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Abstract

This article delves into an investigation of the dynamic behavior
exhibited by a fractional order cubic autocatalator chemical reac-
tion model. Specifically, our focus lies on exploring codimension-
one bifurcations associated with period-doubling bifurcation and
Neimark-Sacker bifurcation. Additionally, we undertake an analysis
of codimension-two bifurcations linked to resonances of the types
1:2, 1:3, and 1:4. To achieve these outcomes, we employ the nor-
mal form method and bifurcation theory. The results are presented
through comprehensive numerical simulations, encompassing visual
representations such as phase portraits, two-parameter bifurcation
diagrams, and maximum Lyapunov exponents diagrams. These sim-
ulations aptly examine the behavior of a system governed by two
distinct parameters that vary within a three-dimensional space. Fur-
thermore, the simulations effectively illustrate the theoretical find-
ings while providing valuable insights into the underlying dynamics.
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1 Introduction

Chemical processes involving chemical reactions, mass transfer, heat, fluid

flow, and separations exhibit significant nonlinearity, leading to complex-

ity. To maintain stability and control over the process conditions, process

engineers prescribe homogeneous properties for the product obtained. The

inherent nonlinearity of the chemical reaction results in sudden complexity

during the industrial process, even in the absence of external disturbances.

Over the past decade, there has been a notable increase in the publica-

tion of articles pertaining to processes that exhibit oscillatory behavior,

multiple fixed points, and chaos [2, 18,25].

For more than a century, the study of oscillatory behavior in chemical

reactions has been of great interest to both experimentalists and theoreti-

cians. Notable examples of oscillatory systems in chemical engineering and

thermodynamics include the Belousov-Zhabotinsky, Bray-Liebhafsky, and

Briggs-Rausher reactions. These reactions exhibit oscillatory behavior in

concentration, which is observable through changes in color [15]. The con-

tinuous flow well-stirred tank reactor (CSTR), also referred to as a backmix

reactor or vat, is a commonly used reactor for studying chemical dynam-

ics, as reported in the literature [22]. During experiments, the system of

ordinary differential equations governing the CSTR can be managed using

standard techniques.

Furthermore, numerous studies have demonstrated that CSTRs can

exhibit a rich variety of dynamic phenomena, with fluctuations being a

feature of particular interest to both chemical engineers and mathemati-

cians [3]. Investigations into self-oscillatory CSTRs have led to two distinct

directions: one involves eliminating oscillations, while the other takes ad-

vantage of process dynamics for unsteady-state operation [2, 18, 25]. An

optimal model would go beyond conventional fixed-point optimization by

incorporating time-evolution, which offers opportunities for enhancing pro-

cess efficiency through cyclic processes.

The combination of two oscillatory CSTRs has been shown to generate

chaos [7, 8, 41]. Bifurcation analysis of steady-state is used to explore the

complex dynamical behavior of CSTRs. This analysis not only examines
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the unforced system but also assesses the dynamic complexities that arise

when periodic forcing is introduced. Classic methodical tools, such as

codimension-1 bifurcations of limit cycles and stroboscopic Poincare maps

[24], are employed to study chaos that frequently occurs in CSTRs during

period-doubling and Neimark-Sacker bifurcations.

The Bclousov-Zhabotinskil (BZ) reaction, one of the most well-known

chemical reactions, was first mathematically modeled by Field and Noyes

[38] under isothermal conditions. Leach et al. [19] demonstrated the exis-

tence of Hopf bifurcation in a two-cell coupled cubic autocatalator chemical

reaction model. In [21], the author explored the presence of limit cycles in

a cubic chemical autocatalator model and found that they exist within a re-

stricted parameter space. In [14], the author studied a cubic autocatalator

chemical reaction model and determined that traveling waves do not oc-

cur unless the initial concentration of reactant is periodic. In [30] author

investigated a reaction of a homogeneous-heterogeneous nano-fluid and

found evidence of hysteresis bifurcations and multiple solutions. Alder-

remy et al. [1] proposed a new fractional blood ethanol model and briefly

compared it with the fractional-cubic autocatalator reaction model. Kay

and Scott [26], as well as [5, 39], demonstrated that these reactions ex-

hibit oscillatory behavior in exothermic conditions. Gray and Scott [27]

introduced a cubic autocatalator chemical reaction model that displays

oscillatory behavior, which is governed by the following reaction steps:

P
c0−→L, 2M

c1−→3M, M
c2−→N,L

c3−→M, (1)

where c0, · · · , c3 are constants, p, l, m, n are the molar concentrations of

chemical species P,L, M and N , respectively. Based on the assumption

of isothermal reaction, we have the following 2-dimensional system:

dl
dt =c0p− c1lm

2 − c3l,
dm
dt =c1lm

2 − c2l + c3l.
(2)

On the other hand, the dimensionless version of (2) is given by [20,31]:

dx
dt =µ− xy2 − rx,
dy
dt =xy2 − y + rx,

(3)
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where µ, r > 0. Merkin et al. [16] performed a comprehensive analysis of

system (3). In [17], the authors focused on the specific case of model (3),

where r = 0 and demonstrated the presence of periodic behavior for the pa-

rameter µ. Gray and Thuraisingham [6] introduced additional parameters

to system (3) and examined its bifurcation analysis. In addition, Forbes

and Holmes [20] investigated the limit cycle behavior of system (3). Notice

that, unlike traditional integer order models, fractional order models in-

corporate fractional derivatives in their formulation, which can provide a

more accurate description of the reaction kinetics. These models are used

to better understand the underlying mechanisms of chemical reactions,

optimize chemical processes, and develop new materials and technologies.

They are also being used in medical applications to model drug delivery

systems and study physiological processes. Overall, fractional order chemi-

cal reaction models are a powerful tool in the field of chemistry and related

disciplines [23]. For further reading on mathematical models concerning

chemical reactions in both continuous and discrete frameworks, the reader

is encouraged to consult references [32–37].

Taking into account the facts that fractional calculus allows more ac-

curate modeling of complex systems which cannot be described by integer-

order differential systems, and the fractional system can be adapted to fit a

variety of data sets, it is more appropriate to consider the fractional-order

counterpart of the system (3).

Prior to transforming system (3) into its fractional-order counterpart,

we review some necessary concepts from fractional calculus as follows [4]:

The Caputo fractional-order derivative is a generalization of the clas-

sical derivative to non-integer orders. It is defined as follows:

Let α > 0 be a real number and m−1 < α < m ∈ Z+. Let f : [0,∞) →
R be a continuous function that is m times differentiable on (0,∞). Then,

the Caputo fractional-order derivative of order α of f at t > 0 is given by:

Dαf(t) =
1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α−m+1
dτ, (4)

where f (m) is them-th classical derivative of f , and Γ(·) denotes the Euler’s
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Gamma function defined as:

Γ(z) :=

∫ ∞

0

e−ttz−1dt, z ∈ C, Re(z) > 0.

Moreover, the Riemann-Liouville integral operator Iϑ of order ϑ is defined

as follows:

Iϑg(t) =
1

Γ(ϑ)

∫ t

0

(t− s)
ϑ−1

g(s)ds, ϑ > 0. (5)

Here, we use the Caputo fractional-order derivative because it has some

advantages over other definitions, such as:

• It preserves the initial conditions of the system, meaning that the

values of the state variables and their integer-order derivatives at

t = 0 are well-defined and consistent with the classical case.

• It allows for a smooth transition from the fractional-order system to

the integer-order system when fractional-order approaches an integer

value.

• It is more suitable for modeling physical phenomena that involve

memory and nonlocal effects.

Next, the fractional-order counterpart of the system (3) is given by:

Dαx(t) =µ− x(t)y2(t)− rx(t),

Dαy(t) =x(t)y2(t)− y(t) + rx(t),
(6)

where t > 0, and α is the fractional order which satisfy 0 < α ≤ 1. There

are several ways to discretize this type of system using different techniques.

An instance of such methods is the piecewise constant approximation,

which involves discretizing the model through the following process. Take

into account the initial conditions of the system (6) are x(0) = x0, y(0) =

y0. Then system (6) can be discretized as follow:

Dαx(t) =µ− x
(
[ tρ ]ρ

)
y2
(
[ tρ ]ρ

)
− rx

(
[ tρ ]ρ

)
,

Dαy(t) =x
(
[ tρ ]ρ

)
y2
(
[ tρ ]ρ

)
− y

(
[ tρ ]ρ

)
+ rx(

(
[ tρ ]ρ

)
.

(7)

Consider t ∈ [0, ρ), thus t
ρ ∈ [0, 1). Therefore, we obtain that:
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Dαx1(t) =µ− x0y
2
0 − rx0,

Dαy1(t) =x0y
2
0 − y0 + rx0.

(8)

The solution to equation (8) is given by:

x1(t) =x0 + Iα
(
µ− x0y

2
0 − rx0

)
,

y1(t) =y0 + Iα
(
x0y

2
0 − y0 + rx0

)
.

(9)

Then, it follows that:

x1(t) =x0 +
tα

Γ(α+1)

(
µ− x0y

2
0 − rx0

)
,

y1(t) =y0 +
tα

Γ(α+1)

(
x0y

2
0 − y0 + rx0

)
.

(10)

Next, for t ∈ [ρ, 2ρ), and taking t
ρ ∈ [1, 2). Then, one has

Dαx2(t) =µ− x1y
2
1 − rx1,

Dαy2(t) =x1y
2
1 − y1 + rx1.

(11)

On simplification, one has

x2(t) =x1(ρ) +
(t−ρ)α

Γ(α+1)

(
µ− x1y

2
1 − rx1

)
,

y2(t) =y1(ρ) +
(t−ρ)α

Γ(α+1)

(
x1y

2
1 − y1 + rx1

)
.

(12)

Upon iterating the discretization process n-times, we obtain

xn+1(t) =xn(nρ) +
(t−nρ)α

Γ(α+1)

(
µ− xn(nρ)y

2
n(nρ)− rxn(nρ)

)
,

yn+1(t) =yn(nρ) +
(t−nρ)α

Γ(α+1)

(
xn(nρ)y

2
n(nρ)− yn(nρ) + rxn(nρ)

)
,

(13)

where t ∈ [nρ, (n+ 1)ρ). For t → (n+ 1)ρ, we have the following form of

system (13):

xn+1 =xn + ρα

Γ(α+1)

[
µ− rxn − xny

2
n

]
,

yn+1 =yn + ρα

Γ(α+1)

[
xny

2
n − yn + rxn

]
,

(14)

where 0 < α ≤ 1 is the order of fractional derivative, and ρ > 0 is step size

for the discretization.

The novel contributions of this paper are outlined as follows:
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• The fractional-order nature of the model introduces a new dimen-

sion to chemical kinetics. Fractional-order derivatives and integrals

provide a more accurate description of reaction rates and system dy-

namics, enabling a better representation of real-world phenomena.

• The discretization of the fractional-order cubic autocatalator model

is crucial for performing numerical simulations and analyses. Dis-

cretization methods allow researchers to transform the continuous

fractional-order differential equations into discrete equations that can

be solved numerically. This facilitates the study of system behav-

ior, stability, bifurcations, and other properties using computational

techniques.

• In the fractional-order cubic autocatalator chemical reaction model,

codimension-two bifurcations play a significant role in understand-

ing the complex dynamics of the system. Codimension-two bifurca-

tions involve the simultaneous occurrence of two different types of

bifurcations, resulting in a higher level of complexity in the system’s

behavior.

• In the context of the fractional-order cubic autocatalator model, ex-

amples of codimension-two bifurcations include 1:2 resonance, 1:3

resonance, and 1:4 resonance. These resonances refer to specific re-

lationships between the frequencies of two or more oscillatory com-

ponents in the system.

The rest of this paper is structured as follows:

The existence of fixed point and local stability of system (14) is investi-

gated in Section 2. Co-dimension-1 bifurcations (that is, period-doubling

bifurcation and Neimark-Sacker bifurcation) are discussed in Section 3. In

Section 4, codimension-2 bifurcations are investigated. Finally, in Section

5 numerical simulations are presented.
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2 Local stability analysis

It is easy to see that system Eq. 14 has unique positive fixed point

E(x∗, y∗) = ( µ
µ2+r , µ).

Subsequently, we examine the local stability analysis of E(x∗, y∗) =

( µ
µ2+r , µ) of system Eq. 14.

To investigate the stability, we compute the Jacobian matrix FJ of

system (14) at E(x∗, y∗) as follow:

FJ(E) =

 1− (µ2+r)ρα

Γ(α+1) − 2µ2ρα

(µ2+r)Γ(α+1)

(µ2+r)ρα

Γ(α+1)

(µ2−r)ρα

(µ2+r)Γ(α+1) + 1


The characteristic polynomial of FJ at E(x∗, y∗) is given by:

P(λ) = λ2 −A1(E)λ+A2(E), (15)

where

A1(E) = 2−
ρα
(
µ4 + µ2(2r − 1) + r(r + 1)

)
Γ(α+ 1) (µ2 + r)

,

and

A2(E) =
ρα
(
ρα
(
µ2 + r

)2 − Γ(α+ 1)
(
µ4 + µ2(2r − 1) + r(r + 1)

))
Γ(α+ 1)2 (µ2 + r)

+ 1.

The following Lemma is used to explore the stability of fixed point.

Lemma 1. Let F(λ) = λ2 − A1(E)λ + A2(E), and P(1) > 0. Moreover,

λ1, λ2 are root of 15, then:

(i) |λ1| < 1 and |λ2| < 1 if and only if P(−1) > 0 and A2(E) < 1;

(ii)|λ1| < 1 and |λ2| > 1 or (|λ1| > 1 and |λ2 < |1)if and only if P(−1) < 0;

(iii) |λ1| > 1 and |λ2| > 1 if and only if P(−1) > 0 and A2(E) > 1;

(iv) λ1 = −1 and |λ2| ≠ 1 if and only if P(−1) = 0 and A1(E) ̸= 0, 2;

(v) λ1 and λ2 are complex and |λ1| = 1 and |λ2| = 1 if and only if

A1(E)
2 − 4A2(E) < 0 and A2(E) = 1.

As λ1 and λ2 are eigenvalue of (15), we have the following Topological
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type results. The fixed point E(x∗, y∗) is known as sink if |λ1| < 1 and

|λ2| < 1 thus the sink is locally asymptotic stable. The fixed pointE(x∗, y∗)

is known as source if |λ1| > 1 and |λ2| > 1, thus source is always unstable.

The fixed point E(x∗, y∗) is known as saddle point if |λ1| < 1 and |λ2| > 1

or (|λ1| > 1 and |λ2| < 1) and the fixed point E(x∗, y∗) is known as non-

hyperbolic fixed point either |λ1| = 1 and |λ2| = 1.

Thus, by applying Lemma 1, we study the local stability of positive

equilibrium point of system (14) by stating the following proposition.

Proposition 1. The positive equilibrium point E(x∗, y∗) of system (14)

satisfies the following results.

(i) The positive fixed point E(x∗, y∗) is sink if and only if:

ρα
(
ρα
(
µ2 + r

)2 − 2Γ(α+ 1)
(
µ4 + µ2(2r − 1) + r(r + 1)

))
Γ(α+ 1)2 (µ2 + r)

+ 4 > 0,

and

Γ(α+ 1)
(
µ4 + µ2(2r − 1) + r(r + 1)

)
> ρα

(
µ2 + r

)2
.

(ii) The positive fixed point E(x∗, y∗) is saddle point if and only if:

ρα
(
ρα
(
µ2 + r

)2 − 2Γ(α+ 1)
(
µ4 + µ2(2r − 1) + r(r + 1)

))
Γ(α+ 1)2 (µ2 + r)

+ 4 < 0.

(iii) The positive fixed point E(x∗, y∗) is source if and only if:

ρα
(
ρα
(
µ2 + r

)2 − 2Γ(α+ 1)
(
µ4 + µ2(2r − 1) + r(r + 1)

))
Γ(α+ 1)2 (µ2 + r)

+ 4 > 0,

and

Γ(α+ 1)
(
µ4 + µ2(2r − 1) + r(r + 1)

)
< ρα

(
µ2 + r

)2
.

(iv) The positive fixed point E(x∗, y∗) is non-hyperbolic if and only if:
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r =
ρ−α

√
Γ(α+1)(−(ρα−2Γ(α+1)))(4µ2ρ2α+ρα(−Γ(α+1))+2Γ(α+1)2)

2Γ(α+1)

−
√

Γ(α+1)(−(ρα−2Γ(α+1)))(4µ2ρ2α+ρα(−Γ(α+1))+2Γ(α+1)2)

2Γ(α+1)(ρα−2Γ(α+1))

−ρ−αΓ(α+ 1) + µ2,

and

2− ρα(µ4+µ2(2r−1)+r(r+1))
Γ(α+1)(µ2+r) ̸= 0, 2.

(16)

0r 
r = − 2µ2ρα+

√
Γ(α+1)((8µ2+1)Γ(α+1)−8µ2ρα)+(−2µ2−1)Γ(α+1)

2(ρα−Γ(α+1)) ,

and

0 <
ρα(µ4+µ2(2r−1)+r(r+1))

Γ(α+1)(µ2+r) < 4.

(17)

Furthermore, for r ∈ [0, 3], µ ∈ [0, 3] and fixed (α, ρ) = (0.3, 0.6), the

topological classification of system (14) is depicted in Figure 1.

Figure 1. Topological classification for the system (14).

In next section we investigate existence and direction of bifurcation.
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3 Codimension-one bifurcations

First, we explore the flip bifurcation of positive fixed point (x∗, y∗) of map

(14). In order to study the flip bifurcation assume that

Assume that

TPB = {(α, ρ, µ, r) ∈ R4
+ : (16) satisfied}.

The positive fixed point (x∗, y∗) of map (14) undergoes flip bifurcation

when parameters vary in a small neighborhood of TPB . Thus map (14)

along with parameters (α, ρ, µ, r1) ∈ TPB can be written as follow:(
x

y

)
→

(
x+ ρα

Γ(α+1)

[
µ− r1x− xy2

]
y + ρα

Γ(α+1)

[
xy2 − y + r1x

] ) . (18)

The following perturbation of system (18) can be obtained by taking r̄

as bifurcation parameter;(
x

y

)
→

(
x+ ρα

Γ(α+1)

[
µ− (r1 + r̄)x− xy2

]
y + ρα

Γ(α+1)

[
xy2 − y + (r1 + r̄)x

] ) , (19)

where |r̄| << 1 is a least perturbation parameter. Assuming that H =

x− x∗, P = y− y∗, then system (19) is converted into the following form:(
H

P

)
→

(
a11 a12

a21 a22

)(
H

P

)
+

(
f1(H,P, r̄)

f2(H,P, r̄)

)
, (20)

where

f1(H,P, r̄) = a13HP 2 + a14HP + a15P
2 + e1r̄H

+ e2r̄P +O
(
(|H|+ |P |+ |r̄|)4

)
,

f2(H,P, r̄) = b13HP 2 + b14HP + b15P
2 + e3r̄H

+ O
(
(|H|+ |P |+ |r̄|)4

)
,
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where

a11 = 1−
ρα
(
µ2 + r1

)
Γ(α+ 1)

, a12 = − 2µ2ρα

Γ(α+ 1) (µ2 + r1)
,

a21 =
ρα
(
µ2 + r1

)
Γ(α+ 1)

, a22 =
ρα
(
µ2 − r1

)
Γ(α+ 1) (µ2 + r1)

+ 1,

a13 = − ρα

Γ(α+ 1)
, a14 = − 2µρα

Γ(α+ 1)
, b13 =

ρα

Γ(α+ 1)
,

e1 = − ρα

Γ(α+ 1)
, e2 =

2µ2ρα

Γ(α+ 1) (µ2 + r1)
2 ,

e3 =
ρα

Γ(α+ 1)
, a15 = − µρα

Γ(α+ 1) (µ2 + r1)
,

b14 =
2µρα

Γ(α+ 1)
, b15 =

µρα

Γ(α+ 1) (µ2 + r1)
.

The canonical form of (20) at r = 0, can be obtained by assuming the

following map:

(
H

P

)
=

 a12 a12

−1− a11 λ2 − a11

( u

v

)
. (21)

The normal form of system (20) under translation (21) can be expressed

as: (
u

v

)
→

(
−1 0

0 λ2

)(
u

v

)
+

(
(λ2−a11)f1
a12(λ2+1) − f2

λ2+1
(1+a11)f1
a12(λ2+1) +

f2
λ2+1

)
, (22)

where

where, H = a12 (u+ v) and P = −(1 + a11)u+ (λ2 − a11) v.

Thus approximation of center manifold W c(0, 0, 0) of (22) in the least

neighborhood of r̄ = 0 evaluated at origin can be expressed as:

W c(0, 0, 0) = {(u, v, r̄ ∈ R3) : v = s3r̄
2 + s2r̄u+ s1u

2 + (O|u|, |r̄|)4},



427

where

s1 =
1

λ2 − 1

((
(1 + a11) a14
a12 (λ2 + 1)

+
b14

λ2 + 1

)
a12 (1 + a11)

)
+

1

λ2 − 1

((
(1 + a11) a15
a12 (λ2 + 1)

+
b15

λ2 + 1

)
(1 + a11)

2

)
,

s2 =
1

1− λ2

((
(1 + a11) e1
a12 (λ2 + 1)

+
e3

λ2 + 1

)
a12

)
− 1

1− λ2

(
(1 + a11) e2 (1 + a11)

a12 (λ2 + 1)

)
, s3 = 0.

Hence, the map restricted to the center manifold W c(0, 0, 0) is expressed

as:

F : u → −u+ t1u
2 + t2ur̄ + t3u

2r̄ + k4ur̄
2 + k5u

3 + (O|u|, |r̄|)4,

where

t1 =

(
(a11 − λ2) a14
a12 (λ2 + 1)

− b14
λ2 + 1

)
a12 (1 + a11)

+

(
(λ2 − a11) a15
a12 (λ2 + 1)

− b15
λ2 + 1

)
(1 + a11)

2
,

t2 =

(
(λ2 − a11) e1
a12 (λ2 + 1)

+
e3

λ2 + 1

)
a12 −

(λ2 − a11) e2 (1 + a11)

a12 (λ2 + 1)
,

t3 =

(
(λ2 − a11) a14
a12 (λ2 + 1)

− b14
λ2 + 1

)
a12 (λ2 − a11)m2

−
(
(λ2 − a11) a14
a12 (λ2 + 1)

− b14
λ2 + 1

)
a12m2 (1 + a11)

− 2

(
(λ2 − a11) a15
a12 (λ2 + 1)

− b15
λ2 + 1

)
(1 + a11) (λ2 − a11)m2

− (a11 − λ2) e2 (λ2 − a11)m1

a12 (λ2 + 1)
+

(
(λ2 − a11) e1
a12 (λ2 + 1)

− e3
λ2 + 1

)
a12m1,

t4 =

(
(λ2 − a11) a14
a12 (λ2 + 1)

− b14
λ2 + 1

)
a12 (λ2 − a11)m3

−
(
(λ2 − a11) a14
a12 (λ2 + 1)

− b14
λ2 + 1

)
a12m3 (1 + a11)
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− 2

(
(λ2 − a11) a15
a12 (λ2 + 1)

− b15
λ2 + 1

)
(1 + a11) (λ2 − a11)m3

+
(λ2 − a11)

2
e2m2

a12 (λ2 + 1)
+

(
(λ2 − a11) e1
a12 (λ2 + 1)

− e3
λ2 + 1

)
a12m2,

t5 =

(
(λ2 − a11) a13
a12 (λ2 + 1)

− b13
λ2 + 1

)
a12 (1 + a11)

2

+

(
(λ2 − a11) a14
a12 (λ2 + 1)

− b14
λ2 + 1

)
a12m1 (λ2 − a11)

+

(
(λ2 − a11) a14
a12 (λ2 + 1)

− b14
λ2 + 1

)
a12m1 (1 + a11)

− 2

(
(λ2 − a11) a15
a12 (λ2 + 1)

− b15
λ2 + 1

)
(1 + a11) (λ2 − a11)m1.

Next, we have the coupled nonzero real numbers:

𭟋1 =

(
∂2f̃

∂u∂r̄
+

1

2

∂F

∂r̄

∂2F

∂u2

)
(0,0)

=

(
(λ2 − a11) e1
a12 (λ2 + 1)

− e3
λ2 + 1

)
a12

− (λ2 − a11) e2 (1 + a11)

a12 (λ2 + 1)
,

and

𭟋2 =

(
1

6

∂3F

∂u3
+

(
1

2

∂2F

∂u2

)2
)

(0,0)

= t21 + t5.

We have the following conclusions according to aforemention calculation;

Theorem 2. There exists flip bifurcation at (x∗, y∗) of (14) whenever

𭟋2 ̸= 0 and r varies in small neighborhood of r1. In addition, if 𭟋2 >

0, (𭟋2 < 0) respectively, then orbit having period-2 stable or unstable,

respectively.

Next, we investigate the Neimark-Sacker bifurcation of fixed point

(x∗, y∗) of map (14). The main difference between Neimark-Sacker bifur-

cation of integer-order and fractional-order dynamical systems is that the

fractional-order system can exhibit more complex and rich dynamics than

the integer-order system, due to the presence of memory and hereditary ef-
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fects in the fractional derivative term. For more recent work on bifurcation

one can see [9–13, 28, 29, 40]. In order to explored the Neimark-Sacker bi-

furcation, we find the conditions for which (x∗, y∗) is non-hyperbolic point

with complex conjugate root of characteristic equation of unit modulus.

Thus if equation (16) hold true then P(λ) = 0 have two complex conjugate

root with unit modulus.

Consider,

TNS = {(α, ρ, µ, r) ∈ R4
+ : (17) satisfied}.

Assuming that

r = r2 = − 2µ2ρα+
√

Γ(α+1)((8µ2+1)Γ(α+1)−8µ2ρα)+(−2µ2−1)Γ(α+1)

2(ρα−Γ(α+1)) , then fixed

point (p∗, z∗) undergoes Neimark-Sacker bifurcation when parameters vary

in the least neighborhood of TNS . Thus system (14) along with parameters

(α, ρ, µ, r2) can be described by the following map:(
x

y

)
→

(
x+ ρα

Γ(α+1)

[
µ− (r2)x− xy2

]
y + ρα

Γ(α+1)

[
xy2 − y + (r2)x

] ) , (23)

The following perturbation of system (23) can be obtained by taking r̃ as

bifurcation parameter:(
x

y

)
→

(
x+ ρα

Γ(α+1)

[
µ− (r2 + r̃)x− xy2

]
y + ρα

Γ(α+1)

[
xy2 − y + (r2 + r̃)x

] ) . (24)

where |r̃| << 1 is a least perturbation parameter.

Assuming that H = x − x∗, P = y − y∗, then system (24) is converted

into the following form:(
H

P

)
→

(
a11 a12

a21 a22

)(
H

P

)
+

(
ϕ1(H,P )

ϕ2(H,P )

)
, (25)

where

ϕ1(H,P ) = a13HP 2 + a14HP + a15P
2 +O

(
(|H|+ |P |)4

)
,

ϕ2(H,P ) = b13HP 2 + b14HP + b15P
2 +O

(
(|H|+ |P |)4

)
.
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Where a11, a12, a21, a22, a13, a14, a15, b13, b14, b15 are define in (20) by

replacing r by r2 + r̃. Let

λ2 −A1(r̃)λ+A2(r̃) = 0, (26)

be the characteristics equation of variational matrix of system (25) evalu-

ated at (0, 0), where A1(r̃) and A2(r̃) are defined in (25) with r = r2 + r̃.

Since (α, ρ, µ, r2) ∈ TNS, |λ1| = |λ2| such that λ1 and λ2 are the complex

conjugate root root of (26), then it follows that

λ1, λ2 =
A1(r̃)

2
± i

2

√
4A2(r̃)−A2

1(r̃).

Then we obtain

(
d|λ1,2|
dr̃

)
r̃=0

= −
ρα
(√

Γ(α+ 1) ((8µ2 + 1)Γ(α+ 1)− 8µ2ρα)
)

8µ2Γ(α+ 1)2

−
ρα
((
8µ2 + 1

)
Γ(α+ 1)

)
8µ2Γ(α+ 1)2

+
ρα
(
−8µ2ρα

)
8µ2Γ(α+ 1)2

̸= 0

Moreover A1(0) = 2− ρα(µ4+µ2(2r2−1)+r2(r2+1))
Γ(α+1)(µ2+2r ) ̸= 0, −1.

Since, (α, ρ, µ, r2) ∈ TNS , it follows that

−2 < A1(0) = 2− ρα(µ4+µ2(2r2−1)+r2(r2+1))
Γ(α+1)(µ2+2r ) < 2. Thus we have λm

1 , λm
2 ̸= 1

for all m = 1, 2, 3, 4 at r̃ = 0, for A1(0) ̸= 0,−1,±2. Hence, zeros of (26)

do not lie in the intersection of the unit circle with the coordinate axes

when r̃ = 0.

The normal form of (25) at r̃ = 0 can be obtained by taking θ = A1(0)
2 ,

ν = 1
2

√
4A2(0)−A2

1(0) and assuming the following transformation:(
H

P

)
=

(
a12 0

θ − a11 −ν

)(
u

v

)
. (27)

By using transformation (27), one has the following canonical form of
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system (25):(
u

v

)
→

(
θ −ν

ν θ

)(
u

v

)
+

(
g̃1(u, v)

g̃2(u, v)

)
, (28)

where

g̃1(u, v) =
a13
a12

HP 2 +
a14
a12

HP +
a15
a12

P 2 +O
(
(|u|+ |v|)4

)
,

g̃2(u, v) =

(
(a11 − θ) a13

a12ν
+

b13
ν

)
HP 2 +

(
(a11 − θ) a14

a12ν
+

b14
ν

)
HP

+

(
(θ − a11) a15

a12ν
+

b15
ν

)
P 2 +O

(
(|u|+ |v|)4

)
,

whereH = a12u and P = (θ−a11)u−νv. Due to aforemention computation

we state a non-zero real number:

ω =

([
−Re

(
(1− 2λ1)λ

2
2

1− λ1
τ20τ11

)
− 1

2
|τ11|2 − |τ02|2 +Re(λ2τ21)

])
r̃=0

,

where

τ20 =
1

8
[g̃1uu − g̃1vv + 2g̃2uv + i (g̃2uu − g̃2vv − 2g̃1uv)] ,

τ11 =
1

4
[g̃1uu + g̃1vv + i (g̃2uu + g̃2vv)] ,

τ02 =
1

8
[g̃1uu − g̃1vv − 2g̃2uv + i (g̃2uu − g̃2vv + 2g̃1uv)] ,

τ21 =
1

16
[g̃1uuu + g̃1uvv + g̃2uuv + g̃2vvv + i (g̃2uuu + g̃2uvv − g̃1uuv − g̃1vvv)] .

We have the following conclusions for direction and existence of Neimark-

Sacker bifurcation according to aforemention calculation;

Theorem 3. There exists Neimark-Sacker bifurcation at (x∗, y∗) whenever

r varies in a least neighborhood of

r2 = − 2µ2ρα+
√

Γ(α+1)((8µ2+1)Γ(α+1))−8µ2ρα−(2µ2+1)Γ(α+1)

2(ρα−Γ(α+1)) . In addition, if

ω < 0, (ω > 0), respectively, then an attracting or repelling invariant closed

curve bifurcates from the equilibrium point for r > r2(r < r2), respectively.
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4 Codimension-two bifurcations

This section deals with the study of codimension-two bifurcations. Par-

ticularly, we explore the existence of 1:2, 1:3 and 1:4 resonance by using

normal form theory and theory of bifurcation. The occurrence of these

resonances can be identified by the following curves:

R2 :
ρα
(
µ4 + µ2(2r − 1) + r(r + 1)

)
Γ(α+ 1) (µ2 + r)

= 4,

R3 :
ρα
(
µ4 + µ2(2r − 1) + r(r + 1)

)
Γ(α+ 1) (µ2 + r)

= 3,

R4 :
ρα
(
µ4 + µ2(2r − 1) + r(r + 1)

)
Γ(α+ 1) (µ2 + r)

= 2,

and

NS :
ρα
(
ρα
(
µ2 + r

)2 − Γ(α+ 1)
(
µ4 + µ2(2r − 1) + r(r + 1)

))
Γ(α+ 1)2 (µ2 + r)

= 0.

Then, it is easy to see that R2∩NS, R3∩NS and R4∩NS are called 1:2

resonance point, 1:3 resonance point, and 1:4 resonance point, respectively.

Furthermore, for r ∈ [0, 5], µ ∈ [0, 5] and fixed (α, ρ) = (0.36, 0.672), the

existence of strong resonance points of system (14) are depicted in Fig. 2.

4.1 1:2 strong resonance

In this subsection, we discuss 1:2 strong resonance for system (14) about its

positive fixed point. For this, µ and r are taken as bifurcation parameters.

The Jacobian matrix of the system (14) about positive fixed point has

eigenvalue -1 with multiplicity two if the following conditions are satisfied:Tr :
ρα(µ4+µ2(2r−1)+r(r+1))

Γ(α+1)(µ2+r) = 4

Det :
ρα

(
ρα(µ2+r)

2−Γ(α+1)(µ4+µ2(2r−1)+r(r+1))
)

Γ(α+1)2(µ2+r) = 0.
(29)

Solving system (29) for µ and r yields the following solution (µ0, r0):
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Figure 2. Existence of strong resonance points for system (14).

µ0 = −
√
2ρ−2αΓ(α+ 1) (ρα − 2Γ(α+ 1)) ,

and

r0 = 2ρ−4αΓ(α+ 1)2
(
ρ2α + 4Γ(α+ 1) (ρα − Γ(α+ 1))

)
.

Taking the translations un = xn − x∗, vn = yn − y∗, µ = µ0 + µ̄ and

r = r0 + r̄, then the system (14) can be transformed as follows:(
u

v

)
→

(
1 +m11 −m12

m21 1 +m22

)(
u

v

)
+

(
f1(u, v)

f2(u, v, )

)
, (30)

where µ̄ << 1 and r̄ << 1 are small perturbations,

f1(u, v) = m13uv +m14v
2 +O

(
(|u|+ |v|)3

)
,

f2(u, v)) = m23uv +m24v
2 +O

(
(|u|+ |v|)3

)
.
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m11 = −
ρα
(
µ2 + r

)
Γ(α+ 1)

, m12 =
2µ2ρα

Γ(α+ 1) (µ2 + r)
, m21 =

ρα
(
µ2 + r

)
Γ(α+ 1)

,

m22 =
ρα
(
µ2 − r

)
Γ(α+ 1) (µ2 + r)

, m13 = − 2µρα

Γ(α+ 1)
, m23 =

2µρα

Γ(α+ 1)
,

m14 = − µρα

Γ(α+ 1) (µ2 + r)
, m24 =

µρα

Γ(α+ 1) (µ2 + r)
.

Next, we consider the following transformation:(
u

v

)
= T

(
w

z

)
, (31)

where T is a nonsingular matrix given by

T =

(
m12

m11+2
m12

(m11+2)2

1 0

)
.

From (30) and (31), it follows that:

(
w

z

)
→

(
p10(µ, r)− 1 p01(µ, r) + 1

q10(µ, r) q01(µ, r)− 1

)(
w

z

)

+

(
f3(w, z, µ, r)

f4(w, z, µ, r)

)
,

(32)

where

f3(w, z) = p20w
2 + p11wz, f4(w, z) = q20w

2 + q11wz,

p10 = 2 +
m12m21

2 +m11
+m22, p01 = −1 +

m12m21

(2 +m11)2
,

q10 = −m12m21 − 2(2 +m22)−m11(2 +m22), q01 = 2+m11 −
m12m21

2 +m11
,
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p20 =
m12m23

2 +m11
+m24, p11 =

m12m23

(2 +m11)2
,

q20 =
m14 (m11 + 2) 2 +m12 (m13 −m24) (m11 + 2)−m2

12m23

m12
,

q11 = m13 −
m12m23

m11 + 2
.

Next, we consider the following invertible linear transformation:(
w

z

)
= M

(
w̄

z̄

)
, (33)

where

M =

(
1 + p01(µ, r) 0

−p01(µ, r) 1

)
.

From (32) and (34), it follows that:(
w̄

z̄

)
→

(
−1 1

θ1(µ, r) θ1(µ, r)− 1

)(
w̄

z̄

)
+

(
f5(w̄, z̄, µ, r)

f6(w̄, z̄, µ, r)

)
, (34)

where

θ1(µ, r) = q10 + p01q10 − p10q01, θ2(µ, r) = p10 + q01 − 1

f5(w̄, z̄, µ, r) = p̄20w̄
2 + p̄11w̄z̄, f6(w̄, z̄, µ, r) = q̄20w̄

2 + q̄11w̄z̄,

p̄20 = p20 + p01p20 − p10p11, p̄11 = p11, q̄11 = p10p11 + q11 + p01q11

q̄20 = (1 + p01)p10(p20 − q11) + (1 + p01)
2q20 − p210p11.

Taking into account θ1 and θ2, we define the following matrix:
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S(µ0, r0) =

(
∂θ1
∂µ (µ0, r0)

∂θ1
∂r (µ0, r0)

∂θ2
∂µ (µ0, r0)

∂θ2
∂r (µ0, r0)

)
.

Then by simple computation detS(µ0, r0) is computed as follows:

detS(µ0, r0) =
4µρ2α (ρα − Γ(α+ 1))

Γ(α+ 1)3 (µ2 + r)
̸= 0 (35)

Condition (35) is called transversality assumption, and we assume that

it holds true. Next, θ1(µ, r) and θ2(µ, r) can be used for the following

parametrization in the neighborhood of µ = µ0 and r = r0:

β1 = θ1(µ, r), β2 = θ2(µ, r).

Then, µ and r can be expressed in terms of β1 and β2 as follows:


µ =

ρ−αΓ(α+1)
√

β1
2 +β2−2√

(ρα−Γ(α+1))2

×
(√

Γ(α+ 1)2(β1 + 3β2− 9)− (β2− 6)ραΓ(α+ 1)− ρ2α
)
,

(36)

and r = − (Γ(α+1)2(β1+3β2−9)−(β2−4)ραΓ(α+1)+ρ2α)
2(ρα−Γ(α+1))2

×
(
ρ−2αΓ(α+ 1)2(β1 + 2β2− 4)

)
.

(37)

Using (36) and (37) in (34), we have the following mapping:

(
w̄

z̄

)
→

(
−1 1

β1 −1 + β2

)(
w̄

z̄

)
+

(
f7(w̄, z̄, β1, β2)

f8(w̄, z̄, β1, β2)

)
, (38)

where

f7(w̄, z̄, β1, β2) = g20w̄
2(β1, β2) + g11w̄z̄(β1, β2),

f8(w̄, z̄, β1, β2) = h20w̄
2(β1, β2) + h11w̄z̄(β1, β2),



437

h20 =
(m12(m14m

2
21−m13m21(2+m22)+(2+m22)(−(2+m22)m23+m21m24)))

(2+m11)2
,

g20(β1, β2) =
m12 (m21m24 − (m22 + 2)m23)

(m11 + 2) 2
,

g11(β1, β2) =
m12m23

(m11 + 2) 2
,

h11(β1, β2) =
m12 (m13m21 + (m22 + 2)m23)(

2 +m11)
2

.

Then according to Lemma 9.9 [ [42], p. 437], there exists a nearidentity

transformation such that system (34) can be transformed as follows:(
x1

x2

)
→

(
−1 1

β1 −1 + β2

)(
x1

x2

)
+

(
0

Cx3
1 +Dx1x2

)
+O(|x1 + x2|4),

(39)

where

C(β1, β2) = g20(β1, β2)h20(β1, β2)+
1

2
h2
20(β1, β2)+

1

2
h20(β1, β2)h11(β1, β2),

D(β1, β2) =
1

2
g20(β1, β2)h11(β1, β2) +

5

4
h20(β1, β2)h11(β1, β2)

+ h2
20(β1, β2) +

1

2
h2
11(β1, β2) + h20(β1, β2)h02(β1, β2)

+ 3g220(β1, β2) +
5

2
g20(β1, β2)h20(β1, β2)

+
5

2
g11(β1, β2)h20(β1, β2).

Lastly, simple computation yields that

C(0, 0) =
(ρα − 3Γ(α+ 1))

2 (
ρ2α + 3Γ(α+ 1) (ρα − 4Γ(α+ 1))

)
2Γ(α+ 1)3 (ρα − Γ(α+ 1))

,

D(0, 0) = 106− 33ρ2α

4Γ(α+ 1)2
+

ρ3α

4Γ(α+ 1)3
+

ρ4α

4Γ(α+ 1)4
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+
64Γ(α+ 1)2

(ρα − Γ(α+ 1))
2 − 9ρα

4Γ(α+ 1)
− 136Γ(α+ 1)

ρα − Γ(α+ 1)
.

Taking into account above calculation and theoretical results presented

in [42], we have the following result.

Theorem 4. Assume that C(0, 0) ̸= 0, D(0, 0) + 3C(0, 0) ̸= 0, and

detS(µ0, r0) ̸= 0 then system (14) undergoes 1:2 strong resonance about

its positive fixed point whenever µ and r vary in small neighborhoods of µ0

and r0, respectively.

4.2 1:3 strong resonance

In this section, we discuss 1:3 strong resonance for system (14) about its

positive fixed point. For this, µ and r are taken as bifurcation parameters.

Then Jacobian matrix of the system (14) about positive fixed point has

complex conjugate eigenvalue − 1
2 ± ι

√
3
2 if the following conditions are

satisfied:Tr :
ρα(µ4+µ2(2r−1)+r(r+1))

Γ(α+1)(µ2+r) = 3

Det :
ρα

(
ρα(µ2+r)

2−Γ(α+1)(µ4+µ2(2r−1)+r(r+1))
)

Γ(α+1)2(µ2+r) = 0.
(40)

Solving system (40) for µ and r yields the following solution (µ1, r1):

µ1 =

√
3

2

√
ρ−4αΓ(α+ 1)2 (ρ2α − 3ραΓ(α+ 1) + 3Γ(α+ 1)2),

r1 =
3

2
ρ−4αΓ(α+ 1)2

(
ρ2α + 3Γ(α+ 1) (ρα − Γ(α+ 1))

)
.

In order to shift the positive fixed point (x∗, y∗) of (14) at (0, 0), the

translation un = xn − x∗, vn = yn − y∗ and µ = µ1 and r = r1 yields the

following system then system (14) can be described by the following map:(
u

v

)
→

(
ϵ11 ϵ12

ϵ21 ϵ22

)(
u

v

)
+

(
f1(u, v)

f2(u, v, )

)
, (41)
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ϵ11 = 1− 3ρ−αΓ(α+ 1), ϵ12 = −3ρ−αΓ(α+ 1)− ρα

Γ(α+ 1)
+ 3,

ϵ21 + 3ρ−αΓ(α+ 1), ϵ22 = 3ρ−αΓ(α+ 1)− 2,

f1(u, v) = a11uv + a02v
2 +O

(
(|u|+ |v|)3

)
,

f2(u, v)) = b11uv + b02v
2 +O

(
(|u|+ |v|)3

)
.

a02 = −
ρ3α
√

ρ−4αΓ(α+ 1)2 (ρ2α − 3ραΓ(α+ 1) + 3Γ(α+ 1)2)√
6Γ(α+ 1)3

,

a11 = −
√
6ρα

√
ρ−4αΓ(α+ 1)2 (ρ2α − 3ραΓ(α+ 1) + 3Γ(α+ 1)2)

Γ(α+ 1)
,

b02 =
ρ3α
√
ρ−4αΓ(α+ 1)2 (ρ2α − 3ραΓ(α+ 1) + 3Γ(α+ 1)2)√

6Γ(α+ 1)3
,

b11 =

√
6ρα

√
ρ−4αΓ(α+ 1)2 (ρ2α − 3ραΓ(α+ 1) + 3Γ(α+ 1)2)

Γ(α+ 1)
.

The eigenvalues of jacobian matrix of system (41) are −1
2 ±

√
3
2 ι, let

p1(µ1, r1) and q1(µ1, r1) are eigenvector associated with jacobian matrix of

(41) and its transpose, respectively and satisfying ⟨p1(µ1, r1), q1(µ1, r1)⟩ =
1. Then, by simple computation one has;

p1(µ1, r1) =

(
(3+i

√
3)ρα

6Γ(α+1) − 1

1

)
,

and

q1(µ1, r1) =

 6(−1)2/3Γ(α+1)

(3−i
√
3)ρα+3(i+

√
3)iΓ(α+1)

1

 .
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Moreover, any X ∈ R2 can be described uniquely as follows:

X = zp1(µ1, r1) + z̄p̄1(µ1, r1), z ∈ C.

Consequently, the complex form for the map (41) can be written as

follows:

z −→

(
−1

2
+

√
3

2
ι

)
z +

∑
2≤j+k≤3

1

j!k!
gjkz

j z̄k, (42)

where

g20 = −2i
√
3ρ−αΓ(α+ 1)(a02 − a11 + b02)− i

√
3a11 + a11 + b02 +

√
3ib02,

g11 = 2
√
3iρ−αΓ(α+ 1)(a11 − b02 − a02) +

√
3ib02b02 − i

√
3a11,

g02 = 2i
√
3ρ−αΓ(α+ 1)(a11 − b02 − a02)− i

(√
3− i

)
(a11 − b02)

and g30 = g03 = g12 = g21 = 0.

Next, according to Lemma 9.12 [ [42], p. 448], there exists a smoothly

parameter dependent change of variable such that the map (42) can be

converted into the following form:

w −→

(
−1

2
+

√
3

2
ι

)
w +B(µ1, r1)w̄ + C(µ1, r1)w|w|2 +

(
|w|4

)
, (43)

where

B(µ1, r1) =
1

2
g02,

and

C(µ1, r1) =

(
1

2
+

√
3

2
ι

)
g02g11 +

(
2

2
+

−1

2
√
3
ι

)
|g11| .
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Next, we consider the following quantities:

B1(µ,r1) =

(
−3

2
+

3
√
3

2
ι

)
B(µ1, r1)

C1(µ1, r1) = −3 |B(µ1, r1)|2 −
3

2
(1 +

√
3ι)C(µ1, r1).

Arguing as in Lemma 9.13 [ [42], p. 450], we have the following result.

Theorem 5. Assume that µ = µ1, r = r1, ReC1(µ1, r1) ̸= 0 and B(µ1, r1)

̸= 0 then the system (14) undergoes a 1:3 resonance about its positive fixed

point, ReC1(µ1, r1) ̸= 0 determines the stability nature for the bifurcating

closed invariant curve.

4.3 1:4 strong resonance

In this section, we discuss 1:4 strong resonance for system (14) about its

positive fixed point. For this, µ and r are taken as bifurcation parameters.

Then Jacobian matrix of the system (14) about positive fixed point has

complex conjugate eigenvalue±ι if the following conditions are satisfied:Tr :
ρα(µ4+µ2(2r−1)+r(r+1))

Γ(α+1)(µ2+r) = 2

Det :
ρα

(
ρα(µ2+r)

2−Γ(α+1)(µ4+µ2(2r−1)+r(r+1))
)

Γ(α+1)2(µ2+r) = 0.
(44)

Solving system (44) for µ and r yields the following solution (µ2, r2):

µ2 = ρ−2αΓ(α+ 1)
√

ρ2α − 2ραΓ(α+ 1) + 2Γ(α+ 1)2,

r2 = ρ−4αΓ(α+ 1)2
(
ρ2α + 2Γ(α+ 1) (ρα − Γ(α+ 1))

)
.

In order to shift the positive fixed point (x∗, y∗) of (14) at (0, 0), the

translation un = xn − x∗, vn = yn − y∗ and µ = µ2 and r = r2 yields the

following system then system (14) can be described by the following map:(
u

v

)
→

(
ε11 ε12

ε21 ε22

)(
u

v

)
+

(
f1(u, v)

f2(u, v, )

)
, (45)
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ε11 = 1− 2ρ−αΓ(α+ 1), ε12 = −2ρ−αΓ(α+ 1)− ρα

Γ(α+ 1)
+ 2,

ε21 = 2ρ−αΓ(α+ 1), ε22 = 2ρ−αΓ(α+ 1)− 1,

f1(u, v) = a11uv + a02v
2 +O

(
(|u|+ |v|)3

)
,

f2(u, v)) = b11uv + b02v
2 +O

(
(|u|+ |v|)3

)
.

a02 = −
ρα
√

ρ2α − 2ραΓ(α+ 1) + 2Γ(α+ 1)2

2Γ(α+ 1)2
,

a11 = −2ρ−α
√
ρ2α − 2ραΓ(α+ 1) + 2Γ(α+ 1)2,

b02 =
ρα
√
ρ2α − 2ραΓ(α+ 1) + 2Γ(α+ 1)2

2Γ(α+ 1)2
,

b11 = 2ρ−α
√

ρ2α − 2ραΓ(α+ 1) + 2Γ(α+ 1)2.

The eigenvalues of jacobian matrix of system (45) are ±ι, let p2(µ2, r2)

and q2(µ2, r2) are eigenvector associated with jacobian matrix of (45) and

its transpose, respectively and satisfying ⟨p2(µ2, r2), q2(µ2, r2)⟩ = 1. Then,

by simple computation one has;

p2(µ2, r2) =

(
( 1

2−
i
2 )ρ

α

Γ(α+1) − 1

1

)
,

and

q2(µ2, r2) =

 1

1− ( 1
2
− i

2 )ρα
Γ(α+1)

1

 .

Moreover, any X ∈ R2 can be described uniquely as follows:

X = zp2(µ2, r2) + z̄p̄2(µ2, r2), z ∈ C.
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Consequently, the complex form for the map (45) can be written as

follows:

z −→ (ι) z +
∑

2≤j+k≤3

1

j!k!
ḡjkz

j z̄k, (46)

where

ḡ20 =

(
1

2
+

i

2

)
(a11 − ib02)− iρ−αΓ(α+ 1)(a11 − b02 − a02),

ḡ11 = i(a11 − (1 + i)b02)− 2iρ−αΓ(α+ 1)(a11 − b02 − a02),

ḡ02 =

(
−1

2
+

i

2

)
(a11 − b02)− iρ−αΓ(α+ 1)(a11 − b02 − a02),

and ḡ30 = ḡ03 = ḡ12 = ḡ21 = 0.

Next, according to Lemma 9.13 [ [42], p. 448], there exists a smoothly

parameter dependent change of variable such that the map (46) can be

converted into the following form:

w1 −→ (ι)w1 +B1(µ2, r2)w1|w1|2 + C1(µ2, r2)w
3
1 +

(
|w1|4

)
, (47)

where

B1(µ2, r2) = ιḡ11−
1

2
ḡ11 ¯̄g20(1+ ι)+ ¯̄g11ḡ20+ ḡ02ḡ11(ι−1)− 1

2
ḡ11ḡ20(1−2ι),

and

C1(µ2, r2) =
ι− 1

4
ḡ11ḡ02 −

ι+ 1

4
ḡ11ḡ20.

Next, we consider the following quantities:

B2(µ2, r2) = −4ιB1(µ2, r2)
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C2(µ2, r2) = −4ιC1(µ2, r2),

whenever C2(µ1, r1) ̸= 0, thus we can write jacobian matrix J(µ2, r2) =
B2(µ2,r2)
|C2(µ2,r2)| . Arguing as in Lemma 9.15 [ [42], p. 450], we have the following

result.

Theorem 6. Assume that µ = µ2, r = r2, ReJ(µ2, r2) ̸= 0 and

ImJ(µ2, r2) ̸= 0 then the system (14) undergoes a 1:4 resonance about

its positive fixed point, ReJ(µ2, r2) ̸= 0 determines the stability nature for

the bifurcating closed invariant curve.

5 Numerical simulation

This section aims to validate the theoretical analysis presented earlier by

demonstrating the dynamic and chaotic behavior of the system (14) with

selected parameter values. Our focus is primarily on the stability anal-

ysis and bifurcation behavior of the system’s positive equilibrium. To

accomplish this, we employ various mathematical tools such as Mathe-

matica packages to generate plots, phase portraits, bifurcation diagrams

and maximum Lyapunov characteristic exponents associated with the sys-

tem (14). Initially, to observe the qualitative changes due to bifurca-

(a) Bifurcation diagram for
xn

(b) Bifurcation diagram for
yn

(c) MLE

Figure 3. MLE and Bifurcation diagrams for system (14) with
(ρ, α, µ) = (0.34, 0.01, 0.93), r ∈ [0.6, 1] and initial con-
ditions (x0, y0) = (0.5, 0.9)

tion we take (ρ, α, µ) = (0.34, 0.01, 0.93). Let r ∈ [0.6, 1] be the

bifurcation parameter, then system (14) undergoes hopf bifurcation at
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r1 = 0.8499470761490069. For these parametric values, the positive fixed

point is (x∗, y∗) = (0.542322, 0.93). The eigenvalues of Jacobian matrix

of system (14) about (x∗, y∗) = (0.542322, 0.93) are λ1, 2 = 0.151274 ±
0.988492ι and |λ1, 2| = 1. Alternatively,the bifurcation diagrams for for

system (14) in (r, xn) and (r, yn) planes are depicted in Fig. 3a and Fig.

3b, respectively and crossposting MLE are directed in Fig. 3c. Moreover,

to explore the complex behavior of system (14), some phase portraits are

presented in Fig. 4a, Fig. 4b, Fig. 4c, Fig. 4d

(a) Phase portrait for r = 0.7 (b) Phase portrait for r = 0.816

(c) Phase portrait for r = 0.826 (d) Phase portrait for r = 0.836

Figure 4. Phase portrait for system (14)

Next, assume (ρ, α, µ) = (0.18, 0.34, 1.4) and r ∈ [2.2, 2.6] be a

bifurcation parameter, then system (14) undergoes flip bifurcation about

r2 = 5.63587348174116. In this case unique positive equilibrium point of

system (14) is (x∗, y∗) = (0.184311, 1.4). Moreover, eigenvalues of Ja-

cobian matrix of system (14) are λ1 = −1 and |λ2| = 0.689406 ̸= ±1.

Alternatively, the bifurcation diagrams for for system (14) in (r, xn) and

(r, yn) planes are depicted in Fig. 5a and Fig. 5b, respectively and cross-
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posting MLE are directed in Fig. 5c.

Next, assume (ρ, α) = (0.18, 0.34), r ∈ [1.16, 1.24] and µ ∈ [1.93, 1.96].

Let (r0, µ0) = (1.142316212430117, 1.972448414307462) be the bifurcation

parameters, then system (14) undergoes 1:2 resonance about unique posi-

tive fixed point (x∗, y∗) = (0.391913, 1.97245). Moreover, eigenvalues of

Jacobian matrix of system (14) are λ1,2 ≡ −1. Alternatively, the bifurca-

tion diagrams and crossposting MLE for for system (14) in (r, µ, xn) and

(r, µ, yn) spaces are depicted in Fig. 6a, Fig. 6b and, Fig. 6c, respectively.

(a) Bifurcation diagram for
xn

(b) Bifurcation diagram for
yn

(c) MLE

Figure 5. MLE and Bifurcation diagrams for system (14) with
(ρ, α, µ) = (0.18, 0.34, 1.4), r ∈ [2.2, 2.6] and initial
conditions (x0, y0) = (0.18, 1, 4)

Next, assume (ρ, α) = (0.741, 0.846), r ∈ [1.419, 1.8] and µ ∈ [1.343,

1.345]. Let (r0, µ0) = (1.424848274436868, 1.3444958506301898) be the

bifurcation parameters, then system (14) undergoes 1:3 resonance about

unique positive fixed point (x∗, y∗) = (0.41592842298066773,

1.3444958506301898). Moreover, eigenvalues of Jacobian matrix of sys-

tem (14) are λ1,2 = −1+
√
3ι

2 . Alternatively, the bifurcation diagrams and

corresponding MLE for for system (14) in (r, µ, xn) and (r, µ, yn) spaces

are depicted in Fig. 7a, Fig. 7b and Fig. 7c, respectively.

Next, assume (ρ, α) = (0.85, 0.95), r ∈ [0.95, 1.5] and µ ∈ [0.9, 1]. Let

(r0, µ0) = (0.9992608065977496, 0.9757272955467994) be the bifurcation

parameters, then system (14) undergoes 1:3 resonance about unique pos-

itive fixed point (x∗, y∗) = (0.5000384433121589, 0.9757272955467994).

Alternatively, the bifurcation diagrams and crossposting MLE for for sys-

tem (14) in (r, µ, xn) and (r, µ, yn) spaces are depicted in Fig. 8a, Fig.

8b and Fig. 8c, respectively.
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(a) Bifurcation diagram for
xn

(b) Bifurcation diagram for
yn

(c) MLE

Figure 6. MLE and Bifurcation diagrams for system (14) with (ρ, α) =
(0.18, 0.34), r ∈ [1.16, 1.24], µ ∈ [1.93, 1.96] and initial
conditions (x0, y0) = (0.39, 1.97)

(a) Bifurcation diagram for
xn

(b) Bifurcation diagram for
yn

(c) MLE

Figure 7. MLE and Bifurcation diagrams for system (14) with (ρ, α) =
(0.741, 0.846), r ∈ [1.419, 1.8], µ ∈ [1.343, 1.345] and initial
conditions (x0, y0) = (0.415928, 1.3445)

(a) Bifurcation diagram for
xn

(b) Bifurcation diagram for
yn

(c) MLE

Figure 8. MLE and Bifurcation diagrams for system (14) with (ρ, α) =
(0.95, 0.85), r ∈ [0.95, 1.5], µ ∈ [0.9, 1] and initial conditions
(x0, y0) = (0.5, 0.975727)
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6 Conclusion

A chemical reaction model is considered for its discritization and qualita-

tive analysis. By applying the Caputo fractional derivative the discrete-

time fractional order cubic autocatalator chemical reaction model is ob-

tained. It is proved that system has a unique positive equilibrium point.

The local dynamical behavior of model is studied. Particularly, paramet-

ric conditions are obtained for local asymptotic stability of model (14).

Furthermore, codimension-one and codimension-two bifurcations are dis-

cussed. By implementing normal form method and bifurcation theory,

it is proved that system (14) undergoes Neimark-Sacker bifurcation and

period-doubling bifurcation at its positive equilibrium point. Moreover,

it is shown that fractional order model (14) undergoes codimension-two

bifurcation associated with 1:2, 1:3 and 1:4 strong resonances. In the case

of 1:2 resonance, the system exhibits a resonance pattern where the fre-

quency of one oscillatory component is twice that of another component.

This can lead to the amplification or suppression of certain oscillations in

the system, resulting in a complex behavior. In the case of 1:3 resonance,

the system demonstrates a resonance pattern where the frequency of one

oscillatory component is three times that of another component. Similar

to the 1:2 resonance, this can lead to the amplification or suppression of

specific oscillations and contribute to the emergence of intricate dynamics.

In the case of 1:4 resonance, the system displays a resonance pattern where

the frequency of one oscillatory component is four times that of another

component. This resonance introduces further complexity to the system’s

behavior, affecting the amplitudes and phases of different oscillations.

Codimension-two bifurcations, such as the resonances mentioned above,

provide insights into how different oscillatory modes interact and influence

each other in the fractional-order cubic autocatalator model. The occur-

rence of these bifurcations can lead to the emergence of intricate dynamics,

including chaotic behavior, multiple stable states, and complex oscilla-

tory patterns. Understanding and characterizing these codimension-two

bifurcations are essential for comprehending the system’s behavior and its

implications in chemical reactions and nonlinear dynamics.
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In other words, the analysis of codimension-one and codimension-two

bifurcations of a fractional-order cubic autocatalator chemical reaction

system can help to understand the mechanisms and conditions for the

emergence of complex dynamics in chemical reactions, and to control or

manipulate them for practical purposes. For instance, some chemical re-

actions can be used to generate signals or patterns for communication or

encryption. By tuning the fractional order or other parameters, one can

switch between different modes of operation or enhance the security or

robustness of the system.
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