all equilibria.
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2.3 A brief review of concentration robustness

The concept of absolute concentration robustness (ACR) was first intro-

duced by Shinar and Feinberg in their well-cited paper published in Sci-

ence [27]. ACR pertains to a phenomenon in which a species in a kinetic

system carries the same value for any positive steady state the network

may admit regardless of the initial conditions.

Definition 2.3.1. A CKS (N ,K) has an absolute concentration ro-

bustness (ACR) in a species X ∈ S if there exists c∗ ∈ E+(N ,K) and

for every other c∗∗ ∈ E+(N ,K), we have c∗∗X = c∗X , where c∗∗X and c∗X
denote the concentrations of X in c∗ and c∗∗, respectively.

Fortun and Mendoza [12] emphasized that ACR, as a dynamical prop-

erty, is conserved under dynamic equivalence, i.e., they generate the same

set of ordinary differential equations. They further investigated ACR in

power-law kinetic systems and derived novel results that guarantee ACR

for some classes of PLK systems. For these PLK systems, the key property

for ACR in a species X is the presence of a Shinar-Feinberg pair.

Definition 2.3.2. A pair of reactions in a PLK system is called a Shinar-

Feinberg pair (or SF-pair) in a species X if their kinetic order vectors

differ only in X.

3 The extension problem for the ACR crite-

rion for rank-one systems

Just recently, Meshkat et al. gave a necessary and sufficient condition that

guarantees the existence of stable ACR in rank-one MAK systems [21]. A

system is said to have a stable ACR if it has an ACR where each of its

positive steady states is stable. The condition requires the existence of

an embedded one-species network that follows some structures described

using arrow diagrams.
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3.1 A review of the key result of Meshkat et al.

A network N = (S ,C ,R) is called one-species network if there is a

species Ai such that (y, y′) ∈ R implies that yj = y′j = 0 for all species

Aj ∈ S − {Ai}. In other words, every complex in the network takes the

form kAi, where k is a non-negative integer. The following definition and

example were taken from [21].

Definition 3.1.1. Let N = ({A},C ,R) be a one-species network with

|R| ≥ 1. Let every reaction of N be of the form aA→ bA, where a, b ≥ 0

and a ̸= b. Suppose N has m distinct reactant complexes with a1 <

a2 < · · · < am as their stoichiometric species. The arrow diagram of N ,

denoted by ρ = (ρ1, ρ2, . . . , ρm), is the element of {→,←,←→}m given by:

ρi =


→ if for all reactions aiA→ bA in N , it is the case that b > ai

← if for all reactions aiA→ bA in N , it is the case that b < ai

←→ otherwise

Example 3.1.1. Consider the network determined by {B → A, 2A +

B → A + 2B}. After removing species A, the embedded network has

the following reaction set {0 ← B → 2B} which has (←→) as an arrow

diagram. On the other hand, {0→ A,A→ 2A} is the embedded network

obtained after removing B with arrow diagram (→,←).

Here is the main result in [21] that provides a necessary and sufficient

condition for the existence of ACR in some rank-one MAK systems. The

result utilized the concept of arrow diagrams.

Theorem 3.1.1. Let N be a rank-one network with species A1, A2, . . . ,

Am. Then, the following are equivalent:

1. N has stable ACR and admits a positive steady state.

2. There is a species Ai∗ such that the following holds:

(a) for the embedded network of N obtained by removing all species

except Ai∗ , the arrow diagram has one of the following forms:

(←→,←,←, . . . ,←), (→,→, . . . ,→,←→,←,←, . . . ,←)

(→,→, . . . ,→,←→), (→,→, . . . ,→,←,←, . . . ,←)
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(b) the reactant complexes of N differ only in species Ai∗ (i.e., if y

and ŷ are both reactant complexes, then yi = ŷi for all i ̸= i∗).

Notice that in Example 3.1.1, the embedded network obtained by re-

moving species A from N has (←→) as an arrow diagram that falls under

one of the enumerated arrow diagrams in the above theorem. Moreover,

the reactant complexes in N differ only in A. It follows that N has a

stable ACR.

3.2 Examples of PL-RDK systems for which the ACR

criteria do not hold

Here is the direct adaptation of the sufficient condition of Theorem 3.1.1

in PLK-systems and formalism. Let (N ,K) be a rank-one PLK-system

having species A1, A2, . . . , Am. Also, let F be the kinetic order matrix of

the system. Then, N has an ACR if there is a species Aj∗ such that the

following holds

(a) for the embedded network of N obtained by removing all species

except Aj∗ , the arrow diagram has one of the following forms:

(←→,←,←, . . . ,←), (→,→, . . . ,→,←→)

(→,→, . . . ,→,←→,←,←, . . . ,←), (→,→, . . . ,→,←,←, . . . ,←)

(b) the reactions are pairwise SF-pairs in Aj∗ (i.e., Fij = Flj for all j ̸= j∗).

The following counterexample shows that the statement above is not

necessarily true.

Example 3.2.1. Consider N = ({A,B},C ,R), where R consists of the

following reactions and rate constants:

R1 : B−→
r1

A

R2 : 2A+B−→
r2

3A

R3 : 3A+B−→
r3

2A+ 2B

R4 : 4A+B−→
r4

3A+ 2B
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This is a rank-one network with S = span {A − B} as its stoichiometric

subspace. Suppose that it is endowed with power-law kinetics and has the

following kinetic order matrix:

F =

A B


p1 q R1

p2 q R2

p3 q R3

p4 q R4

where pi’s are integers. We obtained the following embedded network after

removing B.

0→ A

2A↔ 3A← 4A

With the four distinct reactant complexes in this network, here is the

corresponding arrow diagram (→,→,←,←). Now, observe that (N ,K)

has the following ODEs:

Ȧ = r1A
p1Bq + r2A

p2Bq − r3A
p3Bq − r4A

p4Bq

Ḃ = −r1Ap1Bq − r2A
p2Bq + r3A

p3Bq + r4A
p4Bq

Solving for the positive equilibria, one of these equations is equated to zero

and get

Bq(r1A
p1 + r2A

p2 − r3A
p3 − r4A

p4 = 0

⇔ r1A
p1 + r2A

p2 − r3A
p3 − r4A

p4 = 0

Observe that when p1 < p2 < p3 < p4, the polynomial

r1A
p1 + r2A

p2 − r3A
p3 − r4A

p4 (3.2.1)

has exactly one positive root according to the Descarte’s Rule of Signs.

This means that the system has ACR in A. On the other hand, suppose

that
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p1

p2

p3

p4

 =


0

3

1

2

 and


r1

r2

r3

r4

 =


4

1

2

3


Then, the polynomial in (3.2.1) becomes

4 +A3 − 2A− 3A2 = 4− 2A− 3A2 +A3 (3.2.2)

This polynomial has two positive roots namely, 1 and 1+
√
5. This means

that the system does not have an ACR in A in this case.

It can be observed in the above counterexample the crucial role played

by pi’s. If these parameters are not carefully chosen, ACR may not be

observed in the system. The problem becomes more complicated when

pi’s are non-integers since the solutions of the polynomial in (3.2.1) may

not be determined immediately. This negatively affects the possibility of

extending the result of Meshkat et al. to PLK-systems where pi’s are

allowed to be real numbers.

3.3 The stable ACR criterion for homogenous PL-

quotients of mass-action systems

In this section, we introduce a set of homogeneous quotients of mass-action

systems where the stable ACR criterion (the criterion discussed in Section

3.2) holds. We first discuss the following notions from [17].

Definition 3.3.1. Let N = (S ,C ,R) be a CRN and KΩ(N ) be the

set of all kinetics on N . Two kinetics K,K ′ ∈ KΩ(N ) are positive

function factor equivalent (PPF-equivalent) if for all x ∈ RS
> and

every reaction q,
Kq(x)

K ′
q(x)

is a positive function of x only, i.e., independent

of q.

A key property of PFF-equivalence is expressed in the following result.

Proposition 3.3.1 ([17]). If K, K ′ are PPF, then

E+(N ,K) = E+(N ,K ′).
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Let (N ,K) be a MAK system with m species and r reactions and

(β1, β2, · · · , βm) be any real vector. Let FMAK and Fβ be the r × m

matrices defined as follows:

• FMAK,q = Y ⊤
ρ(q), where q is a reaction and Y is the matrix of com-

plexes of (N ,K).

• Fβ with identical rows β = (β1, β2, · · · , βm).

Definition 3.3.2. A homogeneous PL-quotient of a MAK (PL-

QMK) system (N ,K) is a PLK system (N ,KPLK) with the same rate

constants and a kinetic order matrix FPLK = FMAK + Fβ .

We have the following result:

Proposition 3.3.2. The stable ACR criterion holds for homogeneous

monomial PL-quotients of rank-one mass-action systems.

Proof. Let (N ,KPLK) be a homogeneous PL quotient of a rank-one MAK

system (N ,K) where (N ,K) satisfies the stable ACR criterion. For

each species, write Xαi
i = Xβi

i (Xαi−βi

i ). For a reaction q, each Kq(x) =

kq
∏

Xβi

i

∏
(Xαi−βi

i ). Note that
∏

Xβi

i is independent of the reaction

q and hence, from Definition 3.3.1, KPLK and K are PFF-equivalent.

From Proposition 3.3.1, E+(N ,K) = E+(N ,KPLK). Thus, their ACR

coincide and, hence the stable ACR criterion also holds for (N ,KPLK).

4 A necessary condition for ACR in multi-

stationary rank-one kinetic systems

In this section, we present a necessary condition for the occurrence of

ACR species in any multistationary rank-one kinetic system. We introduce

the class of co-conservative kinetic systems and show that multistationary

rank-one systems of this kind do not have any ACR species. We further

illustrate the condition for a number of multistationary rank-one mass-

action systems using a recently presented classification of such systems by

Pantea and Voitiuk [28].



468

4.1 The necessary condition for ACR in rank-one sta-

tionary kinetic systems

The necessary condition is the following fundamental observation:

Theorem 4.1.1. If N has rank one and (N ,K) is multistationary, then

(the line) S lies in the species hyperplane of every ACR species X. In

other words, for any basis vector v of S, its X-coordinate is 0.

Proof. Since (N ,K) is multistationary, there is a stoichiometric class that

contains two distinct positive equilibria x1 and x2. In other words, x1 −
x2 ∈ S and x1 − x2 ̸= 0. For any ACR species X of (N ,K), it follows

that the X-th coordinate of x1 − x2 is 0. Since x1 − x2 ̸= 0, it is a basis

vector for the one-dimensional subspace S of the rank-one system, proving

the claim.

The necessary condition immediately leads to an upper bound for the

number of ACR species in a multistationary rank-one system:

Corollary 4.1.1. Let mACR be the number of ACR species of a rank-

one multistationary system (N ,K). Then, mACR ≤ m − |supp v|, where
supp v is the support of any basis vector of S.

Note that the right-hand side of the inequality in Corollary 4.1.1 is just

the number of zeros in v. Now, recall that a network is called conservative

if the orthogonal complement of S contains a positive vector. We hence

define the following term.

Definition 4.1.1. A network is called co-conservative if S contains a

positive vector.

In general, a positive vector in S can be a linear combination of reaction

vectors with 0 or negative coordinates. For example, for m = 3, the

reactions X1 → X1 +X2 and 2X1 → 3X1 +2X3 have the reaction vectors

(0, 1,−1) and (1, 0, 2) whose sum is (1, 1, 1). In rank-one networks however,

a positive vector requires the occurrence of a positive reaction vector y′−y.
This in turn implies a reaction y → y′ with the following characteristics:

• all species occur in the product complex;
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• each species has a higher stoichiometric coefficient in the product

complex compared to the corresponding species in the reactant com-

plex; and

• no enzymatic regulation on a reaction.

Corollary 4.1.2. If a rank-one and co-conservative network is multista-

tionary, then it has no ACR species.

Proof. Any non-zero vector v in S has only positive or negative coordi-

nates, i.e., |supp v| = m. Hence, mACR = 0.

4.2 Examples from the multistationary rank-one

mass-action systems

Pantea and Voitiuk introduced a complete classification of multistationary

rank-one mass-action systems in [28]. Table 4.2.1 provides an overview of

the eight classes that they identified.

Under mass-action, the CRN in the running example is a rank-one

zigzag network but not a line, corner, and two-source zigzag network.

We illustrate Theorem 4.1.1 with two examples from different classes of

multistationary rank-one systems identified in [28].

Example 4.2.1 (Class 1-altc). The rank-one network below was the fo-

cus of Example 4.2 in [28]. It was shown in that paper that it has the

capacity for multiple positive and non-degenerate equilibria. Moreover,

the network has stoichiometric subspace generated only by the vector

v = (1, 1, 1, 0,−1,−1).

R1 : B + 2C + 2E → A+ 2B + 3C + E

R2 : 2A+ 2B + C + 2D + E → A+B + 2D + 2E

R3 : A+ 3C +D + 2E → 2A+B + 4C +D + E

R4 : 3A+ 3B + C + E → 2A+ 2B + 2E
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Network Definition
Class 1-altc: 1-alt complete net-
works

has a 1D projection containing
both (←,→) and (→,←) patterns

Class 2-alt: 2-alternating has a 1D projection containing
both (←,→,←) and (→,←,→)
patterns

Class Z: zigzag network has a 2D projection containing a
zigzag

Class S1: one-source networks contains exactly one source com-
plex and two reactions of opposite
directions

Class Sz
2 : two-source zigzag net-

works
has two species, contains exactly
two source complexes, and has a
zigzag of slope -1

Class L: line networks has two species and at least three
source complexes satisfying some
properties*

Class Snz
2 : two-source non-zigzag

networks
an essential network that contains
exactly two source complexes and
N ∈ 1-altc − Z.

Class C: corner networks an essential, 1-alt complete net-
work that contains at least three
source complexes satisfying some
properties*

Table 4.2.1. Classes of rank-one networks (for details concerning the
concepts and symbols used here, the readers are referred
to [28]).

Example 4.2.2 (Class 2-alt). The rank-one network below is a 2-alterna-

ting network with stoichiometric subspace generated by the vector v =

(2, 1, 0). From Corollary 4.3 in [28], we conclude that it has the capacity

for multiple positive and non-degenerate equilibria.

R1 : 2X + 2Y → Y

R2 : 3X + Y → 5X + 2Y

R3 : 4X + 2Y + Z → Z

R4 : 4X + 2Y + 2Z → 2X + Y + 2Z

Direct computations show that the preceding systems both have ACR
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in species D and Z, respectively. That is, the basis vectors of their stoi-

chiometric spaces have 0 coordinate in species D and Z. This illustrates

Theorem 4.1.1.

5 ACR and equilibria variation in kinetic

systems

In this section, we briefly discuss the relationship between concentration

robustness and equilibria variability in general by introducing the concept

of (positive) equilibria variation. We consider several examples to illustrate

its use. We assume throughout the section that the kinetic system (N ,K)

is positively equilibrated, i.e., E+(N ,K) ̸= ∅.

5.1 The equilibria variation of a kinetic system

The motivation for the following definition comes from the observation

that a kinetic system has a unique (positive) equilibrium in species space

if and only if it possesses ACR in each of its species.

Definition 5.1.1. The (positive) equilibria variation of a kinetic sys-

tem (N ,K) is the number of non-ACR species divided by the number of

species, i.e.,

v+(N ,K) =
m−mACR

m
.

Clearly, the variation values lie between 0 and 1, and the following

proposition characterizes the attainment of the extreme values:

Proposition 5.1.1. Let (N ,K) be a kinetic system. Then,

i. v+(N ,K) = 0⇔ |E+(N ,K)| = 1 and

ii. v+(N ,K) = 1⇔ (N ,K) has no ACR species.

The proofs follow directly from the definition. We have the following

corollary for any multistationary system:

Corollary 5.1.1. Let (N ,K) be a kinetic system.
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a. If (N ,K) is multistationary, then v+(N ,K) ≥ 1

m
. In particular, if

v+(N ,K) = 0, then (N ,K) is monostationary.

b. If N is open and v+(N ,K) > 0, then (N ,K) is multistationary.

Proof. For (a): multistationarity implies that the system has at least two

distinct positive equilibria, hence mACR ≤ m − 1, and the claims follow.

For (b): if the network is open, then there is only one stoichiometric class.

Hence, multistationarity is equivalent to the occurrence of at least two

distinct equilibria in the species space.

Example 5.1.1. Schmitz’s model of the earth’s pre-industrial carbon cy-

cle system was analyzed by Fortun et al. in [13]. Below is its corresponding

reaction network and kinetic order matrix.

M5 M2

M1 M4

M6 M3

R1

R2 R5

R11
R9

R3 R6

R8

R10

R12

R4

R7

R13

F =

M1 M2 M3 M4 M5 M6



0 0 0 0 1 0 R1
0 0 0 0 1 0 R2

0.36 0 0 0 0 0 R3
0 0 0 0 0 1 R4
0 9.4 0 0 0 0 R5
1 0 0 0 0 0 R6
0 0 10.2 0 0 0 R7
1 0 0 0 0 0 R8
0 1 0 0 0 0 R9
0 0 0 1 0 0 R10
0 1 0 0 0 0 R11
0 0 0 1 0 0 R12
0 0 1 0 0 0 R13

In this network, M1,M2,M3,M4,M5, and M6 stand for atmosphere, warm

ocean surface waters, cool ocean surface waters, deep ocean waters, terres-

trial biota, and soil and detritus, respectively. Important numbers of the

network are given in Table 5.1.1.

Fortun and Mendoza [13] showed that the system has no ACR species,

i.e., v+(N ,K) = 1 >
1

6
. By Theorem 6.6 of [25], the system has a

unique positive equilibrium in each stoichiometric class and is consequently

monostationary. Note also that the network has rank 5 < 6, hence it is a

closed network.

If the multistationary kinetic system has rank one, Theorem 4.1.1 pro-

vides a better lower bound for the equilibria variation.
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Table 5.1.1. Some numbers related to the reaction network of
Schmitz’s model of the earth’s pre-industrial carbon cycle
system

Network number Value
Number of species 6
Number of complexes 6
Number of reactions 13
Number of reactants 6
Number of linkage classes 1
Rank 5
Deficiency 0

Proposition 5.1.2. Let (N ,K) be a multistationary rank-one kinetic

system and v a basis vector of S. Then, v+(N ,K) ≥ |supp(v)|
m

.

Proof. According to Theorem 4.1.1, mACR ≤ m−|supp(v)| ⇔ |supp(v)| ≤
m −mACR, leading to the new lower bound. Note that since v is a basis

vector, |supp(v)| ≥ 1, confirming the improvement.

One can derive a lower bound for equilibria variation for any kinetic

system using the general species hyperplane criterion for ACR introduced

by Hernandez and Mendoza in [15]. It is based on the following consider-

ations:

Definition 5.1.2. For any species X, the (m− 1)-dimensional subspace

HX := {x ∈ RS |xX = 0}

is called the species hyperplane of X.

For U containing R>0, let ϕ : U → R be an injective map, i.e., ϕ :

U → Im ϕ is a bijection. By component-wise application (m times), we

obtain a bijection US → RS , which we also denote with ϕ. We formulate

our concepts for any subset W of E+(N ,K), although we are mainly

interested in W = E+(N ,K).

Definition 5.1.3. For a subset W of E+(N ,K), the set

∆ϕW := {ϕ(x)− ϕ(x′)|x, x′ ∈W}
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is called the difference set of ϕ-transformed equilibria in W , and its

span ⟨∆ϕW ⟩ the difference space of ϕ-transformed equilibria in W .

In Proposition 6 of [15], it was shown that mACR ≤ m− dim⟨∆ϕE+⟩.
It follows immediately that we have the following lower bound for the

equilibria variation.

Proposition 5.1.3. Let (N ,K) be a kinetic system. Then,

dim⟨∆ϕE+⟩
m

≤ v+(N ,K)

In general, it is challenging to compute dim⟨∆ϕE+⟩. However, for

the systems that will be discussed in the proceeding section, this can be

done. We can apply this to compute for the equilibria variation of weakly

reversible, deficiency zero PL-RDK systems.

5.2 Equilibria variation in deficiency zero PL-RDK

systems

The following concepts will be vital in the succeeding discussion.

Definition 5.2.1. Let (N ,K) be a kinetic system. The system is posi-

tively equilibrated-log parametrized (or a PLP system) if there is a

reference equilibrium x∗ and a subspace PE of RS such that E+(N ,K) =

{x ∈ RS
> | log x − log x∗ ∈ P⊥

E }. Likewise, the system is a complex

balanced-log parametrized (CLP) system if there is a complex bal-

anced equilibrium x∗∗ such that Z+(N ,K) = {x ∈ RS
> | log x − log x∗∗ ∈

P⊥
Z }, where PZ is a subspace of RS .

For any PLP system, Lao et al. [19] showed that ACR is characterized

by the species hyperplane criterion for PLP systems: X is an ACR species

if and only if it is contained in HX := {x ∈ RS |xX = 0}. This implies

that m− dimPE ≤ m−mACR and, hence, 1− dimPE

m
≤ v+(N ,K).

Jose et al. [17] showed that a CLP system is absolutely complex

balanced, i.e., E+(N ,K) = Z+(N ,K), if and only if it is both CLP and

PLP and PE = PZ . It was shown in [22] that any complex balanced PL-

RDK system is a CLP system with PZ = S̃, where S̃ is the kinetic order
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subspace discussed in [23]. Since after Feinberg, any weakly reversible de-

ficiency zero kinetic system is absolutely complex balanced, then a weakly

reversible deficiency zero PL-RDK system is a PLP system with PE = S̃.

Hence, for any such system, 1− s̃

m
≤ v+(N ,K), where s̃ = dim S̃ .

Example 5.2.1. Fortun and collaborators studied variants of the Anderies

et al. [1] model of the earth’s pre-industrial carbon cycle (see the kinetic

system below) in [10] and [13].

A1 + 2A2 2A1 +A2

A1 +A2 2A2

A2 A3

R1

R2

R3

R4

F =

A1 A2 A3


p1 q1 0 R1

p2 q2 0 R1

0 1 0 R1

0 0 1 R1

(5.2.1)

Note that A1, A2, and A3 here stand for land, atmosphere, and ocean,

respectively. Table 5.2.1 shows some important numbers of the network in

5.2.1.

Table 5.2.1. Some numbers related to the reaction network of the
model of the earth’s pre-industrial carbon cycle system
given by Anderies et al. in [1]

Network number Value

Number of species 3

Number of complexes 6

Number of reactions 4

Number of reactants 4

Number of linkage classes 3

Rank 2

Deficiency 1

In [13], Fortun and Mendoza showed that the system is dynamically
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equivalent to a weakly reversible, deficiency zero system with

S̃⊥ =

〈(
−1 p2 − p1

q2 − q1

p2 − p1
q2 − q1

)〉
.

Let R denote the ratio
p2 − p1
q2 − q1

. Based on the value of R, one obtains three

classes of Anderies system: AND>(R > 0) consists of multistationary sys-

tems with no ACR species, AND0(R = 0) contains only monostationary

systems with two ACR species and AND< contains both injective and non-

injective systems but also no ACR species. The variants studied in [10]

and [13] belong to AND> and AND0, respectively.

Based on the previous results, we have v+(N ,K) = 1 if (N ,K) is

contained in either AND> or AND<, and v+(N ,K) =
1

3
if (N ,K) is in

AND0.

5.3 Equilibria variation of independent subnetworks

In this section, we discuss equilibria variation for independent subnetworks.

It is important in this regard to differentiate between the two concepts of

subnetworks that we introduced in previous work: embedded and non-

embedded. We hence begin with a review of these concepts and their

properties relevant to ACR, which is the basis of our concept of equilibria

variation. We then collect some relevant results from previous publications

and add some new details. We conclude by using the results of the reaction

network analysis of metabolic insulin signaling by Lubenia et al. [20] to

illustrate the different concepts and relationships. We in fact show that

the various inequalities between the different equilibria variation values

are sharp, i.e., equality is achieved in various subnetworks of the insulin

system.

5.3.1 Review of subnetwork properties

We define network decomposition as follows.

Definition 5.3.1. Let N = (S ,C ,R) be a CRN. A decomposition

D of N is a collection of subsets {R1,R2, · · · ,Rk}, where Ri’s form a
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partition of R.

Note that each Ri defines a smaller network (called subnetwork) Ni =

(Si,Ci,Ri), where Ci = C |Ri
(the set of all complexes that appeared in

Ri) and Si = S |Ci
(the set of all species occurring in the complexes

in Ci). Hence, we can also indicate a decomposition of N by writing

N = N1 ∪N2 ∪ · · · ∪Nk.

Definition 5.3.2. Consider a decompositon D of N = (S ,C ,R). A

subnetwork of N from D is called embedded if its species space is S .

On the other hand, it is called non-embedded if its species space, which

we denote by S ′, is a proper subset of S .

We use the embedded representation in a decomposition because it

conveniently allows the set operations on equilibria sets. A basic fact is

the following observation:

Proposition 5.3.1. If X is an ACR species of a subnetwork, then X is

an element of S ′.

This means that we need only one count of ACR species in a subnet-

work, m′
ACR. For non-ACR species and equilibria variation, we have the

following relationships:

Proposition 5.3.2. Let m′ = |S ′| and v+(N ′,K ′), ṽ+(N ′,K ′) be the

equilibria variations of the non-embedded and embedded subnetworks. Then

i. m−m′
ACR = (m′ −m′

ACR) + (m−m′) and

ii. 0 ≤ ṽ+(N ′,K ′)− v+(N ′,K ′) ≤ m−m′

m

Proof. (i.) should be read as: the number of non-ACR species in an embed-

ded subnetwork is the number of non-ACR species in the non-embedded

subnetwork plus the number of non-occurring species, and (ii.): divid-

ing the equation in (i.) by m and using the inequality
m′ −m′

ACR

m
≤

m′ −m′
ACR

m′ , we obtain ṽ+(N ′,K ′) − v+(N ′,K ′) ≤ m−m′

m
. On the

other hand, the left-hand side, after forming a common denominator, is

now equal to
m′

ACR(m−m′)

mm′ ≥ 0, since all factors are non-negative.
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5.3.2 Equilibria variation of independent subnetworks

An independent decomposition is a special type of decomposition charac-

terized by the stoichiometric subspaces of the network and its subnetworks.

Definition 5.3.3. A decomposition N = N1 ∪N2 ∪ · · · ∪Nk is inde-

pendent if the stoichiometric subspace of N is the direct sum of the

stoichiometric subspaces of Ni’s, i.e., s = s1 + s2 + · · ·+ sk.

In [19], Proposition 4.4 states that if species X has ACR in the subnet-

work Ni and the decomposition is independent, then X has ACR in N ,

i.e., |SACR,i| ≤

∣∣∣∣∣
k⋃

i=1

SACR,i

∣∣∣∣∣ ≤ |SACR|, where SACR and SACR,i refer to

the sets of species with ACR on N and Ni, respectively. We hence have

the following corollary:

Proposition 5.3.3. Let D be an independent decomposition of N . Then,

v+(N ,K) ≤ ṽ+(N ′,K ′) for any subnetwork N ′ in D .

Proof. It follows that m − mACR ≤ m − m′
ACR and dividing both sides

with m results in the claim.

5.3.3 The example of metabolic insulin signaling in healthy cells

Lubenia et al. [20] constructed a mass-action kinetic realization of the

widely used model of metabolic insulin signaling (in healthy cells) by

Sedaghat et al. [24]. They used the kinetic system’s finest independent de-

composition (FID) to conduct an ACR analysis and showed that mACR ≥
8 for all rate constants (such that the system has positive equilibria) and

mACR = 8 for some rate constants. Hernandez et al. [3] confirmed that

mACR = 8 for all rate constants with a positively equilibrated system.

Hence, v+(N ,K) =
20− 8

20
=

12

20
=

3

5
= 0.60.

Table 5.3.1, which was taken from [20], provides an overview of the

characteristics of the FID subnetworks. Note that, with the exception of

N1, all subnetworks are rank-one systems. Applying the Meshkat et al.

criterion to these 9 subnetworks showed that only the one-species systems

N2 and N10 had ACR for the species X6 and X20, respectively. All other

subnetworks had no ACR species. Hence, we have:
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• For i = 3, . . . , 9, v+(N ,K) = 0.60 < 1 = v+(Ni,Ki) = ṽ+(Ni,Ki)

• For i = 2, . . . , 10, v+(Ni,Ki) = 0 < 0.60 = v+(N ,K) = ṽ+(Ni,Ki)

=
19

20
= 0.95

Table 5.3.1. Some numbers of FID subnetworks.

Network numbers N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Species 7 1 4 3 3 2 3 3 4 1
Complexes 7 2 6 2 4 2 4 4 6 2
Reactant complexes 7 2 3 2 2 2 2 2 4 2
Reversible reactions 5 1 0 1 0 1 0 0 1 1
Irreversible reactions 4 0 3 0 2 0 2 2 2 0
Reactions 14 2 3 2 2 2 2 2 4 2
Linkage classes 1 1 3 1 2 1 2 2 3 1
Rank 6 1 1 1 1 1 1 1 1 1
Reactant rank 7 1 3 2 2 2 2 2 4 1
Deficiency 0 0 2 0 1 0 1 1 2 0
Reactant deficiency 0 1 0 0 0 0 0 0 0 1

The authors considered also the coarsening NA ∪ NB , where NA is

the union of all deficiency zero subnetworks and NB the union of all pos-

itive deficiency subnetworks. They also showed that all ACR species are

contained solely in NA. Hence, in this case, we have:

• v+(NA,KA) =
13− 8

13
= 0.38 < 0.6 = v+(N ,K) = ṽ+(NA,KA)

• v+(N ,K) = 0.6 < 1 = v+(NB ,KB) = ṽ+(NB ,KB)

These examples show that all the inequalities in the propositions above

are sharp.

6 Summary and outlook

This study was motivated by the result of Meshkat et al. which allows

the analysis of rank-one MAK systems for possession of stable ACR. The

result guarantees a MAK system such robustness if the two identified struc-

tural conditions are met. These conditions require the system to have an
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embedded network that follows certain structures and reactant complexes

that differ in just one species. We attempted to extend this result to more

general PLK systems but to no avail. We found an example illustrating

how these conditions do not always work in a general setting. This means

that, unlike other earlier results on ACR, the conditions in this result do

not always ensure the existence of ACR in a PLK system.

On the other hand, we found a subclass of PLK systems where the

stable ACR criterion of Meshkat et al. holds. We call this subclass ho-

mogenous PL-quotients of mass-action systems or PL-QMK for short. This

subclass is obtained by utilizing a given MAK system’s set of rate constants

and its modified kinetic order matrix.

We also discovered a property necessarily present in a multistation-

ary rank-one system with an ACR. Specifically, the corresponding result

indicates that such a system that has an ACR must have a basis vector

generator of the stoichiometric subspace with 0 as a coordinate in the ACR

species. We illustrated this result using a multistationary system given in

the Pantea and Voitiuk paper.

Finally, we considered the concept of equilibria variation of independent

subnetworks in this paper. We discussed some mathematical relationships

of the equilibria variations of embedded and non-embedded subnetworks.

These relationships were illustrated through the data shown in [20] that

Lubenia et al. used for analyzing metabolic insulin signaling of healthy

cells. It is important to note that ACR species of a subnetwork is always

contained in the corresponding non-embedded subnetwork.

For future studies, one can look at the extension problem of the rank-

one ACR criterion, that is, the identification of further kinetic systems

(beyond mass-action) for which it holds. One can also consider the explo-

ration of relationships between multistationarity classes and the necessary

condition for rank-one mass-action systems as well as an extension of the

Pantea-Voitiuk classification beyond mass-action. Further, it is also inter-

esting to identify further kinetics sets for which the general low bound can

be computed or a much sharper alternative as in rank-one multistationary

systems can be derived.
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