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Abstract

This article delves into an investigation of the dynamic behavior
exhibited by a fractional order cubic autocatalator chemical reac-
tion model. Specifically, our focus lies on exploring codimension-
one bifurcations associated with period-doubling bifurcation and
Neimark-Sacker bifurcation. Additionally, we undertake an analysis
of codimension-two bifurcations linked to resonances of the types
1:2, 1:3, and 1:4. To achieve these outcomes, we employ the nor-
mal form method and bifurcation theory. The results are presented
through comprehensive numerical simulations, encompassing visual
representations such as phase portraits, two-parameter bifurcation
diagrams, and maximum Lyapunov exponents diagrams. These sim-
ulations aptly examine the behavior of a system governed by two
distinct parameters that vary within a three-dimensional space. Fur-
thermore, the simulations effectively illustrate the theoretical find-
ings while providing valuable insights into the underlying dynamics.
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1 Introduction

Chemical processes involving chemical reactions, mass transfer, heat, fluid
flow, and separations exhibit significant nonlinearity, leading to complex-
ity. To maintain stability and control over the process conditions, process
engineers prescribe homogeneous properties for the product obtained. The
inherent nonlinearity of the chemical reaction results in sudden complexity
during the industrial process, even in the absence of external disturbances.
Over the past decade, there has been a notable increase in the publica-
tion of articles pertaining to processes that exhibit oscillatory behavior,
multiple fixed points, and chaos [2,18,25].

For more than a century, the study of oscillatory behavior in chemical
reactions has been of great interest to both experimentalists and theoreti-
cians. Notable examples of oscillatory systems in chemical engineering and
thermodynamics include the Belousov-Zhabotinsky, Bray-Liebhafsky, and
Briggs-Rausher reactions. These reactions exhibit oscillatory behavior in
concentration, which is observable through changes in color [15]. The con-
tinuous flow well-stirred tank reactor (CSTR), also referred to as a backmix
reactor or vat, is a commonly used reactor for studying chemical dynam-
ics, as reported in the literature [22]. During experiments, the system of
ordinary differential equations governing the CSTR can be managed using
standard techniques.

Furthermore, numerous studies have demonstrated that CSTRs can
exhibit a rich variety of dynamic phenomena, with fluctuations being a
feature of particular interest to both chemical engineers and mathemati-
cians [3]. Investigations into self-oscillatory CSTRs have led to two distinct
directions: one involves eliminating oscillations, while the other takes ad-
vantage of process dynamics for unsteady-state operation [2,18,25]. An
optimal model would go beyond conventional fixed-point optimization by
incorporating time-evolution, which offers opportunities for enhancing pro-
cess efficiency through cyclic processes.

The combination of two oscillatory CSTRs has been shown to generate
chaos [7,8,41]. Bifurcation analysis of steady-state is used to explore the

complex dynamical behavior of CSTRs. This analysis not only examines
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the unforced system but also assesses the dynamic complexities that arise
when periodic forcing is introduced. Classic methodical tools, such as
codimension-1 bifurcations of limit cycles and stroboscopic Poincare maps
[24], are employed to study chaos that frequently occurs in CSTRs during
period-doubling and Neimark-Sacker bifurcations.

The Belousov-Zhabotinskil (BZ) reaction, one of the most well-known
chemical reactions, was first mathematically modeled by Field and Noyes
[38] under isothermal conditions. Leach et al. [19] demonstrated the exis-
tence of Hopf bifurcation in a two-cell coupled cubic autocatalator chemical
reaction model. In [21], the author explored the presence of limit cycles in
a cubic chemical autocatalator model and found that they exist within a re-
stricted parameter space. In [14], the author studied a cubic autocatalator
chemical reaction model and determined that traveling waves do not oc-
cur unless the initial concentration of reactant is periodic. In [30] author
investigated a reaction of a homogeneous-heterogeneous nano-fluid and
found evidence of hysteresis bifurcations and multiple solutions. Alder-
remy et al. [1] proposed a new fractional blood ethanol model and briefly
compared it with the fractional-cubic autocatalator reaction model. Kay
and Scott [26], as well as [5,39], demonstrated that these reactions ex-
hibit oscillatory behavior in exothermic conditions. Gray and Scott [27]
introduced a cubic autocatalator chemical reaction model that displays

oscillatory behavior, which is governed by the following reaction steps:

P51, 2M-53M, M-25N, L-=5M, (1)
where cg, - -+, c3 are constants, p, I, m, n are the molar concentrations of

chemical species P, L, M and N, respectively. Based on the assumption

of isothermal reaction, we have the following 2-dimensional system:

% =cop — c1lm? — esl, @)
CZ—T =c1lm? — col + c3l.

On the other hand, the dimensionless version of (2) is given by [20,31]:

dx
dt
d

¢ o=ay? —y+ra,

=p —zy® —ra,

(3)
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where u, > 0. Merkin et al. [16] performed a comprehensive analysis of
system (3). In [17], the authors focused on the specific case of model (3),
where r = 0 and demonstrated the presence of periodic behavior for the pa-
rameter . Gray and Thuraisingham [6] introduced additional parameters
to system (3) and examined its bifurcation analysis. In addition, Forbes
and Holmes [20] investigated the limit cycle behavior of system (3). Notice
that, unlike traditional integer order models, fractional order models in-
corporate fractional derivatives in their formulation, which can provide a
more accurate description of the reaction kinetics. These models are used
to better understand the underlying mechanisms of chemical reactions,
optimize chemical processes, and develop new materials and technologies.
They are also being used in medical applications to model drug delivery
systems and study physiological processes. Overall, fractional order chemi-
cal reaction models are a powerful tool in the field of chemistry and related
disciplines [23]. For further reading on mathematical models concerning
chemical reactions in both continuous and discrete frameworks, the reader
is encouraged to consult references [32-37].

Taking into account the facts that fractional calculus allows more ac-
curate modeling of complex systems which cannot be described by integer-
order differential systems, and the fractional system can be adapted to fit a
variety of data sets, it is more appropriate to consider the fractional-order
counterpart of the system (3).

Prior to transforming system (3) into its fractional-order counterpart,
we review some necessary concepts from fractional calculus as follows [4]:

The Caputo fractional-order derivative is a generalization of the clas-
sical derivative to non-integer orders. It is defined as follows:

Let @ > 0 be areal number and m—1 < a <m € Z". Let f : [0,00) —
R be a continuous function that is m times differentiable on (0, c0). Then,

the Caputo fractional-order derivative of order « of f at ¢t > 0 is given by:

Eo ),
DEf(t) = : ) /0 (t _fT)a(—r)anT’ (4)

P(m-—«

where f(™) is the m-th classical derivative of f, and I'(-) denotes the Euler’s
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Gamma function defined as:

I'(z) ::/ e 't*71dt, z € C, Re(z) > 0.
0

Moreover, the Riemann-Liouville integral operator IV of order 9 is defined
as follows:
Ig(t) = L /t (t—s)"""g(s)ds, 9 > 0. (5)
L(@) Jo
Here, we use the Caputo fractional-order derivative because it has some

advantages over other definitions, such as:

e It preserves the initial conditions of the system, meaning that the
values of the state variables and their integer-order derivatives at

t = 0 are well-defined and consistent with the classical case.

e [t allows for a smooth transition from the fractional-order system to
the integer-order system when fractional-order approaches an integer

value.

e [t is more suitable for modeling physical phenomena that involve

memory and nonlocal effects.

Next, the fractional-order counterpart of the system (3) is given by:

Dox(t) =p—a(t)y?(t) — ra(t),

Dey(t)  =xz(t)y*(t) — y(t) + ra(t), )

where ¢ > 0, and « is the fractional order which satisfy 0 < o < 1. There
are several ways to discretize this type of system using different techniques.
An instance of such methods is the piecewise constant approximation,
which involves discretizing the model through the following process. Take
into account the initial conditions of the system (6) are x(0) = xg, y(0) =

yo. Then system (6) can be discretized as follow:

Dox(t) =p—u [%]p) Y [p}p)—m ([ﬁ]p),
Doy(t) =z ([Llp) w* (15)0) = v (LLlp) +ra(([L]p) - v

|+

Counsider ¢ € [0, p), thus % € [0,1). Therefore, we obtain that:
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Dezy(t) =p— 2oy — r0,
Dy, (t)  =woyg — yo + ro.

The solution to equation (8) is given by:

z1(t)  =zo + 1% (n— zoyd — r0) , 9)
yi(t)  =yo+ I (woyd — yo + rzo) -

Then, it follows that:

(El(t) =xg + 11(;7:1) (/L — l'oyg — ’I".’to) s

yi(t) =yo+ 1"((273_1) (zoys — yo + o) -

Next, for t € [p,2p), and taking % € [1,2). Then, one has

Doxy(t) =p—a1yi —ray, (11)

Dys(t) =x19y3 —y1 + 71271

On simplification, one has

a(t) =1(p) + {50 (b — 71y} —r31)

Y (12)
ya(t)  =u1(p) + 12y (w197 — g1 + )
Upon iterating the discretization process n-times, we obtain
Tt (t) =ea(np) + L2 (1 — u(np)y2(np) — r2a(np)) |
Yui1(t)  =yn(np) + L2 (20 (np)y2 (np) — yn(np) + ran(np))
(13)

where t € [np, (n + 1)p). For t — (n + 1)p, we have the following form of
system (13):

Tt =T+ iy [ =TT — Tayn]

o X (14)
Yntl =Yn + T(at1) [$nyn —Yn + rmn] )

where 0 < o < 1 is the order of fractional derivative, and p > 0 is step size
for the discretization.

The novel contributions of this paper are outlined as follows:
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e The fractional-order nature of the model introduces a new dimen-
sion to chemical kinetics. Fractional-order derivatives and integrals
provide a more accurate description of reaction rates and system dy-

namics, enabling a better representation of real-world phenomena.

e The discretization of the fractional-order cubic autocatalator model
is crucial for performing numerical simulations and analyses. Dis-
cretization methods allow researchers to transform the continuous
fractional-order differential equations into discrete equations that can
be solved numerically. This facilitates the study of system behav-
ior, stability, bifurcations, and other properties using computational

techniques.

e In the fractional-order cubic autocatalator chemical reaction model,
codimension-two bifurcations play a significant role in understand-
ing the complex dynamics of the system. Codimension-two bifurca-
tions involve the simultaneous occurrence of two different types of
bifurcations, resulting in a higher level of complexity in the system’s

behavior.

e In the context of the fractional-order cubic autocatalator model, ex-
amples of codimension-two bifurcations include 1:2 resonance, 1:3
resonance, and 1:4 resonance. These resonances refer to specific re-
lationships between the frequencies of two or more oscillatory com-

ponents in the system.

The rest of this paper is structured as follows:

The existence of fixed point and local stability of system (14) is investi-
gated in Section 2. Co-dimension-1 bifurcations (that is, period-doubling
bifurcation and Neimark-Sacker bifurcation) are discussed in Section 3. In
Section 4, codimension-2 bifurcations are investigated. Finally, in Section

5 numerical simulations are presented.



422

2 Local stability analysis

It is easy to see that system Eq. 14 has unique positive fixed point
E(x*,y*) = (ﬁaﬂ)

Subsequently, we examine the local stability analysis of E(x.,y.) =
(#,u) of system Eq. 14.

To investigate the stability, we compute the Jacobian matrix F; of

system (14) at E(z.,y«) as follow:

1- 558 -
_ a w2+r)'a
FJ(E) - (,u2+r)p0‘ (}Lz—'r‘)[)a 1
T(at1) (EE=D eV

The characteristic polynomial of Fy at E(z.,y.) is given by:

P(A) = A\* — A1 (E)A + As(E), (15)
where ( . @ D ( 1))
p* (u* +p?(2r —1) +r(r +
A YRS VR R
and

P (p“ (12 +7)° =T(a+1) (u* +p2@r = 1) +7(r + 1)))
A2(E) = T(a+1)2(pu2+r) 1

The following Lemma is used to explore the stability of fixed point.

Lemma 1. Let F(\) = A2 — A;(E)\ + A3(E), and P(1) > 0. Moreover,
A1, A2 are root of 15, then:

(i) |\1] < 1 and || < 1 if and only if P(=1) > 0 and A2(E) < 1;

(i)|A1] <1 and A2 > 1 or (|A1] > 1 and |Ay < |1)if and only if P(—1) < 0;
(i) |A1] > 1 and |A2| > 1 if and only if P(—1) > 0 and Aa(E) > 1;

(iv) Ay = =1 and |X2] # 1 if and only if P(=1) =0 and A1 (E) #0,2;

(v) A1 and Ay are complexr and || = 1 and |X2| = 1 if and only if
A1 (E)? —4A5(E) <0 and Ay(E) = 1.

As A1 and Ay are eigenvalue of (15), we have the following Topological



423

type results. The fized point E(x.,y.) is known as sink if |\1| < 1 and
[A2| < 1 thus the sink is locally asymptotic stable. The fixved pointE (., yx)
is known as source if [A1| > 1 and |A2| > 1, thus source is always unstable.
The fized point E(z.,y«) is known as saddle point if [\1] < 1 and |Ag| > 1
or (IAM1] > 1 and |X2| < 1) and the fized point E(x.,y«) is known as non-
hyperbolic fized point either |\1| =1 and |Xa] = 1.

Thus, by applying Lemma 1, we study the local stability of positive
equilibrium point of system (14) by stating the following proposition.

Proposition 1. The positive equilibrium point E(z.,y.) of system (14)

satisfies the following results.

(i) The positive fixed point E(x,,y.) is sink if and only if:

P~ (p“ (1* + r)z =2l (a+1) (p* + p22r — 1) +r(r + 1)))
FaT 022 +7)

140,
and
T(a+1) (1 + 2 @r = 1) +r(r+1)) > p® (> +7)°.
(ii) The positive fixed point E(x,,y.) is saddle point if and only if:

o (o (124 7)" = 20(a 4+ 1) (it + p2(2r = 1) +(r +1)))

+4<0.
Fla+ 17 (2 +7)

(iii) The positive fixed point E(x.,y.) is source if and only if:

o (5 (12 +1)* =200+ 1) (i + 228 = 1) + 7+ 1)

+4>0,
Fla+ 17 (2 +7)

and
T(a+1) (1 + 2 @r = 1) +r(r+1)) < p® (> +7)°.

(iv) The positive fixed point E(x.,y.) is non-hyperbolic if and only if:
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- p~y/T(a+1)(=(p* —2T (a+1))) (4p2p3* +p° (=T (a+1))+2'(a+1)2)
= 2T (a+1)
_ /T(a+1)(=(p* —2T(a+1))) (42 p2*+p> (T (a+1))+2T (a+1)?)
2T (a+1) (p*—2I'(a+1))
—p T (a+ 1) + p?, (16)

and

p® (W 4u 2r=1)+r(r+1))

2 — T 702
Or
20 +/T(a+ ) (82 + )T (a+1) =82 p*)+(—2p" —1)T(a+1)
r=- 2(p" —T(at 1)) ’
and (17)
P (p* 44 (2r=1)+r(r+1))
0< T(a+1)(u2+r) <4

Furthermore, for r € [0, 3], p € [0, 3] and fixed («, p) = (0.3, 0.6), the
topological classification of system (14) is depicted in Figure 1.

3.07

25

20

1.0

0.5

0.0} | 1 1
0.0 0.5 1.0 15 20 25 3.0

H

Figure 1. Topological classification for the system (14).

In next section we investigate existence and direction of bifurcation.
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3 Codimension-one bifurcations

First, we explore the flip bifurcation of positive fixed point (2., y.) of map
(14). In order to study the flip bifurcation assume that

Assume that
Tpp = {(a,p,pu,7) € RY : (16) satisfied}.

The positive fixed point (x.,y.) of map (14) undergoes flip bifurcation
when parameters vary in a small neighborhood of Tpp. Thus map (14)

along with parameters (a, p, pt,71) € Tpp can be written as follow:

r x+r(§711)[ufr1x—:cy2]
— e ) . (18)

y v+ marm oy —y + ]
The following perturbation of system (18) can be obtained by taking 7

as bifurcation parameter;

T4 =2 (= (ry + F)x — xy?
€z _ I‘(zj—l) [N ) ( 1 ) _y ] ’ (19)
Yy y+m[xy *y+(’l"1+’l")$]
where |F| << 1 is a least perturbation parameter. Assuming that H =

T —xy, P =y —y,, then system (19) is converted into the following form:

(2)- (o) (5)-(amnn) e
P az1 a2 Vi f2(H, P,7)

where
fi(H,P,7) = a3HP?+ a14,HP + a15P* + e;7H
+ erP+O((|H|+|P|+ 7)),
fQ(H, P7 ’F) = b13HP2 + b14HP + b15P2 + 63’FH

+ O((H|+|P|+ )Y,
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where
. B _pa (N2+T1> o 2,U,2pa
. Tla+1) ~ 77 Tla+1)(p2+mn)
P (u2+r1) P (,uth)
a1 = . @22 = 17
[(a+1) L(a+1) (u? +71)
pOL 2/J/pa (e
= —_— = —_— b = -,
ais F(Oé + 1)7 aiq F(O{ n 1)’ 13 F(O{ + 1)
o _ 3 pa o — 2N2po¢
D(a+1) D(a+1) (02 +11)%
e = — 2 a—— pp”
3 D(a+1) T(a+1) (2 +r)’
o o 2HP” _ o
14 - -7 AN

Ma+1) "~ Tlar ) (@)

The canonical form of (20) at » = 0, can be obtained by assuming the

following map:
a12 a2
H u
= . 21
—1l—an A—an

The normal form of system (20) under translation (21) can be expressed

(A2—a1)f f
1+a ’
v 0 A2 v a12()\121+11) + >\2-2i-1

where
where, H = aj2 (u+v) and P = —(1 4+ a11)u+ (A2 — a11) v.
Thus approximation of center manifold W€(0,0,0) of (22) in the least

as:

neighborhood of 7 = 0 evaluated at origin can be expressed as:

we€(0,0,0) = {(u,v,T € RB) DU = 8372 + sofu + s1u® + (O|ul, |77\)4},
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where

(14 a11) a14 b14
= 1
o )\2—1 ((au A2 +1) A2+1>“12( ““1))

(1+an) M5 b1s 2
1
+ )\21( alz (A2 +1) /\2+1)( Fan)” )y

s o +a11 €1 + €3 a
2 1—/\2 a12 /\2+1 Aoy +1 12

- (1+a11)62(1+a11)) PR
1—)\2 (112()\2-‘1-1) o8 ’

Hence, the map restricted to the center manifold W¢(0,0,0) is expressed

as:
Fiu— —u+tu? + tour + tzu?F + kyui? + ksu® + (O|ul, |7])?,
where
ail — /\2 Cl14 b14
t 1
! ( a1z (Mo + 1) A2+1)a12( +an)
A2 — a11) ais bis 2
— 1
- <a12 >\2+1 /\2+1)( o)
P < 92— a11) es ) (A2 —a11)e2 (14 a1)
2 — ajg — s
a2 (A2 +1 )\2 +1 aiz2 (A2 +1)
2 — a11 ai4 b4
t = — Ao —
3 ( a1z (Mg + 1) )\2+1)a12( 2 — ai1)ms
o >\2 - Cl11 a14 b14 Q1o (1 ta )
a12 )\2"‘1 )\2+1 127752 1
(A2 —ai1) ars b1s
- 2 — 1 Aoy —
( a2 (Ma+1)  Xo+1 (1+a1) (A2 = an)ms
(a11 — A2) ea (Mo —agr)my <()\2 —aii)e; es )
- a12mMmsy,
a1z (A2 +1) aro(M+1)  A+1
()\2 - 011) G14 bia )
ty = — a2 (Mg —ai)m
4 <a12()\2+1> Xy + 1 12(2 11) 3

_ ((A2—6l11)a14_ bia

1
a2 Oz + 1) N+ 1) aioms (14 ay)
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()\2 - all) ais . b15 B
( a2 (/\2 +1) Ao + 1 (1+a11) (A2 — a11) ms

(A2 — a11)2 €M (()\2 —aii)e; €3 )
+ - a12Mm2,
ai2 ()\2 + 1) ai2 ()\2 + 1) AQ +1
—ail)a b1:
ts = ( ajg )\21:_ 113 - /\21—i 1) a2 (1+a11)2
+ <)\2a11 ais b4 )am(/\ —a )
12 O + 1) ot 1 127 (A2 11
(A2 —a11)as b14
1
* ( a12 (A2 +1) )\2+1)a12m1( +an)

( (A2 —ai1) ars b1s

1 Ay — .
aiz (A2 +1) >\2+1>< au) (e —an)m

Next, we have the coupled nonzero real numbers:

82f~ 1 8F 82F ()\2 - a11) €1 €3
Fi = —+ - = — a12
oudr 2 Or Ou? 0.0 aia(Ma+1)  A+1
(A2 —a11)e2 (1 +a11)
a2 ()\2 + 1) ’
and
I — 1637}? 4 132717 ’ =2 4t
2 6 Ou 2 Ou? IR
(0,0)

We have the following conclusions according to aforemention calculation;

Theorem 2. There exists flip bifurcation at (x.,y.) of (14) whenever
Fo # 0 and r varies in small neighborhood of r1. In addition, if Fo >
0, (F2 < 0) respectively, then orbit having period-2 stable or unstable,

respectively.

Next, we investigate the Neimark-Sacker bifurcation of fixed point
(24, y«) of map (14). The main difference between Neimark-Sacker bifur-
cation of integer-order and fractional-order dynamical systems is that the
fractional-order system can exhibit more complex and rich dynamics than

the integer-order system, due to the presence of memory and hereditary ef-
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fects in the fractional derivative term. For more recent work on bifurcation
one can see [9-13,28,29,40]. In order to explored the Neimark-Sacker bi-
furcation, we find the conditions for which (z,, y.) is non-hyperbolic point
with complex conjugate root of characteristic equation of unit modulus.
Thus if equation (16) hold true then P(A) = 0 have two complex conjugate
root with unit modulus.

Consider,
Tns = {(a,p,p,v) € R} : (17) satis fied}.

Assuming that

2p°p* +4/T(a+1) ((Bp2+1)T (a+1)—8u%p*)+(—2p" —1)T(a+1)
B 2(p°—T(at1l)) , then fixed

point (p., z.) undergoes Neimark-Sacker bifurcation when parameters vary

T =T =

in the least neighborhood of Ty g. Thus system (14) along with parameters
(a, p, t,m2) can be described by the following map:

z v+ by [ — ()2 — )]
— p ) , (23)
y Y+ o [2y? —y + (r2)a]
The following perturbation of system (23) can be obtained by taking 7 as

bifurcation parameter:
Pt [, AN — zu?
x - T+ T'(a+1) [/J’ (7"'2 + 7’){1,' ) ] (24)
y v+ v [2y® =y + (ra + Pz

where |7| << 1 is a least perturbation parameter.
Assuming that H =  — z,, P = y — y., then system (24) is converted
into the following form:

<H>%<an a12><H>+<¢1(H»P)>’ (25)
P as1 22 P $2(H, P)

¢1(H,P) = ai3HP?+aaHP + a15P* + O ((|H| + |P))*),
¢2(H,P) = bisHP? +biuHP +bi5P? + O ((|H| +|P|)*).
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Where ajl, iz, a21, 422,013, A14, A1s, b13, b14, b15 are define in (20) by

replacing r by ro + 7. Let
A — A1 (F)A + A2 (F) = 0, (26)

be the characteristics equation of variational matrix of system (25) evalu-
ated at (0,0), where A (7) and Ay (7) are defined in (25) with r = ro + 7.
Since (a, p, 1,72) € TN S, |A1] = |A2| such that Ay and Ay are the complex
conjugate root root of (26), then it follows that

ALy Ag = Al;f) + %,/4A2(f) — A2(7).

Then we obtain

d[A1 2 p* <\/F(O‘ +1)(Bp* + 1) M +1) - 8u2p0‘))
(d"z>f_o - 8uT(a + 1)2
P (8° +1)T(a+1))  p™ (=8p°p")
B 8uT (v + 1)? + 84T (a + 1)2 #0

p™ (1 +1® (2roa—1) 472 (ra+1)
Moreover A;(0) =2 — ( F(aHj(MQHi) 2+1) #0, —1.

Since, («, p, u,72) € Tng, it follows that

o (put4 1.2(27" —1)+ra(re+1) m o \m
—2 < Ay(0) =2-1 L F/(aﬂj(#uzi) 2+1) < 2. Thus we have A", A" # 1
for all m =1,2,3,4 at 7 = 0, for 4;(0) # 0,—1,+2. Hence, zeros of (26)

do not lie in the intersection of the unit circle with the coordinate axes

when 7 = 0.

A1(0)
5

The normal form of (25) at ¥ = 0 can be obtained by taking § =
v = $1/445(0) — A3(0) and assuming the following transformation:

()= () e

By using transformation (27), one has the following canonical form of
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)= (0 )+ (aun ) e

system (25):

where
fiwr) = PSP L M P 0 (] + o))
ai2 a2
7 —0 b —0 b
G(u,v) = (w’+ 13>Hp2 <(‘111>a14+14> HP
a2V v aiolV v

v (e Do) g o (ul+ ).

aiglV

where H = ajou and P = (0—aq1)u—vv. Due to aforemention computation

we state a non-zero real number:

1—2X1)\2 1
w = ([—Re <(1)27’207‘11> — §‘T11|2 — |7'02|2 + Re(/\zTgl):|> s

1—X) 7=0
where
1 ~ ~ L~ ~ ~
T20 = § [gluu = Glyy T+ 2921“1 + (gzuu — 9240 — 2gluv)] ’
1 ~ L~ ~
11 = Z [gluu + Gl T2 (gQuu + g2vv)] )
1 ~ ~ L~ ~ ~
To2 = g [gluu — 91y — 292u’u + (gzuu = 924y T 2gluv)] ’
1 - ~ ~ ~ o~ ol a1 7
T21 = E [gluuu + 9luve + 92 yuv + 92400 +1 (gzuuu + 92yvv ~ Jlyuw — gl'uv'u)] .

We have the following conclusions for direction and existence of Neimark-

Sacker bifurcation according to aforemention calculation;

Theorem 3. There exists Neimark-Sacker bifurcation at (x.,y.) whenever
7 varies in a least neighborhood of

202 p®+4/T(a+1)((8p2+1)T(a+1))—8u2p>— (2u+1)(a+1) iy .
rg = — 2P Ve HQ(pa_C;(aH))HP (22 +1)0(a . In addition, if

w < 0, (w > 0), respectively, then an attracting or repelling invariant closed

curve bifurcates from the equilibrium point for r > ro(r < 13), respectively.
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4 Codimension-two bifurcations

This section deals with the study of codimension-two bifurcations. Par-
ticularly, we explore the existence of 1:2, 1:3 and 1:4 resonance by using
normal form theory and theory of bifurcation. The occurrence of these

resonances can be identified by the following curves:

p (it + 12 (2r — 1) +r(r + 1))

R2: T(a+1) (2 +r) =4
)
s
and
vl (b (12 +7)" = Tla+1) (' + 12 2r = 1) +7(r + 1)) ) .

Fla+1)2(u?+7)

Then, it is easy to see that R2ZN NS, R3NNS and R4AN NS are called 1:2
resonance point, 1:3 resonance point, and 1:4 resonance point, respectively.
Furthermore, for r € [0, 5], 1 € [0, 5] and fixed («, p) = (0.36, 0.672), the

existence of strong resonance points of system (14) are depicted in Fig. 2.

4.1 1:2 strong resonance

In this subsection, we discuss 1:2 strong resonance for system (14) about its
positive fixed point. For this, u and r are taken as bifurcation parameters.
The Jacobian matrix of the system (14) about positive fixed point has

eigenvalue -1 with multiplicity two if the following conditions are satisfied:

P (1417 (2r=1)+r(r+1))

Ir T(at D (2 1r) =4 (29)
) p* (p”‘(;52+7')2—F(04+1)(u4+u2(2r—1)+r(7-+1)))
Det : INCESOEI (TR =0.

Solving system (29) for p and r yields the following solution (g, 7o):
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Figure 2. Existence of strong resonance points for system (14).

po = —V2p 3T (a+1) (p* =20 (a + 1)),
and
ro =2p **T(a+1)* (p** + 4l (a + 1) (p* = T(a +1))).

Taking the translations u, = &, — Z«, Uy = Yn — Y, 4 = po + iz and

r =1 + 7, then the system (14) can be transformed as follows:

U 1+mun —mae U fi(u,v)
0 B o | O O G T

where i << 1 and 7 << 1 are small perturbations,

filu,v) = miguv +migv® + O ((Ju] + v])?),
falu,v)) = maozuv + mogv? + O ((\u| + |v|)3) .
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pa (M2+7“) 2H2pa « /~L2+T)
mi = - , M2 ) 21 s
I(a+1) F(a+1)(u2+r) I'a+1)
(W) 20p° 2p”
Moy = — =

Mg = — wp”™ S wp”™ .
Tla+1)(p2+r) T(a+1) (4? +7)

Next, we consider the following transformation:

(1))

where T is a nonsingular matrix given by

ml2 ml2
T = mll+42 (m11+2)2 )
1 0

From (30) and (31), it follows that:

( w > N ( pro(p,7) =1 por(p,r) +1 ) ( w )
z qio(p, ) qor(p,7) —1 2

Tlat+t)(@@2+r) "7 Ta+r1) "™ Tatl)

(31)

fg,(w,z,u,r)
f4(w7z,,u7r) 7
(32)
where
f3(w,z) = paow?® + priwz, fa(w,z) = g20w?® + qriwz,
mi12M21 mi2Mma21
=2+ ———— 4+ maa, =14+  —""
P1o 2+ myy 22, Po1 2+ mi)?
mMiam
g0 = —MiaMma1 — 2(2 + maz) — mi1(2+ ma2), go1 =2+ mi1 — 22l

2+myy’
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Pop = mi2Ma23 +m P11 = mi2Ma23
20 — 24 11 —
2+m11 ’ (2+m11)2’

mis (M1 + 2) 2 + mia (M3 — mag) (Ma1 + 2) — miymas
mi2

q20 = ’

m12Ma23

=mi3— ———.
q11 13 i+ 2

Next, we consider the following invertible linear transformation:

()t e

_ < 1—|—p01(u,7") 0 )
—por (7)1 )

From (32) and (34), it follows that:

w —1 1 w fs(@,27ﬂ,7")
( : > - ( Ou(pur) r(ur) — 1 ) ( : >+< ol %) ) (34

where

where

61(1, 1) = qio + Po1gio — P1ogo1, O2(, ) = pio+qo1 — 1

f5(0, 2, p,7) = Pao@® + pr1wz, fo(0,2,p1,7) = G20’ + 110Z,

P20 = P20 + Po1P20 — P1oP11, P11 = P11, G11 = P1oP11 + q11 + Po1911

G20 = (1 + po1)p1o(p20 — q11) + (1 + po1)?ge0 — Piop11-

Taking into account #; and 65, we define the following matrix:
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S _ %9; (HO?TO) %97«1 (Moar())
(ko,m0) = 905 895 )y
Em Moﬂ“o) o (MOJ‘O

Then by simple computation detS(ug, 7o) is computed as follows:

detS (o, ro) = - Fp (: Efj); (z(ffr;)) £0 (35)

Condition (35) is called transversality assumption, and we assume that
it holds true. Next, 61(u,r) and 03(u,r) can be used for the following

parametrization in the neighborhood of yu = pg and r = rg:

/81 = 91(/%7")’ 62 = 92(H7T)'

Then, p and r can be expressed in terms of 81 and (s as follows:

p T (a+1)y/ B +52-2
V(p*—T(a+1)) (36)

x (\/F(oz T12(B11362-9) — (B2 —6)p°T(at1) - pza) ,

,LL:

and

(D (a+1)*(B1+4352-9) = (82—4)p° T (a+1)+p>*)
2(p*—T(a+1))? (37)
X (p72T(a + 1)%(B1 + 282 — 4)).

r=—

Using (36) and (37) in (34), we have the following mapping:
o) (1 1 @ f7(7{1, % B, B2) C(39)
z 51 _1+ﬁ2 z fS(wazvﬁlvﬁQ)

Jr(w, 2, By, B2) = 920@2(51752) + g11wZ(fBy, B2),
fs(w, 2, B1, Ba) = haow?(B1, Ba) + h11wz(B1, B),
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Bop — (mi2(miam3, —mizmai (24maz)+(24+ma2)(—(2+maz)maz+maimas)))
20 — (24+m11)? ’

maa (Ma1mag — (Mag + 2) Mag)

g20(B1, B2) = E—— ’
911(B1, B2) = %7
hi1(Br, B2) = mag (migmay + (ma2 + 2) m23).

(2 + m11)2

Then according to Lemma 9.9 [ [42], p. 437], there exists a nearidentity

transformation such that system (34) can be transformed as follows:

T -1 1 Ty 0
— +
< T2 ) ( pi =1+ P > < T2 ) ( Cai + Dz12s ) (39)

+ O(|zy + 2|"),

where

C(B1, B2) = g20(B1, B2)ha2o(B1, ﬁ2)+%h§0(517 52)+%h20(517 B2)h11(B1, B2),

D(py,p2) = 5920(51752%11(51752) + ZhQO(ﬁla/BQ)hll(Bla/BQ)
+  h3o(B1,B2) + %h?1(51762) + hao(B1, B2)ho2(B1, B2)
+ 3930(B1,B2) + 2920(61752)h20(ﬁ1762)

5
+ 5911(51,52)%0(51,52).
Lastly, simple computation yields that

(p* = 3T(a + 1)) (p** +30(a + 1) (p* — 4T (a + 1))

C(0,0) = :
(0.0) A(a+1)3 (p* —T(a+1))
7 33p2a p3a p4a
Db(0,0) = 106 - AT (o +1)2 T AT (e +1)3 * AT (o + 1)4
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640(a+1)>  9p*  136T(a+1)
(p* —T(a+1))* Al(a+1) p*=T(a+1)

Taking into account above calculation and theoretical results presented

in [42], we have the following result.

Theorem 4. Assume that C(0,0) # 0, D(0,0) + 3C(0,0) # 0, and
detS(po,r0) # 0 then system (14) undergoes 1:2 strong resonance about
its positive fived point whenever p and v vary in small neighborhoods of g

and 1o, Tespectively.

4.2 1:3 strong resonance

In this section, we discuss 1:3 strong resonance for system (14) about its
positive fixed point. For this, u and r are taken as bifurcation parameters.

Then Jacobian matrix of the system (14) about positive fixed point has

complex conjugate eigenvalue —% + L§ if the following conditions are
satisfied:
e (B @r=1)4r(r+1)
e T = (10)
07 (0% (2 47)? =T (a+ 1) (141 (2r—1)+r(r+1)) )
Det : TP =

Solving system (40) for p and r yields the following solution (u1,71):

3
= ST P P 5T 7 1 T+ 1.

o= grf““F(a +1)% (p** +30(a + 1) (p* — T(a+1))).

In order to shift the positive fixed point (z.,y.) of (14) at (0,0), the
translation u, = *, — Ty, Vn = Yn — Y and p = p1 and r = r; yields the

following system then system (14) can be described by the following map:

()= () () () w
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(0%

€1 = 1-— 3p_°T(a + 1), €19 = —3p_ar(04 + 1) — P

NCESR

€21 + 3P7QF(OZ + 1), €29 = 3,070[].—‘(04 + ].) - 2,

filu,v) = anuv+apv® + O ((Jul + [v])?),
fa(u,v)) = brww +boev® + O ((Jul + [v])®) .

ap2

_p*y/p T (a4 1)2 (p?* — 3peT(a +1) +30(a +1)?)
V6L (a +1)3 ’

V6 /p T (0§ 12 (% —3p°T(a 1) 1 30(a +1%)
aj] = — )
INa+1)

by = p**\/p~ieT(a +1)% (p* —3p°T(a + 1) + 3T (a + 1)?)
V6L (a +1)3 ’

y V60 /p~ T (a + 1) (0** = 3p°T(a + 1) + 30(a + 1))
1= Tla+ 1)

The eigenvalues of jacobian matrix of system (41) are _71 + ?L, let
p1(p1,71) and ¢1 (u1,71) are eigenvector associated with jacobian matrix of

(41) and its transpose, respectively and satisfying (p1(p1,71), q1(p1,71)) =
1. Then, by simple computation one has;

(3+iv3)p* 1
p1(pa,m1) = ( 6 (a+1) > ;
1

and

6(—1)2/°T(a+1)
q1(pa,m1) = (3-1v3)pe+3(i4v3)iT (et )
1
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Moreover, any X € R? can be described uniquely as follows:

X = zpi(p1,r1) + z2pi(pa, 1), z€C.

Consequently, the complex form for the map (41) can be written as

follows:

1 V3
z— (2 + 2L> z+ 'k!gjkz igk, (42)
2<j k<3

where

g20 = —2iV/3p™T(a + 1)(ao2 — ax1 + boz) — iV/3a11 + ax1 + boz + V3iboz,
911 = 2V3ip=°T(a + 1)(a11 — boz — ag2) + V3iboaboa — iV/3a11,

goz = 2iV3p°T(a 4 1)(a11 — bog — ag2) — i (\/ﬁ - l) (@11 — bo2)

and gso = go3 = g12 = g21 = 0.
Next, according to Lemma 9.12 [ [42], p. 448], there exists a smoothly
parameter dependent change of variable such that the map (42) can be

converted into the following form:

—1 3
w— <2 + {L> w+ B(py,m)w + Clpy, r)wlw]® + (Jw]*),  (43)

where
1

5902,

B(:U’larl) = 2

and

1 V3 2
Clur,m) = (2 + 2L) go2911 + ( + ML> lg11] -
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Next, we consider the following quantities:

By(um) = (‘;’ " 3f> B, 1)

3
Ci(pr,m1) = —3|B(pr,m)[* — 5L+ V3)C(p, 1)
Arguing as in Lemma 9.13 [ [42], p. 450], we have the following result.

Theorem 5. Assume that p = p1, r =11, ReCy(p1,71) # 0 and B(u1,71)
# 0 then the system (14) undergoes a 1:3 resonance about its positive fized
point, ReCy(u1,7r1) # 0 determines the stability nature for the bifurcating

closed invariant curve.

4.3 1:4 strong resonance

In this section, we discuss 1:4 strong resonance for system (14) about its
positive fixed point. For this, u and r are taken as bifurcation parameters.
Then Jacobian matrix of the system (14) about positive fixed point has

complex conjugate eigenvalue+. if the following conditions are satisfied:

e (ut P (2r—1)+r(r+1))

TT PlatD)(u?+r) o (44)
Dot P (pa(u2+r) 7F(o‘+1)(M4+M2(2T*1)+T(T+1))) —0
et: M@t D2T+) =0.

Solving system (44) for 1 and r yields the following solution (s, r2):

p2 = p 2T (a+ 1)y/p?* = 2p°T(a + 1) + 2T (e + 1)2,

ro = p T (a +1)2 (pza +2I(a+1) (p* = T(a+1))).

In order to shift the positive fixed point (z.,ys) of (14) at (0,0), the
translation u, = x, — x«, v, = Yn — Yx and pu = po and r = ry yields the

following system then system (14) can be described by the following map:

U €11 €12 U fi(u,v)
(- ) ) in) e
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(03

—a —a P
= 1-2 Tr 1 =2 r 1) — ———+2
€11 P (a+1), €12 p (a+1) Tlat1) + 2,
o1 = 20 °T(a+1), =20 T(a+1)—1,
filu,v) = anuv+ apv® + O ((Jul + [v])?),
falu,v)) = briww +boev® + O ((Jul + [v])?) .

_po‘\/p%‘ —2p°T(a+1) 4+ 2T (ax + 1)?
2T (e + 1)2 ’

ap2 =

an = —2p~*\/p?* = 2p°T(a+ 1) + 20 (a + 1)2,

_ P/ p2* —2p°T (o + 1) + 2T (v + 1)2

b
02 o0 (a + 1)2 ’

bin = 2p"%/p2* —2p°T(a + 1) + 20 (a + 1)2.

The eigenvalues of jacobian matrix of system (45) are 4, let pa (o, 72)
and ¢o(pe,72) are eigenvector associated with jacobian matrix of (45) and
its transpose, respectively and satisfying (ps(ua,r2), g2(u2,72)) = 1. Then,

by simple computation one has;
(éfé)pa -1
p2(p2,m2) = Tlat1) ;
and
G2(p2,12) =

Moreover, any X € R? can be described uniquely as follows:

X = zpa(pe,12) + Zpa(ua,r2), z €C.
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Consequently, the complex form for the map (45) can be written as

follows:

1 )
z— (1) z+ Z Tk'@jkzjfk, (46)
2<j4+k<3

where

1 7 . .
goo = ( + ) (@11 —ibo2) — ip~ “I'(a+ 1)(a11 — bo2 — ao2),

g1 = i(a1r — (1 +1i)bo2) — 2ip” “T'(a + 1)(a11 — boz — ao2),

1 7 .
Jo2 = <—2 + 2) (@11 — bo2) —ip” *T'(a + 1)(a11 — bo2 — ao2),

and gzo = go3 = g12 = g21 = 0.
Next, according to Lemma 9.13 [ [42], p. 448], there exists a smoothly
parameter dependent change of variable such that the map (46) can be

converted into the following form:
wy — (1) wy + By (p, r2)wi|wy|* + Cr(pg, r2)wi + (Jwa|*),  (47)
where

1 _ _ 1
By (p2,72) = tg11 — 5911920(1 +1)+ 911920+ Go2911 (1 — 1) — 5911920(1 —2u),

and
v—1_ _ v+ 1
1 g11902 1

Next, we consider the following quantities:

Ci(p2,m2) = J11920-

Bs(p2,r9) = —4B1(p2,12)
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Co(pz,m2) = —4C1 (2, 72),

whenever Cy(u1,71) # 0, thus we can write jacobian matrix J(ug,rs) =

Ba(p2,r2)
[Ca(p2,r2)] "
result.

Arguing as in Lemma 9.15 [ [42], p. 450], we have the following

Theorem 6. Assume that p = ps, r = ro, ReJ(uo,rm2) # 0 and
ImJ(uz,m2) # 0 then the system (14) undergoes a 1:4 resonance about
its positive fized point, ReJ(ua2,r2) # 0 determines the stability nature for

the bifurcating closed invariant curve.

5 Numerical simulation

This section aims to validate the theoretical analysis presented earlier by
demonstrating the dynamic and chaotic behavior of the system (14) with
selected parameter values. Our focus is primarily on the stability anal-
ysis and bifurcation behavior of the system’s positive equilibrium. To
accomplish this, we employ various mathematical tools such as Mathe-
matica packages to generate plots, phase portraits, bifurcation diagrams
and maximum Lyapunov characteristic exponents associated with the sys-

tem (14). Initially, to observe the qualitative changes due to bifurca-

ME

" om os  0m % o o7 o oo om0 0%

Y6 0w o7 0% 08 um 03 0%
"

(a) IBlfurcatlon diagram for (b) Elfurcatlon diagram for (c) MLE

Figure 3. MLE and Bifurcation diagrams for system (14) with

(p, @, p) = (0.34,0.01,0.93), » € [0.6, 1] and initial con-
ditions (z9, yo) = (0.5,0.9)

tion we take (p, «, p) = (0.34,0.01,0.93). Let r € [0.6, 1] be the

bifurcation parameter, then system (14) undergoes hopf bifurcation at
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r1 = 0.8499470761490069. For these parametric values, the positive fixed
point is (2., y«) = (0.542322, 0.93). The eigenvalues of Jacobian matrix
of system (14) about (z., y.) = (0.542322, 0.93) are A\; o = 0.151274 +
0.988492¢ and |A\q, 2| = 1. Alternatively,the bifurcation diagrams for for
system (14) in (r,z,) and (r,y,) planes are depicted in Fig. 3a and Fig.

3b, respectively and crossposting MLE are directed in Fig. 3c. Moreover,
to explore the complex behavior of system (14), some phase portraits are
presented in Fig. 4a, Fig. 4b, Fig. 4c, Fig. 4d

06 E s 08

0.4 gt 07

03 04 045 05 05 06 065 07 075 08
X

(a) Phase portrait for r = 0.7 (b) Phase portrait for r = 0.816

1 1.2

=09

1aE

1

08

07

(c) Phase portrait for » = 0.826 (d) Phase portrait for r = 0.836

Figure 4. Phase portrait for system (14)

Next, assume (p, «, p) = (0.18, 0.34, 1.4) and r € [2.2, 2.6] be a
bifurcation parameter, then system (14) undergoes flip bifurcation about
ro = 5.63587348174116. In this case unique positive equilibrium point of
system (14) is (., y«) = (0.184311, 1.4). Moreover, eigenvalues of Ja-
—1 and |A2| = 0.689406 # =+1.

Alternatively, the bifurcation diagrams for for system (14) in (r,z,) and

cobian matrix of system (14) are A\; =

(r,yn) planes are depicted in Fig. 5a and Fig. 5b, respectively and cross-



446

posting MLE are directed in Fig. 5c.

Next, assume (p, o) = (0.18, 0.34), r € [1.16, 1.24] and p € [1.93, 1.96].
Let (ro, po) = (1.142316212430117, 1.972448414307462) be the bifurcation
parameters, then system (14) undergoes 1:2 resonance about unique posi-
tive fixed point (x4, y.) = (0.391913, 1.97245). Moreover, eigenvalues of
Jacobian matrix of system (14) are A\; o = —1. Alternatively, the bifurca-
tion diagrams and crossposting MLE for for system (14) in (r, p, x,) and
(r, 1, yn) spaces are depicted in Fig. 6a, Fig. 6b and, Fig. 6c¢, respectively.

ME
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% 27 2w 26 2 2 87 2% 23 2% 20 18 25 1%

(a) zBifurcation diagram for (b) Eifurcation diagram for (¢) MLE

Figure 5. MLE and Bifurcation diagrams for system (14) with
(p, o, u) = (0.18, 0.34, 1.4), » € [2.2, 2.6] and initial
conditions (zo, yo) = (0.18, 1,4)

Next, assume (p, «) = (0.741, 0.846), r € [1.419,1.8] and p € [1.343,
1.345]. Let (ro, o) = (1.424848274436868, 1.3444958506301898) be the
bifurcation parameters, then system (14) undergoes 1:3 resonance about
unique positive fixed point (z., y.) = (0.41592842298066773,
1.3444958506301898). Moreover, eigenvalues of Jacobian matrix of sys-
tem (14) are A\ o = _1%‘/‘5" Alternatively, the bifurcation diagrams and
corresponding MLE for for system (14) in (r, u, z,) and (r, u, y,) spaces
are depicted in Fig. 7a, Fig. 7b and Fig. 7c, respectively.

Next, assume (p, o) = (0.85, 0.95), r € [0.95,1.5] and p € [0.9,1]. Let
(ro, o) = (0.9992608065977496, 0.9757272955467994) be the bifurcation
parameters, then system (14) undergoes 1:3 resonance about unique pos-
itive fixed point (z., y«) = (0.5000384433121589, 0.9757272955467994).
Alternatively, the bifurcation diagrams and crossposting MLE for for sys-
tem (14) in (r, u, x,) and (r, w, y,) spaces are depicted in Fig. 8a, Fig.
8b and Fig. 8c, respectively.
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(a) Bifurcation diagram for (b) Bifurcation diagram for (c) MLE
Tn Yn

Figure 6. MLE and Bifurcation diagrams for system (14) with (p, ) =
(0.18, 0.34), r € [1.16, 1.24], u € [1.93, 1.96] and initial
conditions (zo, yo) = (0.39, 1.97)

(a) a]?ifurcation diagram for (b) yBTiqurcatiOIl diagram for (c) MLE

Figure 7. MLE and Bifurcation diagrams for system (14) with (p, ) =
(0.741,0.846), r € [1.419,1.8], p € [1.343,1.345] and initial
conditions (zo, yo) = (0.415928, 1.3445)

(a) Bifurcation diagram for (b) Bifurcation diagram for (c) MLE
Tn Yn

Figure 8. MLE and Bifurcation diagrams for system (14) with (p, o) =
(0.95,0.85), r € [0.95,1.5], p € [0.9,1] and initial conditions
(zo0, yo) = (0.5, 0.975727)
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6 Conclusion

A chemical reaction model is considered for its discritization and qualita-
tive analysis. By applying the Caputo fractional derivative the discrete-
time fractional order cubic autocatalator chemical reaction model is ob-
tained. It is proved that system has a unique positive equilibrium point.
The local dynamical behavior of model is studied. Particularly, paramet-
ric conditions are obtained for local asymptotic stability of model (14).
Furthermore, codimension-one and codimension-two bifurcations are dis-
cussed. By implementing normal form method and bifurcation theory,
it is proved that system (14) undergoes Neimark-Sacker bifurcation and
period-doubling bifurcation at its positive equilibrium point. Moreover,
it is shown that fractional order model (14) undergoes codimension-two
bifurcation associated with 1:2, 1:3 and 1:4 strong resonances. In the case
of 1:2 resonance, the system exhibits a resonance pattern where the fre-
quency of one oscillatory component is twice that of another component.
This can lead to the amplification or suppression of certain oscillations in
the system, resulting in a complex behavior. In the case of 1:3 resonance,
the system demonstrates a resonance pattern where the frequency of one
oscillatory component is three times that of another component. Similar
to the 1:2 resonance, this can lead to the amplification or suppression of
specific oscillations and contribute to the emergence of intricate dynamics.
In the case of 1:4 resonance, the system displays a resonance pattern where
the frequency of one oscillatory component is four times that of another
component. This resonance introduces further complexity to the system’s
behavior, affecting the amplitudes and phases of different oscillations.
Codimension-two bifurcations, such as the resonances mentioned above,
provide insights into how different oscillatory modes interact and influence
each other in the fractional-order cubic autocatalator model. The occur-
rence of these bifurcations can lead to the emergence of intricate dynamics,
including chaotic behavior, multiple stable states, and complex oscilla-
tory patterns. Understanding and characterizing these codimension-two
bifurcations are essential for comprehending the system’s behavior and its

implications in chemical reactions and nonlinear dynamics.
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In other words, the analysis of codimension-one and codimension-two

bifurcations of a fractional-order cubic autocatalator chemical reaction

system can help to understand the mechanisms and conditions for the

emergence of complex dynamics in chemical reactions, and to control or

manipulate them for practical purposes. For instance, some chemical re-

actions can be used to generate signals or patterns for communication or

encryption. By tuning the fractional order or other parameters, one can

switch between different modes of operation or enhance the security or

robustness of the system.
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