
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 91 (2024) 337–365

ISSN: 0340–6253

doi: 10.46793/match.91-2.337V

Derivation of Steady State Parametrizations

of Chemical Reaction Networks with n

Independent and Identical Subnetworks

Kean Arkhei M. Villareala, Bryan S. Hernandeza,∗,
Patrick Vincent N. Lubeniab

aInstitute of Mathematics, University of the Philippines Diliman, Quezon

City 1101, Philippines
bSystems and Computational Biology Research Unit, Center for Natural

Sciences and Environmental Research, Manila 0922, Philippines

kmvillareal@up.edu.ph, bryan.hernandez@upd.edu.ph,

pnlubenia@upd.edu.ph

(Received July 15, 2023)

Abstract

The long-term behavior of a chemical reaction network (CRN) is
usually described by steady states. Recently, Hernandez et al. pro-
vided a method and a computational package for deriving positive
steady states of CRNs via the concept of network decomposition.
In particular, a given CRN is decomposed into stoichiometrically
independent subnetworks; then, positive steady state parametriza-
tions of these subnetworks are derived individually and merged to
obtain a positive steady state parametrization of the given network.
However, the framework applies to a fixed number of subnetworks.
In this work, we establish a systematic approach to solving steady
state parametrizations of CRNs that can be decomposed into n sto-
ichiometrically independent and structurally identical subnetworks,
where n ≥ 2 is any positive integer. Specifically, we apply the
method to the n-site processive phosphorylation/dephosphorylation
model. That is, we compute the positive steady state parametriza-
tion for the case when n = 2 via the concept of network decom-
position using the result of parametrizing positive steady states of
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the network when n = 1. Then, we generalize the parametrization
for any positive integer n ≥ 2 via the principle of mathematical
induction.

1 Introduction

Steady states usually describe the long-term behaviors of chemical (or

biochemical) systems. In recent years, network-based approaches to deriv-

ing parametrizations of positive steady states have received much atten-

tion [11–13]. In 2023, Hernandez et al. [9] proposed a novel framework for

deriving positive steady state parametrizations via the concept of network

decomposition. That is, the underlying chemical reaction network (CRN)

of a chemical system is decomposed into stoichiometrically independent

subnetworks (or simply called independent subnetworks).

Martin Feinberg established the result that the set of positive steady

states of a CRN coincides with the intersection of the set of positive steady

states of its independent subnetworks [5–8]. Thus, after decomposing

the CRN into its independent subnetworks, we can consider computing

a steady state parametrization of each subnetwork. Finally, the individual

parametrizations are merged to obtain a positive steady state parametriza-

tion of the given network itself. Importantly, Hernandez et al. [9] provided

a computational package, which they called COMPILES (COMPutIng an-

aLytic stEady States), to facilitate this computation.

However, the mentioned framework applies to a fixed number of subnet-

works. In this work, we provide an approach to solving parametrizations

of positive steady states of CRNs, under the assumption of mass-action

rate laws, that can be decomposed into n stoichiometrically independent

and yet structurally identical subnetworks, where n ≥ 2 is any positive

integer. Some CRNs that satisfy such properties are the following:

1. the reversible network considered in [14]: S0→← S1→← . . .→← Sn,

2. a modified version of the previous network with a catalyst K based

on [1]: S0 +K→← S1 +K→← . . .→← Sn +K, and
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3. the n-site processive phosphorylation/dephosphorylation (PD) net-

work [2]:

S0 +K→← S0K → S1 +K →← S1K → S2 +K →← ...→ Sn +K

Sn + F →← ... → S2 + F →← S2F → S1 + F →← S1F → S0 + F
.

In this work, we focus on illustrating the method of parametrization of

positive steady states for the third network, that is, the n-site PD network.

We start describing the 1-site PD network (i.e., the n-site PD network

when n = 1) as follows:

S0 +K→← S0K → S1 +K

S1 + F →← S1F → S0 + F
.

Here, substrate S0 binds with an enzymeK (or kinase) forming a substrate

enzyme complex S0K (a reversible reaction), which produces a modified

substrate S1 from which the catalyst K dissociates. Moreover, substrate

S0 can be returned by another enzyme F (or phosphatase). This happens

when the modified substrate S1 binds to F to produce the complex S1F

(a reversible reaction). After which, this complex S1F can return the

substrate S0 with the enzyme F [2]. The CRN associated with this 1-site

PD network is also called a futile cycle.

Next, the 2-site network is given as follows:

S0 +K→← S0K → S1 +K →← S1K → S2 +K

S2 + F →← S2F → S1 + F →← S1F → S0 + F
.

Here, continuing from the 1-site network, the modified substrate S1 binds

with an enzyme K to form the complex S1K (a reversible reaction), which

then produces another modified substrate S2 from which the enzyme K

dissociates. Furthermore, this modified substrate S2 binds to the enzyme

F to form a complex S2F (a reversible reaction). This complex S2F can

return the substrate S1 with the enzyme F .

In general, the following reaction network describes the n-site PD net-
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work:

S0 +K→← S0K → S1 +K →← S1K → S2 +K →← ...→ Sn +K

Sn + F →← ... → S2 + F →← S2F → S1 + F →← S1F → S0 + F
.

There could be many substrates to which the enzymes K and F attach

themselves to form or undo a modification. The n-site network, thus,

illustrates the mechanisms of the enzymes and several substrates.

The larger the network, the more challenging it is to parametrize its set

of steady state solution. For example, the n-site PD network could have

varying sizes since n is arbitrary. In effect, it would be difficult to derive

the steady states of the n-site PD for each value of n. To overcome this

difficulty, in this work, we compute the positive steady state parametriza-

tion for the case when n = 2 via network decomposition using the result

when n = 1. Then, we generalize the parametrization for any n ≥ 2 using

the principle of mathematical induction.

2 Preliminaries

We start this section with the formal definition of chemical reaction net-

works as follows.

Definition 1. A chemical reaction network (CRN) is a triple of nonempty

and finite sets (S, C,R) where

a. S = {A1, A2, . . . , Am} is the set of species,

b. C = {B1, B2, . . . , Bn} is the set of complexes, which are non-negative

linear combinations of the species, and

c. R = {R1, R2, . . . , Rk} ⊂ C × C is the set of reactions.

A reaction (y, y′) is often denoted as y → y′. Here, the complex y is

called a reactant complex and the complex y′ is called a product complex.

Furthermore, a reaction vector of y → y′ is the difference y′ − y.

To describe the dynamics of the concentrations of species over time in

a chemical system, a CRN is endowed with kinetics. In particular, when
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the kinetics is mass-action, the rate function of each reaction is propor-

tional to the product of the concentration of the species in its reactant

complex. That is, the rate function is a proportionality constant, called

rate constant, multiplied by the product of each concentration raised to

the stoichiometric coefficient of the associated species that occurs in the

reactant complex of the associated reaction.

Remark. Throughout this work, we denote the species concentration with

the lowercase equivalent of the species notation together with a bar on top.

In particular, given the species A1, F , and A1F , the species concentrations

are indicated by a1, f , and a1f , respectively. The bar was placed on

top of the species concentrations to avoid confusion on the multiplication

operation, e.g., a1f , which is the product of concentrations of species A1

F , is evidently different from a1f , which is the concentration of species

A1F as compared to when no bar on top of species concentration is used.

Example 1. Reconsider the 1-site PD network as follows:

S0 +K→← S0K → S1 +K

S1 + F →← S1F → S0 + F
.

In this CRN, there are six species (K,S0, S0K,F, S1, S1F ), six complexes

(S0+K,S0K,S1+K,S1+F, S1F, S0+F ), and six reactions (R1 : S0+K →
S0K, R2 : S0K → S0 + K, R3 : S0K → S1 + K, R4 : S1 + F → S1F ,

R5 : S1F → S1 + F , R6 : S1F → S0 + F ).

Let ro (o = 1, 2, . . . , 6) be the rate constant for each reaction Ro. Let

k, s0, s0k, f, s1, s1f be the concentrations of species K,S0, S0K,F, S1, S1F ,

respectively. To obtain the rate functions, raise each species concentration

to its associated stoichiometric coefficient if the species is present in the

reactant, and raise it to 0 otherwise, and then multiply them altogether.

Next, multiply the rate constant by the previously obtained product. For

instance, in the first reaction R1 : S0 +K → S0K, only species S0 and K

are present in the reactant complex ofR1, and so only species concentration

s0 and k are raised to 1 while other concentrations are raised to 0. This

gives us the rate function r1k
1
s0

1s0k
0
f
0
s1

0s1f
0
= r1ks0 for the reaction
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R1. The complete rate functions are given by:

R1 : S0 +K → S0K r1k
1
s0

1s0k
0
f
0
s1

0s1f
0
= r1ks0

R2 : S0K → S0 +K r2k
0
s0

0s0k
1
f
0
s1

0s1f
0
= r2s0k

R3 : S0K → S1 +K r3k
0
s0

0s0k
1
f
0
s1

0s1f
0
= r3s0k

R4 : S1 + F → S1F r4k
0
s0

0s0k
0
f
1
s1

1s1f
0
= r4fs1

R5 : S1F → S1 + F r5k
0
s0

0s0k
0
f
0
s1

0s1f
1
= r5s1f

R6 : S1F → S0 + F r6k
0
s0

0s0k
0
f
0
s1

0s1f
1
= r6s1f.

The reaction vectors, written as column vectors, for the network are given

as follows:

R1 : (S0K)− (S0 +K) = −S0 −K + S0K = [−1,−1, 1, 0, 0, 0]⊤

R2 : (S0 +K)− (S0K) = S0 +K − S0K = [1, 1,−1, 0, 0, 0]⊤

R3 : (S1 +K)− (S0K) = K − S0K + S1 = [0, 1,−1, 1, 0, 0]⊤

R4 : (S1F )− (S1 + F ) = −S1 − F + S1F = [0, 0, 0,−1,−1, 1]⊤

R5 : (S1 + F )− (S1F ) = S1 + F − S1F = [0, 0, 0, 1, 1,−1]⊤

R6 : (S0 + F )− (S1F ) = S0 + F − S1F = [1, 0, 0, 0, 1,−1]⊤.

The set of ordinary differential equations (ODEs) is obtained by mul-

tiplying the oth rate function to reaction vector (in columns) of the oth

reaction. That is, we obtain the following:

d

dt



k

s0

s0k

f

s1

s1f


= r1ks0



−1
−1
1

0

0

0


+ r2s0k



1

1

−1
0

0

0


+ r3s0k



1

0

−1
0

1

0


+
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r4fs1



0

0

0

−1
−1
1


+ r5s1f



0

0

0

1

1

−1


+ r6s1f



0

1

0

1

0

−1


,

where
dk

dt
,
ds0
dt

,
ds0k

dt
,
df

dt
,
ds1
dt

,
ds1f

dt
are the time derivatives of the con-

centration functions of species K,S0, S0K,F, S1, S1F , respectively. Then,

the set of ODEs is:

dk

dt
= −r1ks0 + r2s0k + r3s0k

ds0
dt

= −r1ks0 + r2s0k + r6s1f

ds0k

dt
= r1ks0 − r2s0k − r3s0k

df

dt
= −r4fs1 + r5s1f + r6s1f

ds1
dt

= r3s0k − r4fs1 + r5s1f

ds1f

dt
= r4fs1 − r5s1f − r6s1f.

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

Definition 2. A steady state is a vector of species concentrations that

makes all time derivatives equal to zero. A positive steady state is a steady

state where each concentration is positive.

A CRN can be decomposed into smaller pieces of networks called sub-

networks [5, 6, 8]. This can be done by partitioning its reaction set into

disjoint subsets. For instance, the 1-site CRN N in Example 1 can be

decomposed into two subnetworks N1 and N2 where the first subnetwork

consists of the reactions R1, R2, R3 and R4, while the second subnetwork

consists of the reactions R5 and R6. Hence, it is obvious that there can be

several ways of decomposing a given CRN.

If in the case that the rank of the stoichiometric matrix of the whole



344

network (the stoichiometric matrix is the matrix where the columns are

the reaction vectors of the reactions in the network) is the sum of the ranks

of the stoichiometric matrices of its subnetworks (as individual networks),

then the decomposition is independent and the subnetworks are called

independent subnetworks. We can see the importance of such independent

decompositions through this result of Martin Feinberg [5, 6].

Theorem 1. (Feinberg Decomposition Theorem) Let N be a CRN en-

dowed with kinetics K and let N be decomposed into independent subnet-

works N1, N2, . . . , Nn such that the rate functions of the reactions in N are

also the rate functions of the reactions in the smaller independent subnet-

works. Then the set of positive steady states of the whole network is equal

to the intersection of the sets of positive steady states of the n independent

subnetworks, i.e.,

E = E1 ∩ E2 ∩ . . . ∩ En.

The following proposition shows that the n-site PD network can be

decomposed into n independent and structurally identical subnetworks.

Proposition 2. (Proposition 3.22 [10]) Let N be the CRN for the n-site

processive phosphorylation/dephosphorylation given by:

S0 +K ⇌ S0K → S1 +K ⇌ S1K → S2 +K ⇌ . . . → Sn +K

Sn + F ⇌ . . . → S2 + F ⇌ S2F → S1 + F ⇌ S1F → S0 + F

Then, the decomposed independent subnetworks of N is of the form:

Si +K ⇌ SiK → Si+1 +K

Si+1 + F ⇌ Si+1F → Si + F, i = 0, 1, . . . , n− 1.

We will utilize Theorem 1 to solve positive steady states of CRNs that

can be decomposed into n independent and structurally identical subnet-

works such as the n-site PD network.
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3 Results and discussion

This section illustrates how we derive parametrizations of positive steady

states of chemical reaction networks with n independent and identical sub-

networks. To demonstrate this approach, we consider the n-site PD net-

work. We do this step by step by considering the case when n = 1, n = 2,

then for any positive integer n ≥ 2. At the end of the section, we pro-

pose a general approach to parametrizing positive steady states of chemical

reaction networks with n independent and identical subnetworks for any

positive integer n ≥ 2.

3.1 1-site PD network

Proposition 3. The 1-site PD network given by

S0 +K
r1
⇌
r2

S0K
r3→S1 +K

S1 + F
r4
⇌
r5

S1F
r6→S0 + F

has a positive steady state parametrization of the following form.

s0k =
r6s1f

r3

f =
(r5 + r6)s1f

r4s1

k =
r6(r2 + r3)s1f

r1r3s0

Free parameters: s0, s1, s1f > 0

Remark. The parametrization was derived through the computational

package COMPILES (see Appendix A).

Let τ1, τ2, τ3 be free parameters. We can verify that the steady states

are indeed solutions by plugging-in the following obtained parametrized
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steady state solution to each of the ODEs in Example 1:

s0 = τ1, s1 = τ2, s1f = τ3

k =
r6(r2 + r3)τ3

r1r3τ1

f =
(r5 + r6)τ3

r4τ2

s0k =
r6τ3
r3

.

By substituting the required solution in equation 1a, we get

dk

dt
= −r1ks0 + r2s0k + r3s0k

= −��r1
(
r6(r2 + r3)τ3

��r1r3��τ1

)
(��τ1) + r2

(
r6τ3
r3

)
+��r3

(
r6τ3

��r3

)
= −r2r6τ3

r3
− r6τ3 +

r2r6τ3
r3

+ r6τ3 = 0

One can verify that each ODE in Example 1 equates to zero when the ob-

tained steady state solutions are substituted. Hence, the obtained

parametrized steady states are correct.

3.2 A general observation

The process of obtaining the steady state solution does not make use of

the species indices in the method. It is only important to take note the

modification done, that is, a reaction when a species Sω′ binds to enzyme

K produces the complex Sω′K and this complex Sω′K may yield either

the initial substrate Sω′ and K or the modified substrate Sω′+1 and K by

other reactions. Hence, we come up with the following proposition.

Proposition 4. Let ω ∈ N and ω′ = ω − 1. By assigning ω for the index

1 of species in the CRN for the 1-site PD network, one gets:

Sω′ +K
r6ω′+1

⇌
r6ω′+2

Sω′K
r6ω′+3→ Sω +K

Sω + F
r6ω′+4

⇌
r6ω′+5

SωF
r6ω′+6→ Sω′ + F.
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Let the CRN above be denoted by Nω. Then, Nω has the following steady

state solution:

sω′k =
r6ω′+6sωf

r6ω′+3

f =
(r6ω′+5 + r6ω′+6)sωf

r6ω′+4sω

k =
r6ω′+6(r6ω′+2 + r6ω′+3)sωf

r6ω′+1r6ω′+3sω′

Free parameters: sω′ , sω, sωf > 0

3.3 2-site PD network

We can extend the 1-site PD network when the modified substrate S1

binds to K to produce a complex S1K. This complex S1K may produce

the modified substrate S1 and enzyme K or another modified substrate S2

and enzyme K. The undoing of the modification follows with the enzyme

F . This extension can be illustrated by the 2-site PD network.

Proposition 5. The CRN for the 2-site PD network given by

S0 +K
r1
⇌
r2

S0K
r3→S1 +K

r7
⇌
r8

S1K
r9→S2 +K

S2 + F
r10
⇌
r11

S2F
r12→S1 + F

r4
⇌
r5

S1F
r6→S0 + F

has a steady state parametrization as follows:

s0k =
r6s1f

r3

s1k =
r12s2f

r9

s0 =
r6r7r9r10(r2 + r3)(r5 + r6)s1f

2
s2

r1r3r4r12(r8 + r9)(r11 + r12)s2f
2

s1 =
r10(r5 + r6)s1fs2

r4(r11 + r12)s2f
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f =
(r11 + r12)s2f

r9

k =
r2r4(r8 + r9)(r11 + r12)s2f

2

r7r9r10(r5 + r6)s1fs2

Free parameters: s2, s1f, s2f > 0

We denote the 2-site PD network by N2. By Proposition 2, the CRN

(Figure 1, upper) can be decomposed into two independent subnetworks

N1 and N2 (Figure 1, lower).

Figure 1. Network decomposition of the 2-site PD network (N2) into
two independent subnetworks (N1 and N2)

Note that the independent subnetwork N1, which is the same network

as N1 in Proposition 3, given by

S0 +K
r1
⇌
r2

S0K
r3→S1 +K

S1 + F
r4
⇌
r5

S1F
r6→S0 + F
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has the steady state solution

s0k =
r6s1f

r3

f =
(r5 + r6)s1f

r4s1

k =
r6(r2 + r3)s1f

r1r3s0

Free parameters: s0, s1, s1f > 0

, (2)

by the same proposition.

If we take ω = 2 in Proposition 4 so that ω′ = 1, we would get N2.

That is, we have the CRN

S1 +K
r6(1)+1

⇌
r6(1)+2

S1K
r6(1)+3→ S2 +K

S2 + F
r6(1)+4

⇌
r6(1)+5

S2F
r6(1)+6→ S1 + F.

Hence, the steady state solution of N2 is:

s1k =
r12s2f

r9

f =
(r11 + r12)s2f

r10s2

k =
r12(r8 + r9)s2f

r7r9s1

Free parameters: s1, s2, s2f > 0

. (3)

By Theorem 1, the steady state solution of N2 is the intersection of

the steady state solution of N1 and the steady state solution of N2. Let

s2f and s2 be free parameters. Then, we have the following steady states

from N2: 
s1k =

r12s2f

r9

f =
(r11 + r12)s2f

r10s2



350

Let s1f be a free parameter. Then, s0k =
r6s1f

r3
, from equation 2, is a

steady state solution. Now, by equating f of equation 2 and equation 3,

one obtains

f (N1) = f (N2)

(r5 + r6)s1f

r4s1
=

(r11 + r12)s2f

r10s2

s1 =
r10(r5 + r6)s1fs2

r4(r11 + r12)s2f

By the same process of equating the steady state solution k of equation 2

and equation 3, one gets

s0 =
r6r7r9r10(r2 + r3)(r5 + r6)s1f

2
s2

r1r3r4r12(r8 + r9)(r11 + r12)s2f
2 .

Finally, by substituting the updated solution s1 to k of equation 3, one

obtains

k =
r4r12(r8 + r9)(r11 + r12)s2f

2

r7r9r10(r5 + r6)s1fs2

Thus, the steady state solution of N2 is given by

s0k =
r6s1f

r3

s1k =
r12s2f

r9

s0 =
r6r7r9r10(r2 + r3)(r5 + r6)s1f

2
s2

r1r3r4r12(r8 + r9)(r11 + r12)s2f
2

s1 =
r10(r5 + r6)s1fs2

r4(r11 + r12)s2f

f =
(r11 + r12)s2f

r10s2

k =
r4r12(r8 + r9)(r11 + r12)s2f

2

r7r9r10(r5 + r6)s1fs2

Free parameters: s2, s1f, s2f > 0

.
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Remark. The parametrization can also be derived through the computa-

tional package COMPILES (see Appendix B).

3.4 n-site PD network

The 2-site PD network could further be extended up to the nth substrate

to obtain the n-site PD.

Theorem 6. For every n ∈ N, n ≥ 2, the network Nn for the n-site PD

network given by:

S0 +K ⇌ S0K → S1 +K ⇌ S1K → S2 +K ⇌ . . . → Sn +K

Sn + F ⇌ . . . → S2 + F ⇌ S2F → S1 + F ⇌ S1F → S0 + F

has the steady state solution given by:

sµk =
r6(µ+1)sµ+1f

r6µ+3
, µ = 0, 1, 2, . . . , n− 1

s0 =
r6r7r9r6n−2(r2 + r3)(r5 + r6)s1f

2
sn

r1r3r4r12(r8 + r9)(r6n−1 + r6n)s2f snf

sϵ =
r6n−2(r6ϵ−1 + r6ϵ)sϵfsn

r6ϵ−2(r6n−1 + r6n)snf
, ϵ = 1, 2, . . . , n− 1

f =
(r6n−1 + r6n)snf

r6n−2sn

k =
r6n−8r6n(r6n−4 + r6n−3)(r6n−1 + r6n)snf

2

r6n−5r6n−3r6n−2(r6n−7 + r6n−6)sn−1fsn

Free parameters: s1f, s2f, . . . , snf, sn > 0

Proof. We prove by induction. Let n ∈ N, n ≥ 2. Let the network Nn be

the CRN for the n-site PD given by:

S0 +K ⇌ S0K → S1 +K ⇌ S1K → S2 +K ⇌ . . . → Sn +K

Sn + F ⇌ . . . → S2 + F ⇌ S2F → S1 + F ⇌ S1F → S0 + F

Base Step. (n = 2) We have obtained in Proposition 5 that the steady
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state solution of the 2-site PD is given by:

s0k =
r6s1f

r3

s1k =
r12s2f

r9

s0 =
r6r7r9r10(r2 + r3)(r5 + r6)s1f

2
s2

r1r3r4r12(r8 + r9)(r11 + r12)s2f
2

s1 =
r10(r5 + r6)s1fs2

r4(r11 + r12)s2f

f =
(r11 + r12)s2f

r10s2

k =
r4r12(r8 + r9)(r11 + r12)s2f

2

r7r9r10(r5 + r6)s1fs2

Free parameters: s2, s1f, s2f > 0.

(4)

Observe that equation 4 can be written as:



sµk =
r6(µ+1)sµ+1f

r6µ+3
, µ = 0,1

s0 =
r6r7r9r6(2)−2(r2 + r3)(r5 + r6)s1f

2
s2

r1r3r4r12(r8 + r9)(r6(2)−1 + r6(2))s2f s2f

sϵ =
r6(2)−2(r6ϵ−1 + r6ϵ)sϵfs2

r6ϵ−2(r6(2)−1 + r6(2))s2f
, ϵ = 1

f =
(r6(2)−1 + r6(2))s2f

r6(2)−2s2

k =
r6(2)−8r6(2)(r6(2)−4 + r6(2)−3)(r6(2)−1 + r6(2))s2f

2

r6(2)−5r6(2)−3r6(2)−2(r6(2)−7 + r6(2)−6)s2−1fs2

Free parameters: s1f, s2f, s2 > 0.

The theorem holds for n = 2.

Inductive Step. Assume that for n = m such that n > 2, the theorem

holds, i.e., the steady state solution for the m-site PD is given by
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E′
m =



sµk =
r6(µ+1)sµ+1f

r6µ+3
, µ = 0, 1, 2, . . . ,m− 1

s0 =
r6r7r9r6m−2(r2 + r3)(r5 + r6)s1f

2
sm

r1r3r4r12(r8 + r9)(r6m−1 + r6m)s2f smf

sϵ =
r6m−2(r6ϵ−1 + r6ϵ)sϵfsm

r6ϵ−2(r6m−1 + r6m)smf
, ϵ = 1, 2, . . . ,m− 1

f =
(r6m−1 + r6m)smf

r6m−2sm

k =
r6m−8r6m(r6m−4 + r6m−3)(r6m−1 + r6m)smf

2

r6m−5r6m−3r6m−2(r6m−7 + r6m−6)sm−1fsm

Free parameters: s1f, s2f, . . . , smf, sm > 0.

(5)

Note that the decomposed independent subnetworks Ni+1 of the m-site

PD, by Proposition 2, is given by:

Si +K ⇌ SiK → Si+1 +K

Si+1 + F ⇌ Si+1F → Si + F, i = 0, 1, . . . ,m− 1.

Now, by Theorem 1, the steady state solution E′
m of the CRN for the

m-site PD network, is obtained by taking the intersection of the steady

state solution of each decomposed independent subnetwork, i.e.,

E′
m =

m−1⋂
i=1

Ei+1, i = 0, 1, . . . ,m− 1,

where Ei+1 is the steady state solution of the subnetwork Ni+1.

Following the same argument, the steady state solution E′
m+1 of the

network Nm+1 is derived by taking the intersection

E′
m ∩ Em+1,

where Em+1 is the steady state solution of the subnetwork Nm+1. Observe
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that the network Nm+1 is given by

Sm +K
r6m+1

⇌
r6m+2

SmK
r6m+3→ Sm+1 +K

Sm+1 + F
r6m+4

⇌
r6m+5

Sm+1F
r6m+6→ Sm + F.

which, by Proposition 4, has the steady state solution

smk =
r6m+6sm+1f

r6m+3

f =
(r6m+5 + r6m+6)sm+1f

r6m+4sm+1

k =
r6m+6(r6m+2 + r6m+3)sm+1f

r6m+1r6m+3sm

Free parameters: sm, sm+1, sm+1f > 0.

(6)

Let s1f, s2f, . . . , sm+1f, sm+1 be free parameters. Then, the steady

states in equation 5 in terms of the free parameters can be obtained:

sµk =
r6(µ+1)sµ+1f

r6µ+3
, µ = 0, 1, 2, . . . ,m− 1.

Similarly, from the steady states in equation 6, we can get:
smk =

r6m+6sm+1f

r6m+3
=

r6(m+1)sm+1f

r6m+3

f =
(r6m+5 + r6m+6)sm+1f

r6m+4sm+1

By equating f of equation 5 to the f of equation 6, we can derive sm, that

is,

(r6m−1 + r6m)smf

r6m−2sm
=

(r6m+5 + r6m+6)sm+1f

r6m+4sm+1

r6m−2sm

(r6m−1 + r6m)smf
=

r6m+4sm+1

(r6m+5 + r6m+6)sm+1f
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sm =
[r6m+4sm+1]

[
(r6m−1 + r6m)smf

][
(r6m+5 + r6m+6)sm+1f

]
[r6m−2]

sm =
r6m+4(r6m−1 + r6m)smfsm+1

r6m−2(r6m+5 + r6m+6)sm+1f

sm =
r6(m+1)−2(r6m−1 + r6m)smfsm+1

r6m−2(r6(m+1)−1 + r6(m+1))sm+1f
.

By substituting this newly obtained parametrization for sm to sϵ, ϵ =

1, 2, . . . ,m− 1, of equation 5, we get:

sϵ =
r6m−2(r6ϵ−1 + r6ϵ)sϵfsm

r6ϵ−2(r6m−1 + r6m)smf

=
r6m−2(r6ϵ−1 + r6ϵ)sϵf

r6ϵ−2(r6m−1 + r6m)smf
·
r6(m+1)−2(r6m−1 + r6m)smfsm+1

r6m−2(r6(m+1)−1 + r6(m+1))sm+1f

= ���r6m−2(r6ϵ−1 + r6ϵ)sϵf

r6ϵ−2(((((((
(r6m−1 + r6m)���smf

·
r6(m+1)−2(((((((

(r6m−1 + r6m)���smfsm+1

���r6m−2(r6(m+1)−1 + r6(m+1))sm+1f

=
r6(m+1)−2(r6ϵ−1 + r6ϵ)sϵfsm+1

r6ϵ−2(r6(m+1)−1 + r6(m+1))sm+1f
.

Plugging-in the same sm to s0 of equation 5, we get:

s0 =
r6r7r9r6m−2(r2 + r3)(r5 + r6)s1f

2
sm

r1r3r4r12(r8 + r9)(r6m−1 + r6m)s2f smf

=
r6r7r9���r6m−2(r2 + r3)(r5 + r6)s1f

2

r1r3r4r12(r8 + r9)((((((
(r6m−1 + r6m)s2f ��smf

·
r6(m+1)−2((((((

(r6m−1 + r6m)��smfsm+1

���r6m−2(r6(m+1)−1 + r6(m+1))sm+1f

=
r6r7r9r6(m+1)−2(r2 + r3)(r5 + r6)s1f

2
sm+1

r1r3r4r12(r8 + r9)(r6(m+1)−1 + r6(m+1))s2f sm+1f
.

Finally, by substituting the same sm to k of the steady state solution in

equation 6, we obtain:
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k =
r6m+6(r6m+2 + r6m+3)sm+1f

r6m+1r6m+3sm

=
r6m+6(r6m+2 + r6m+3)sm+1f

r6m+1r6m+3
·
r6m−2(r6(m+1)−1 + r6(m+1))sm+1f

r6(m+1)−2(r6m−1 + r6m)smfsm+1

=
r6(m+1)−8r6(m+1)(r6(m+1)−4 + r6(m+1)−3)(r6(m+1)−1 + r6(m+1))sm+1f

2

r6(m+1)−5r6(m+1)−3r6(m+1)−2(r6(m+1)−7 + r6(m+1)−6)s(m+1)−1fsm+1

.

Collecting these derived steady state solution for Nm+1, we have:

sµk =
r6(µ+1)sµ+1f

r6µ+3
, µ = 0, 1, 2, . . . ,m− 1

smk =
r6(m+1)sm+1f

r6m+3

s0 =
r6r7r9r6(m+1)−2(r2 + r3)(r5 + r6)s1f

2
sm+1

r1r3r4r12(r8 + r9)(r6(m+1)−1 + r6(m+1))s2f sm+1f

sϵ =
r6(m+1)−2(r6ϵ−1 + r6ϵ)sϵfsm+1

r6ϵ−2(r6(m+1)−1 + r6(m+1))sm+1f
, ϵ = 1, 2, . . . ,m− 1

sm =
r6(m+1)−2(r6m−1 + r6m)smfsm+1

r6m−2(r6(m+1)−1 + r6(m+1))sm+1f

f =
(r6m+5 + r6m+6)sm+1f

r6m+4sm+1

k =
r6(m+1)−8r6(m+1)(r6(m+1)−4 + r6(m+1)−3)(r6(m+1)−1 + r6(m+1))sm+1f

2

r6(m+1)−5r6(m+1)−3r6(m+1)−2(r6(m+1)−7 + r6(m+1)−6)s(m+1)−1fsm+1

Free parameters: s1f, s2f, . . . , sm+1f, sm+1 > 0,

or by merging some of the solution such as the first two (sµk for

µ = 0, 1, 2, . . . ,m − 1 and smk), and the fourth and the fifth (sϵ for

ϵ = 1, 2, . . . ,m− 1 and sm), we can group them as follows:



sµk =
r6(µ+1)sµ+1f

r6µ+3
, µ = 0, 1, 2, . . . ,m

s0 =
r6r7r9r6(m+1)−2(r2 + r3)(r5 + r6)s1f

2
sm+1

r1r3r4r12(r8 + r9)(r6(m+1)−1 + r6(m+1))s2f sm+1f

sϵ =
r6(m+1)−2(r6ϵ−1 + r6ϵ)sϵfsm+1

r6ϵ−2(r6(m+1)−1 + r6(m+1))sm+1f
, ϵ = 1, 2, . . . ,m

f =
(r6m+5 + r6m+6)sm+1f

r6m+4sm+1

k =
r6(m+1)−8r6(m+1)(r6(m+1)−4 + r6(m+1)−3)(r6(m+1)−1 + r6(m+1))sm+1f

2

r6(m+1)−5r6(m+1)−3r6(m+1)−2(r6(m+1)−7 + r6(m+1)−6)s(m+1)−1fsm+1

Free parameters: s1f, s2f, . . . , sm+1f, sm+1 > 0,
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as required. This means that the theorem is true for (m+ 1)-site PD.

Therefore, the theorem holds for all n ∈ N, n ≥ 2.

3.5 Derivation of positive steady state parametriza-

tion of CRNs with n independent and identical

subnetworks

We are now in the position to introduce the following steps (S1-S5) of deriv-

ing positive steady state parametrization of CRNs, under the assumption

of mass-action kinetics, with n independent and identical subnetworks:

S1. Decompose the CRN into n independent and identical subnetworks.

S2. Derive the positive steady state parametrization of the network for

the case when n = 1 (Section 3.1).

S3. Generalize a formula for a steady state parametrization for any sub-

network using the network in the previous step (S2) (Section 3.2).

S4. Derive a positive steady state parametrization of the network for the

case when n = 2 by invoking Theorem 1, i.e., getting the intersec-

tion of the two parametrizations (coming from the two subnetworks)

obtained using the previous step (S3) (Section 3.3).

S5. Apply the principle of mathematical induction with n = 2 as the

basis step (Section 3.4).

4 Summary and recommendation

In this work, we introduce a framework to derive parametrizations of

CRNs, endowed with mass-action kinetics, that can be decomposed into n

independent and structurally identical subnetworks where n ≥ 2 is any

positive integer. The approach was illustrated to derive a generaliza-

tion for the steady state solution of the n-site PD. First, a steady state

parametrization of the CRN for the 1-site PD was obtained. Then, we

compute the positive steady state parametrization for the case when n = 2

via network decomposition (i.e., Theorem 1) using the result when n = 1.
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Then, we generalize the parametrization for any n ≥ 2 using the principle

of mathematical induction.

Studies on CRN theory (CRNT) often include critical biological prop-

erties such as absolute concentration robustness and multistationarity [3,

4, 13, 15]. Parametrizations of positive steady states can be used to fa-

cilitate checking these properties. Future studies may include the use of

conservation laws in the system after computing the parametrization. One

can also look into different types of networks with varying sizes.

Appendix A A parametrization of the posi-

tive steady states of the 1-site

PD network

In this section, we provide a parametrization of the 1-site PD via the

computational package COMPILES (COMPutIng anaLytic stEady States)

developed in [9], which is built in MATLAB. It derives a steady state

parametrization of a network by decomposing the CRN into independent

subnetworks and combines parametrizations of each subnetwork. Here, we

present the COMPILES package with the corresponding MATLAB code

that we have used to obtain the parametrization in Section 3.1.

Input

1. Gather the m-files steadyState.m, addReaction.m, edge.m,
graph.m, and vertex.m in the same working directory. In the
same directory, create another m-file on which the script would be
put.

2. In the created m-file, write the model name as the model.id. In our
code, we used

model.id = ‘for n=1’;

for the 1-site PD.
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3. List all the reactions. The string in the first line is the visual repre-
sentation of the reaction. It may be reversible or not, and we use the
signs < and > to denote the direction of the reaction. The second
line consists of the reactant species (in strings), their respective sto-
ichiometric coefficients (in the cell list), and their respective kinetic
order (in the array list). The third line consists of product species
(in strings), their respective stoichiometry (in cell list), and their ki-
netic order if reversible (in array list), which is otherwise empty. The
fourth line contains the word true (false) if the reaction is reversible
(not reversible). In our code, we wrote the first reaction as

model = addReaction(model, ‘S0+K<->S0K’, ...

{‘S0’, ‘K’}, {1, 1}, [1, 1], ...

{‘S0K’}, {1}, [1], ...

true);

Do this for all reactions in the CRN.

4. Add the line

[equation, species, free_parameter, conservation_law,

model] = steadyState(model);

for the computation of the parametrized steady state.

5. Run the script file.

Code (used on the script file)

model.id = ‘for n=1’;

model = addReaction(model, ‘S0+K<->S0K’, ...

{‘S0’, ‘K’}, {1, 1}, [1, 1], ...

{‘S0K’}, {1}, [1], ...

true);

model = addReaction(model, ‘S0K->S1+K’, ...

{‘S0K’}, {1}, [1], ...

{‘S1’, ‘K’}, {1, 1}, [ ], ...

false);

model = addReaction(model, ‘S1+F<->S1F’, ...

{‘S1’, ‘F’}, {1, 1}, [1, 1], ...

{‘S1F’}, {1}, [1], ...

true);
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model = addReaction(model, ‘S1F->S0+F’, ...

{‘S1F’}, {1}, [1], ...

{‘S0’, ‘F’}, {1, 1}, [ ], ...

false);

[equation, species, free_parameter, conservation_law, model]

= steadyState(model);

Output

1. As an output, we would be given the number of independent decom-
position of the CRN.

2. For each of these subnetworks, the reactions associated with it are
displayed.

3. Each species in the subnetwork are listed with their corresponding
steady states parametrization.

4. After the steady state parametrization for all subnetworks are shown,
the final solution by combining these solutions of the subnetworks is
presented.

5. The conservation laws for the CRN are also shown.

The network has no nontrival independent decomposition.

- Network -

R1: S0+K->S0K

R2: S0K->S0+K

R3: S0K->S1+K

R4: S1+F->S1F

R5: S1F->S1+F

R6: S1F->S0+F

Solving the network...

F = (tau3*(k5 + k6))/(k4*tau2)

K = (k6*tau3*(k2 + k3))/(k1*k3*tau1)

S0 = tau1

S0K = (k6*tau3)/k3

S1 = tau2

S1F = tau3
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Solving positive steady state parametrization of the

network...

The solution is:

F = (S1F*(k5 + k6))/(S1*k4)

K = (S1F*k6*(k2 + k3))/(S0*k1*k3)

S0K = (S1F*k6)/k3

Free parameters: S0, S1, S1F

Conservation laws:

dK/dt + dS0K/dt = 0

-dF/dt - dK/dt + dS0/dt + dS1/dt = 0

dF/dt + dS1F/dt = 0

Appendix B A parametrization of the posi-

tive steady states of the 2-site

PD network

This section is an extension of the 1-site PD network. The script file follows

the same steps presented in Appendix A.

Input

Code (used on the script file)

model.id = ‘for n=2’;

model = addReaction(model, ‘S0+K<->S0K’, ...

{‘S0’, ‘K’}, {1, 1}, [1, 1], ...

{‘S0K’}, {1}, [1], ...

true);

model = addReaction(model, ‘S0K->S1+K’, ...

{‘S0K’}, {1}, [1], ...

{‘S1’, ‘K’}, {1, 1}, [ ], ...

false);

model = addReaction(model, ‘S1+F<->S1F’, ...

{‘S1’, ‘F’}, {1, 1}, [1, 1], ...

{‘S1F’}, {1}, [1], ...

true);
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model = addReaction(model, ‘S1F->S0+F’, ...

{‘S1F’}, {1}, [1], ...

{‘S0’, ‘F’}, {1, 1}, [ ], ...

false);

model = addReaction(model, ‘S1+K<->S1K’, ...

{‘S1’, ‘K’}, {1, 1}, [1, 1], ...

{‘S1K’}, {1}, [1], ...

true);

model = addReaction(model, ‘S1K->S2+K’, ...

{‘S1K’}, {1}, [1], ...

{‘S2’, ‘K’}, {1, 1}, [ ], ...

false);

model = addReaction(model, ‘S2+F<->S2F’, ...

{‘S2’, ‘F’}, {1, 1}, [1, 1], ...

{‘S2F’}, {1}, [1], ...

true);

model = addReaction(model, ‘S2F->S1+F’, ...

{‘S2F’}, {1}, [1], ...

{‘S1’, ‘F’}, {1, 1}, [ ], ...

false);

[equation, species, free_parameter, conservation_law, model]

= steadyState(model);

Output

The network has 2 subnetworks.

- Subnetwork 1 -

R1: S0+K->S0K

R2: S0K->S0+K

R3: S0K->S1+K

R4: S1+F->S1F

R5: S1F->S1+F

R6: S1F->S0+F

Solving Subnetwork 1...

F = (tau3*(k5 + k6))/(k4*tau2)

K = (k6*tau3*(k2 + k3))/(k1*k3*tau1)

S0 = tau1

S0K = (k6*tau3)/k3

S1 = tau2
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S1F = tau3

- Subnetwork 2 -

R7: S1+K->S1K

R8: S1K->S1+K

R9: S1K->S2+K

R10: S2+F->S2F

R11: S2F->S2+F

R12: S2F->S1+F

Solving Subnetwork 2...

F = (tau6*(k11 + k12))/(k10*tau5)

K = (k12*tau6*(k8 + k9))/(k7*k9*tau4)

S1 = tau4

S1K = (k12*tau6)/k9

S2 = tau5

S2F = tau6

Solving positive steady state parametrization of the

entire network...

The solution is:

F = (S2F*k11 + S2F*k12)/(S2*k10)

K = (S2F^2*k4*k12*(k8 + k9)*(k11 + k12))/(S2*S1F*k7*k9*k10

*(k5+ k6))

S0 = (S2*S1F^2*k6*k7*k9*k10*(k2 + k3)*(k5 + k6))/(S2F^2*k1

*k3*k4*k12*(k8 + k9)*(k11 + k12))

S1 = (S2*S1F*k5*k10 + S2*S1F*k6*k10)/(S2F*k4*k11 + S2F*k4*

k12)

S0K = (S1F*k6)/k3

S1K = (S2F*k12)/k9

Free parameters: S2, S1F, S2F

Conservation laws:

dK/dt + dS0K/dt + dS1K/dt = 0

-dF/dt - dK/dt + dS0/dt + dS1/dt + dS2/dt = 0

dF/dt + dS1F/dt + dS2F/dt = 0
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