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Abstract

This research examines a chaotic chemical reaction system based
on the variation of the Lorenz system. This study demonstrates
that although the first phase portraits of the chemical models under
consideration and the Lorenz models are comparable, they do not
fully follow all the features of the Lorenz system. Questions about
the existence of fractals in systems based on chemical reactions are
addressed in the current work. Moreover, we have worked on the
hidden information inside in each wings of a chaotic system gen-
erated through fractal process, for the first time, with the aid of
basin for fractals. Additionally, we looked closely at the dynam-
ics of the model across the basin, which revealed additional details
regarding the existence of hidden and cyclic attractors inside each
wing. We also produced multi-wings for system (1) in the current
study, demonstrating in a general manner that the number of cyclic
attractors increase in a direct relation to the number of wings. More-
over, Julia approach is used to accomplish the work of multi-wings,
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whereas for searching cyclic attractors inside each extra wing, we
have used fifteen million initial conditions and compiled them as a
basin set. The data generated in this work is also provided within
this paper for the ease of readers.

1 Introduction

Everything in the universe is subject to change over time, and such vari-

ations are referred to as dynamics. In mathematics, the same concept

exists with the emergence of field: nonlinear dynamics. Since the discov-

ery of chaos in 1963, when Edwards Lorenz was working on weather model

simulations, this discipline has received considerable attention. Eventu-

ally, such behavior came to be known as chaos and was defined as ”the

exponential sensitivity to initial conditions, dense orbits, and parameter

values.” Lorenz’s publication directed researchers in a new direction. Since

then, an enormous number of three-dimensional chaotic systems have been

derived, such as Bouali [4], Sprott [35], Yu-Wang [50], and many others.

This model was also presented in a variety of other physical-term-inclusive

variants, and all of them are grouped together as the family of Lorenz-like

systems [43]. However, Chen [5] generated the initial chaotic system with

the aid of the Lorenz system; but their properties were distinct. The signif-

icance of chaotic systems extends beyond mathematics and has a variety of

implications in other disciplines. Marwan et al. [27] applied the technique

of observers with incremental quadratic constraints for fractional-ordered

chaotic systems in 2022 as a method for the secure transmission of an im-

age file. Guo et al. [9] designed an algorithm with variable parameters for

chaotic systems in 2021 and implemented it in RFID-based security. To-

wards the end of 2019; a pandemic disease broke out, that quickly spread

around the globe. This topic attracted researchers in various disciplines

including the field of dynamics, who introduced several chaotic systems.

Mangiarotti et al. applied chaos theory to the covid outbreak [24] and ob-

tained superior results, whereas Jones [16] confirmed the existence of chaos

in the Covid epidemic’s spread. Similarly, the work of Iqbal et al. [12, 13]

verifies the existence of chaos and controllability in Cancer systems, re-

vealing additional applications of chaos in biological systems. Apart from
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the field of biological sciences, the term chaos has a variety of contribution

in the applications of robotics [25,31] and engineering [26,37] as well.

Chemistry is one of the disciplines that contributes to the production

of variety of beneficial real-world products,but a seemingly insignificant

error during the performance of a chemical reaction can sometimes cause

chaos. Multiple dynamical systems are founded on chemical reactions, but

Rossler is the pioneer who introduced the first chaotic system based on

biochemistry. Since then, numerous research papers on the Rossler sys-

tem have been discovered, including [14,18,19,28] and their references. To

comprehend chemical reactions in depth, mathematics is required as a pre-

requisite and for more information, combining chemistry with dynamical

systems is one of the most significant combinations.

Ameen [1] recently examined a biochemical reaction system to discuss

its numerous algebraic surfaces, exponential factors, and lack of integra-

tion. In recent research on oscillatory solutions and chaos, a chemical

reaction involving two species [6] has been considered. In 2022, Din [7]

examined a three-dimensional chaotic system without using its eigenval-

ues to determine the existence of Hopf bifurcation. Besides that, his in-

vestigation incorporates the property associated with the investigation of

“bounds” using Lyapunov theory. Ibrahim and Peter used Chemical Orga-

nization Theory (OCT) to organize and identify the persistent subspaces of

a system of ordinary differential equations [15]. Likewise, if every positive

equilibrium is itself complex balanced, then such chemical systems are

deemed Absolutely Complex Balanced (ACB). In 2022, Jose et al. [17]

examined the same technique and concentrated on a few other kinetic

systems. Furthermore, they have developed a novel method for ACB in

kinetic systems. Ndlovu et al. [32] studied the hydrolysis of glycerol over a

metal catalyst in 2022, resulting in a system of ordinary differential equa-

tions. They evaluated this system to investigate its qualitative behavior.

Several other work on oscillatory solutions and their controllability in (in-

teger and fractional) ordered dynamical systems are discussed in [20,33,45]

and references therein.

Fractals are structures that repeats itself through a range of scaling,

so that one observe similar pattern in different scales. Since such behav-



310

ior is a consequence of the scaling-invariance of the forming mechanism,

fractals are commonly observed in nature. In other terms, the more one

moves inside, the more identical structures materialize. If fractals occur

in chemical reactions, it means that the bonds between atoms break apart

and then reform into small and similar structures. This concept demon-

strates that fractals are an integral component of chemical reactions. In

nature, fractals can be found in clouds, mountain ranges, ocean surges,

earth strata, and much more. Beroit Mandel [29] introduced the function

of complex numbers in fractals analysis. With the discovery of fractals,

several nature-based concerns were resolved, and the universe’s boundaries

were disclosed to be without end [21,38].

It is commonly observed that chaotic systems exhibit orbits of fractal

structure, while a fractal structure does not necessarily leads to chaos.

Nevertheless, if the fractal property is applied to chaotic systems, it may

result in the formation of multiple identical wings. There are numerous

techniques in the literature for generating analogous wings in chaotic sys-

tems, but Miranda and Stone [30], who proposed a proto-Lorenz system,

are credited with initiating this topic. This prototype system was based

on the original system’s additional wings, but their study was limited to

six wings only. Following their work, Guo et al [10] provided the gen-

eralized analytical formulae for the generation of multi-wings in chaotic

systems. In 2017, Azam et al [2] used the same formulae and proved the

existence of multi-wings into STF chaotic model. In addition, there are

further several more effective methodologies used to generate multi-wings

in chaotic systems including switching manifolds [44], step function [51],

jerk circuits [52] and much more [11, 22, 23, 39, 40, 53]. But recently Azam

et al [3] designed an algorithm for the existence of generalized multi-wings

in all directions for chaotic system.

Basins, a well-known concept in the field of nonlinear sciences have a

similar structure to fractals except basins are sets of initial points in phase

space. In addition, if the initial points in a phase lead to an attracting set,

such sets are known as basins of attractors. Basins have a wide range of

applications in terms of discovering chaos, limit cycles, bifurcations, and

much more, but their interesting structures can also result in the exis-
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tence of similar shapes. The most recent study of the basin was conducted

by Datseris [8], who presented an automated technique for identifying at-

tractors without taking its dynamics into account. Similarly, Sprott and

Xiong [41] classified basins of attraction in a variety of scenario and later

investigated basins of tri-stability [46] for the first time in the Lorenz sys-

tem to gain more insight and detail. In 2022, Marwan et al. [26] utilized

the same method for locating basins in a mechanical-based system and

discussed its basin in two and three dimensions.

The aforementioned citation regarding chemical models demonstrates

that these systems are of great interest but are primarily discussed using

two-dimensional models. However, there are two chemical models based

on (Lorenz [34] and Chua [47]) chaotic systems in which Xu et al. [48, 49]

performed work on chemical chaotic systems based on the Chua system

from multiple perspectives, but the chemical chaotic model based on the

Lorenz system has been ignored for the past three decades. Therefore,

in this paper, we examine the Lorenz−based chemical model [34], which

spawned the following queries after reviewing the aforementioned works

and surveying the relevant literature.

1. If there exists chaos in systems based on chemical reactions then why

not fractals?

2. If fractals in chaotic systems generate similar chaotic wings, then

what about the basins of fractal?

3. What is hidden inside in each wing of a chaotic system generated

through fractal process?

4. Is the basin always leading to attracting set?

We found that the above questions remain unanswered in the literature

of chemistry and dynamical systems. Keeping in mind the above ques-

tions, we studied the dynamics of a Lorenz−based chaotic system includ-

ing chemical processes whose initial phase portrait resembles that of the

Lorenz system, but other properties are distinct. Furthermore, we used

the Julia concept to generate multi-wings in a chemical-reaction system

and classified basins for fractals of the system under consideration. While
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investigating the basins of system (1), we discovered that there exist cyclic

attractors that have a direct correlation with the number of generated

wings. Researchers in various fields of nonlinear systems now have a new

avenue to explore because of the discovery of cyclic attractors embedded

inside each wing.

This paper is structured in the following manner: In section (2), a

chemical reaction model is considered, its initial conditions and param-

eter values are also given there to show the existence of chaos, whereas

its physical properties and chemical reactions that made a foundation for

the modelling of our considered system (1) are explained in Appendix A.

Several dynamical properties of system (1) including equilibrium points,

symmetrical rotation, volume dissipation and existence of various other

attractors are discussed in section (3). The process of fractals for the

generation of four and six wings of our considered system are proved ana-

lytically and shown numerically in section (4). This section also includes

the study of basins of fractals and the existence of cyclic attractors in each

wing. In section (5), a random high wing is created using the analyti-

cal formulae given in Appendix B, while section (6) consist of concluding

remarks about our paper.

2 Chemical reaction Lorenz–based system

The model considered in this paper is the modification of Lorenz system

and is taken from the work of Poland [34]:
ṗ1 = −k1p1 + k2p2

ṗ2 = k3p1 − k4p2 + k5p3 − k6p1p3 + k7

ṗ3 = −k8p1 − k9p2 − k10p3 + k11p1p2 + k12,

(1)

where ki for i = 1, 2, · · · , 12 are constant rates (parameters) of system (1)

and p1, p2, p3 shows the concentration of X, Y , Z, where X is catalysed by

and the out flux from Y is catalysed by Z. System (1) is chaotic for initial

conditions (p1, p2, p3)=(0.01, 0.01, 23.3) and parameter values given in

Table (1). However, the model is same, but we have selected different
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Table 1. Symbolic and numerical values of parameters involved in sys-
tem (1)

Parameter Symbolic Value Numerical Value

k1 = k2 ζ 10
k4=k6=k11 1 1
k5=k8=k9 µ 14

k3 (ϱ+ µ) 38.4000
k7 (µ− ϱµ− µ2) −523.6000
k10 α 28
k12 (µ2 + αµ) 233.3333

parameter values along with initial conditions for the existence of chaos,

where µ is the axis shifted value, used for the transformation of Lorenz

into chemical reactions-based system. The existence of nonlinear terms in

dynamical systems are rare but in chemical reactions-based models it was

a big trouble. For-example the appearance of p1p3 in ṗ2 was a question

that why it does not appear in ṗ1 and ṗ3. Therefore, the transformation

method was introduced in such type of systems to solve the issue but

was not that effective. Then, in 1983, Toth and Hars [42] found a way

by considering p1 and p3 terms as a catalyst whose concentration does

not bring changes in the chemical reaction. Similar is the case for other

nonlinear terms as well. Moreover, further explanation about the model

(1) is given in Appendix A.

3 Dynamical properties

Fig. 1 is the phase portrait of system (1) and looks like original Lorenz

system but still exhibits different properties.

3.1 Equilibrium points

Equilibrium points are the first step for building blocks of various aspects

in any dynamical systems. Our considered model has the following three
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Figure 1. Chaotic trajectories in system (1)

equilibrium points:
εµ = (µ, µ, µ)

ε2 = (µ−√
αφ, µ−√

αφ, µ+ φ)

ε2 = (µ+
√
αφ, µ+

√
αφ, µ+ φ)

(2)

where φ=(ϱ−1). One can get equilibrium points of original Lorenz system

by setting µ equals to zero into Eq. (2).

Remark. For µ, α, ϱ ∈ R+ there exist three equilibrium points (2), while

for α < 0 or ϱ < 1 there exists single equilibrium point; εµ.

3.2 Volume dissipation & non-symmetrical rotation

Here we discuss the contraction of system (1). The Lorenz−based chem-

ical system (1) has two non-linearities but the system has no rotational

symmetry. One can also observe this property from the equilibrium points

(2), where the addition of extra term µ has diminished the symmetrical

property about any axis. Mathematically one can show this property by

replacing the state variables (p1, p2, p3) with (−p1, p2,−p3), (−p1,−p2, p3),

(p1,−p2,−p3) or (−p1,−p2,−p3) but in all cases the transformed systems
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do not approaches to original state variables. However, our considered

model obeys the dissipation of volume by computing the gradient of sys-

tem (1):

∇h =
∑

L=p1,p2,p3

∂L̇

∂L
= −(ζ + α+ 1). (3)

Using divergence theorem, Ė = −(ζ+α+1)E, where E shows the volume

in phase space. The volume decreases exponentially by solving Ė and

clearly this shows that system (1) is dissipative.

3.3 Existence of various types of attractors

The basin is the set of initial states in the phase space that heads towards

the attracting set. Hence, if the initial points in a set are attracting towards

an attractor, then the basin is famous for basin of attraction. Equivalently

as the infinity behaves like an attracting set. This type of incident opens

a new type of attractors. In this section, we have considered system (1)

for the searching of several other types of attractors. Therefore, we have

used ten million data set of initial points (which are also provided with the

paper) for Fig. 2 that leads to the exploration of several regions. In Fig.

Figure 2. Basin of attraction of system (1) elaborating various type of
attractors
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2, one can see initial conditions, with Green and Yellow colours, help in

the creation of yellow, blue and green sets. Each set shows distinct types

of attractors. Therefore, to explain Fig. 2 in more depth, we give names

to each set:

1. A1:={Set of all initial points, where yellow and green points are

intermingled with each other.}

2. A2:={Set of all initial points, where only green points exist.}

3. A3:={Set of all initial points, where only yellow points exist.}

4. A4:={Set of all initial points, where there exist neither green nor

yellow points.}

Moreover, we have selected initial points from each set to plot and explore

what each set represents. In Figs. 3 and 4, we have selected initial points

Figure 3. Cyclic, Hidden and Original attractors in system (1).

from each set to visualize the data sets of each domain. Fig. 3 is the 3D

phase portrait, where different coloured trajectories are shown, while Fig.

4 is the same figure in different planes. First, we started selecting random

points from set A1 and get that each point in this set represents chaotic

attractor. Then, we moved from set A1 to A2, which is further divided into
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(a) p1 − p2 (b) p2 − p3 (c) p1 − p3

Figure 4. Two-dimensional phase portraits of Fig. 2 in various planes

two sub-regions (Above and Below). Moreover, we have selected light (blue

and orange) colours for achieving the phase portraits of set A2. In both

Figs. 3 and 4, one can see that these trajectories are also chaotic, and one

can say that points in set A2 are leading towards Hidden attractor. After

that, moving to set A3, where we have observed that these set of initial

conditions are heading towards the creation of cyclic attractors inside the

empty space in left wing of original system (1), while the points in set A4

also shows the existence of cyclic attractors in right wing of system (1).

The more interesting result was the covering property of hidden attractor,

where the points in set A2 also work as a cover for the points in set A4.

This concept can also be seen in Fig. 2, where a cover occupies the outer

edges of the white region.

4 Four and six wings fractals in system (1)

There exist many techniques in literature for the creation of fractals in

dynamical systems [3,11,22,23,39,40,44,51–53], in which Julia [2] is one of

the important techniques. This method is applied to system (1) to produce

a chaotic system based on four and six wings. In this section, we have

proved two theorems for the creation of extra wings in the Lorenz−based

chemical system (1). Moreover, system (1) can be rewritten in terms of
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(u, v,w) as; 
u̇ = −k1u+ k2v

v̇ = k3u− k4v+ k5w− k6uw+ k7

ẇ = −k8u− k9v− k10w+ k11uv+ k12.

(4)

The following two theorems play vital role in the generation of multi-wings

chaotic attractors.

Theorem 1. Let us define a surjective mapping π1 : A(X) → B(U) as;

u = p21 − p22, v = 2p1p2, w = p3 (5)

then system (1) exhibit four wings and two similar attractors using trans-

formation U = ℘1X, where U = (u, v,w) and X = (p1, p2, p3).

Proof. We begin proof of Theorem 1 with the Jacobian matrix of trans-

formation (5):

℘1 =

2p1 −2p2 0

2p2 2p1 0

0 0 1

 . (6)

Differentiating the inverse of transformation X = ℘−1
1 U , with ℘−1

1 as

inverse of the Jacobian matrix (6)

ṗ1

ṗ2

ṗ3

 =


p1

2(p2
1+p2

2)
p2

2(p2
1+p2

2)
0

− p2

2(p2
1+p2

2)
p1

2(p2
1+p2

2)
0

0 0 1


 u̇

v̇

ẇ

 . (7)

To expand the velocity terms (u̇, v̇, ẇ) in Eq. (7), we use Eq. (5) to replace
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back (u, v,w) with (p1, p2, p3) to get system of the form:

ṗ1 =
p1

2 (p21 + p22)

[
−k1

(
p21 − p22

)
+ k2 (2p1p2)

]
+

p2
2 (p21 + p22)

[
k3

(
p21 − p22

)
− k4 (2p1p2) + k5p3 − k6

(
p21 − p22

)
p3 + k7

]
,

ṗ2 =
p1

2 (p21 + p22)

[
k3

(
p21 − p22

)
− k4 (2p1p2) + k5p3 − k6

(
p21 − p22

)
p3 + k7

]
− p2

2 (p21 + p22)

[
−k1

(
p21 − p22

)
+ k2 (2p1p2)

]
,

ṗ3 =− k8
(
p21 − p22

)
− k9 (2p1p2)− k10p3 + k11

(
p21 − p22

)
(2p1p2) + k12.

(8)

Equation (8) is our desired system, which creates four wings (two similar

attractors) of our considered model (1).

Figure 5. System (1) with four wings.

In Fig. 5, we can see the two similar chaotic attractors with four wings.

This figure is generated using Eq. (8) with initial conditions and parameter

values same as original system (1). However, its basin of attraction is part

of the most interest. Similar to the basin of attraction (can be seen in

Fig. 2) for original system, we have plotted the set of all initial points of

system (8) to discuss the existence of various attractors. Fig. 6 presents the

discussed basins, where three regions can be seen. Similarly, we categorized

each set as:



320

Figure 6. Basin of attraction of fractals-based system (8)

1. B1:={Set of initial points, covered with yellow colour.}

2. B2:={Set of initial points, covered with Brown colour.}

3. B3:={Set of initial points, covered with Grey colour.}

Figure 7. Existence of Cyclic attractors in each wing of system (8) and
a Hidden attractor.

Fig. 7 is the visual validation of figure 6, where some points are consid-
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ered from each set and plotted accordingly. Here, one can see four cyclic

attractors and single Hidden attractor. For getting this figure, we have

started selection of initial points from set B1 and got cyclic attractors in

right far wing of system (8). In similar fashion, initial points belong to set

B2 converges to attractor in left far wing, whereas the two grey coloured

regions are categorized as: grey coloured initial points in set B3 near to

set B1 converges to right wing near to centre, whereas points near to set

B2 started converging left wing near to centre.

Theorem 2. Let us define a surjective mapping π2 : A(X) → B(U) as;

u = p1
3 − 3 p1 p2

2, v = 3 p1
2 p2 − p2

3, w = p3 (9)

then system (1) exhibit four wings and two similar attractors using trans-

formation U = ℘1X, where U = (u, v,w) and X = (p1, p2, p3).

Proof. We begin proof of Theorem 2 with the Jacobian matrix of trans-

formation (9):

℘1 =

3p21 − 3p22 −6p1p2 0

−6p1p2 3p21 − 3p22 0

0 0 1

 . (10)

Differentiating the inverse of transformation X = ℘−1
2 U , with ℘−1

2 as

inverse of the Jacobian matrix (10)ṗ1

ṗ2

ṗ3

 =

 Ω1 Ω2 0

−Ω2 Ω1 0

0 0 1


 u̇

v̇

ẇ

 , (11)

where Ω1 = p1
2−p2

2

3 (p1
2+p2

2)2

Ω2 = 2 p1 p2

3 (p1
2+p2

2)2
.

(12)

To expand the velocity terms (u̇, v̇, ẇ) in Eq. (11), we use Eq. (9) to
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replace back (u, v,w) with (p1, p2, p3) to get system of the form:

ṗ1 =
p1

2 − p2
2

3 (p12 + p22)
2

[
−k1

(
p31 − 3 p1 p

2
2

)
+ k2

(
3 p21 p2 − p32

)]
+

2 p1 p2

3 (p12 + p22)
2

[
k3

(
p31 − 3 p1 p

2
2

)
− k4

(
3 p21 p2 − p32

)
+ k5p3

−k6
(
p31 − 3 p1 p

2
2

)
p3 + k7

]
,

ṗ2 =
2 p1 p2

3 (p12 + p22)
2

[
k3

(
p31 − 3 p1 p

2
2

)
− k4

(
3 p21 p2 − p32

)
+ k5p3

−k6
(
p31 − 3 p1 p

2
2

)
p3 + k7

]
− p1

2 − p2
2

3 (p12 + p22)
2×[

−k1
(
p31 − 3 p1 p

2
2

)
+ k2

(
3 p21 p2 − p32

)]
,

ṗ3 =− k8
(
p31 − 3 p1 p

2
2

)
− k9

(
3 p21 p2 − p32

)
− k10p3 + k11uv+ k12.

(13)

Equation (13) is our desired system, which generate six wings (three similar

attractors) of our considered model (1).

Figure 8. Six wings of system (1) using Eq. (13)

In Fig. 8, one can observe three similar chaotic attractors with six

wings. This figure is generated using Eq. (13) with initial conditions and

parameter values same as original system (1). The more we are increas-

ing numbers of wings in our considered model, the more fascinating and
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Figure 9. Basin of attraction of system (13) having six wings.

complex basins we are getting. Fig. 9 shows the required basin for system

(13), which is categorized in three coloured regions as

1. C1:={Set of initial points, covered with Black colour.}

2. C2:={Set of initial points, covered with Cyan colour.}

3. C3:={Set of initial points, covered with Cream colour.}

Fig. 10 shows the existence of cyclic attractors in each region. The in-

teresting thing, we have observed here is the disappearance of hidden at-

tractors but the number of cyclic attractors are increasing in proportion

to the number of wings. For plotting this figure, we have started selection

of initial points from each set and got cyclic attractors inside each wing.

For detailed information each attractor, inside each wing, can be seen in

Fig. 10 indicated by arrows and bounded in squares.

5 Higher degree of wings with the relation

of its basins

In section (4), we have observed the direct proportionality relation between

the number of generated wings and cyclic attractors. In other words, one
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Figure 10. Cyclic attractors in each wing of system (13).

can say that, the more we increase the numbers of wings in chaotic system

using Julia procedure, the more cyclic attractors will also be generated. In

this section, we will select random dimension to generate wings of system

(1) along with its basins, with the aid of procedure discussed in Section (4),

to verify the aforementioned relation. Hence, for a generalized 2n multi-

wings system (1), we have a system has been obtained that can generate

the multi-wing chaotic attractors and can be expressed as follows:

u̇k =
R̄

k
∣∣φk

k

∣∣2k−2
[−k1R+ k2S]

− S̄

k
∣∣φk

k

∣∣2k−2
[k3R− k4S + k5w− k6Rw+ k7]

v̇k =
S̄

k
∣∣φk

k

∣∣2k−2
[−k1R+ k2S] (14)

+
R̄

k
∣∣φk

k

∣∣2k−2
[k3R− k4S + k5w− k6Rw+ k7]

ẇn =− k8R− k9S− k10w+ k11RS + k12.

System (14) is the generalized equation for the generation of 2k wings of

our considered model. In the above expression (14), R represents the real
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and S represents the imaginary parts of polynomial φk
k having kth−order

and are given in Appendix B. Here, our concern is with the generation

of multiple wings along with cyclic attractors in system (1). Therefore,

we select k = 7 in Eq. (14) to generate seven similar attractors, fourteen

wings and cyclic attractors inside each wing. In Fig. 11, we can see seven

Figure 11. Fractals of chemical system with fourteen wings

similar chaotic attractors and each attractor has double wings. Therefore,

fourteen-winged fractals of our considered model are achieved. This is

further continued with the achievement of basins of Fig. 11. In Fig.

12, one can see the basin in symmetrical shape and has obtained exactly

the same shape of fractals. Similar to the explanation given in previous

section (4), one can observe the seven different coloured attracting sets.

These sets are responsible for the generation of cyclic attractors inside each

wing. Figure 13 is the validation of above explanation about the basins

given in Fig. 12, whereas each wing containing cyclic attractors can be

seen with the same colour selected as for its basin. This figure shows that
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Figure 12. Basins of system (14) with k = 7

Figure 13. Cyclic attractors in each wing of system (14).
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our idea is not limited to two or three wings. The more we generate its

wings, the more cyclic attractor can be achieved. Moreover, till now, no

one has discussed the concept of basins for fractals. Therefore this idea will

open the new door and can solve more riddled questions with the passage

of time, related to fractals and chaotic systems.

6 Conclusion

In a chemical system, numerous atomic bonds undergo chemical reactions.

However, if the bonds between atoms begin to dissolve and reform into

similar tiny structures, fractals are always born. Fractals are always stud-

ied in relation to the generation of analogous structures. For this purpose,

we have modelled a chemical reaction-based system by introducing modi-

fications in the Lorenz system and adjusting the axis-shifted value. What

is the difference between the phase portraits of the original Lorenz sys-

tem and the one depicted in Figure 1? In section (3), however, we have

demonstrated that although the first phase portrait appears similar, the

remaining properties are distinct. Using basins, we were able to establish

the existence of cyclic and concealed attractors, which is the most signifi-

cant finding. Using the Julia technique, the dynamics of system (1) were

expanded by generating 2k chaotic wings. In Figures 5, 8, and 11, the

system (1) generates four, six, and fourteen wings, respectively. In addi-

tion, the dynamics of additional wings were first achieved by collecting all

the initial points in a set known as its basin. For each wing, the basin

(shown in Figures 6, 9 and 12) was provided in order to investigate some

hidden and deep dynamical aspects. Using these figures, we were able to

determine the existence of cyclic attractors in all extra wings through the

plotting of Figures 7, 10 and 11.

Appendix A

The Lorenz based chemical reaction is classified into four types, Coop-

erative catalytic species of constant concentration; C, Irreversible source

reactions; S, Irreversible deletion to an external sink; E and Rate limit-
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ing; R. Moreover, for Rate limiting; R, we need to understand the rate

determining step. Therefore, the slow and fast reactions can be postulated:D + p1 + p3 −→ D⋆ + p1 + p3 (Slow)

D⋆ + p2 −→ D +R (Fast).
(15)

In accordance with the classifications and Eq. (15) the following reactions

can take place for Irreversible source reaction (S): R
k12−→ z, JS = k12,

Cooperative catalytic species of constant concentration; C:

Reactions Rates

(C1) A+ p2
k2−→ p1 + p2, JC1 = p2k2,

(C2) B + p1
k3−→ p2 + p1, JC2 = p1k3,

(C3) B + p3
k5−→ p2 + p3, JC3 = p3k5

(C4) C + p1 + p2
k11−→ p3 + p1 + p2, JC4 = p1p2k11,

(16)

Rate limiting (slow / fast) deletion of variable species; R:

Reactions Rates

(R1) D + p1 + p3
kb−→

(slow)
D⋆ + p1 + p3

D⋆ + p2 −→
( fast )

D +R, JR1 = p1p3k6

(R2) D
k7−→

( slow )
D⋆, D⋆ + p2 −→

( fast )
D +R JR2 = k7

(R3) E + p1
k8−→

(slow)
E⋆ + p1, E⋆ + p3 −→

(fast)
E +R JR3 = p1k8,

(R4) E + p2
k9−→

(slow)
E⋆ + p2, E⋆ + p3 −→

(fast )
E +R JR4 = p2k9

(17)

and irreversible deletion to an external sink; E:

Reactions Rates

(E1) p1
k1−→ R, JE1 = p1k1,

(E2) p2
k4−→ R, JE2 = p2k4,

(E3) p3
k10−→ R, JE3 = p3k10.

(18)
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These reactions plays vital role in governing the following dynamical sys-

tem in terms of constant rates J .
ṗ1 = −JE1 + JC1

ṗ2 = JC2 − JE2 + JC3 − JR1 + JR2

ṗ3 = −JR3 − JR4 − JE3 + JC4 + JS,

(19)

We will get system of chemical reactions (1), by substitute the right side

of equations used in Rates column of Eqs. (16-18), into Eq. (19).

Appendix B

In 2016, Guo et al [10] derived analytical formulae using Julia process,

which Anam et al [2] used for the generation of multi-wings in STF model

as well. They have defined a mapping from ϕk := ℧n → ℧ = ℧1, such

that ϕk(π
k
k ,w) for k ≥ 2, where πk

k=π1=u+ ιv is a complex number. The

mapping possess a local diffeomorphism with the extra condition that one

of the axis will remain unchanged. For ϕk, the Jacobian matrix is:

℘ϕk =


∂u
∂uk

∂u
∂vk

0
∂v
∂uk

∂v
∂vk

0

0 0 ∂w
∂w

 . (20)

The inverse of ℘ϕk is given as

℘−1ϕk =


R̄

k|φk
k|2k−2 − S̄

k|φk
k|2k−2 0

S̄

k|φk
k|2k−2

R̄

k|φk
k|2k−2 0

0 0 1

 . (21)
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In Eq. (21), R̄ and and S̄ are the real and imaginary parts of a polynomial

φk
k having (k − 1)th order and is expressed as given in [2, 10]

R̄ = Re
(
(uk − ivk)

k−1
)

=

uk−1
k + fR̄ (uk, vk) , if kis even

uk−1
k + gR̄ (uk, vk) , if kis odd

(22)

where

fR̄(·) =
(k−2)/2∑

i=1

(−1)i
Π2i−1

j=0 (k − j − 1)

(2i)!
uk−2i−1
k v2ik ,

gR̄(·) =
(k−1)/2∑

i=1

(−1)i
Π2i−1

j=0 (k − j − 1)

(2i)!
uk−2i−1
k v2ik

and

S̄ = Im
(
(uk − ivk)

k−1
)

=

{
fS̄ (uk, vk) , if k is even

gS̄ (uk, vk) , if k is odd
(23)

fS̄(·) =
k/2∑
i=1

(−1)i
Π2i−2

j=0 (k − j − 1)

(2i− 1)!
uk−2i
k v2i−1

k ,

gS̄(·) =
(k−1)/2∑

i=1

(−1)i
Π2i−2

j=0 (k − j − 1)

(2i− 1)!
uk−2i
k v2i−1

k .

Hence, for a generalized 2k multi-wings system (1), we have

 u̇k

v̇k

ẇk

 =℘−1
k ϕk

 u̇

v̇

ẇ

 =


R̄

k|φk
k|2k−2 − S̄

k|φk
k|2k−2 0

S̄

k|φk
k|2k−2

R̄

k|φk
k|2k−2 0

0 0 1

 (24)

×

 Ψ1 (uk, vk,w)

Ψ2 (uk, vk,w)

Ψ3 (uk, vk,w)

 , (25)
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whereas the analytical results for Ψ1, Ψ2 and Ψ3 can be achieved by sub-

stituting R, S, w into Eq. (4) by replacing u, v and w respectively Ψ1 (uk, vk,w)

Ψ2 (uk, vk,w)

Ψ3 (uk, vk,w)

 (26)

=

 −k1R+ k2S

k3R− k4S + k5w− k6Rw+ k7

−k8R− k9S− k10w+ k11RS + k12.

 , (27)

where R and S given below show the real and imaginary parts of the

polynomial ϕk
k

R =Re
(
(uk + ιvk)

k
)

=

{
ukk + fR (uk, vk) , if k is even

ukk + gR (uk, vk) , if k is odd
(28)

fR(·) =
k/2∑
i=1

(−1)i
Π2i−1

j=0 (k − j)

(2i)!
uk−2i
k v2ik ,

gR(·) =
(k−1)/2∑

i=1

(−1)i
Π2i−1

j=0 (k − j)

(2i)!
uk−2i
k v2ik .

and

S =

{
fS (uk, vk) , if k is even

gS (uk, vk) , if k is odd
(29)

fS(·) =
k/2∑
i=1

(−1)i+1
Π2i−2

j=0 (k − j)

(2i− 1)!
uk−2i+1
k v2i−1

k ,

gS(·) =
(k+1)/2∑

i=1

(−1)i+1
Π2i−2

j=0 (k − j)

(2i− 1)!
uk−2i+1
k v2i−1

k .

Equations (20−29) are the analytical formulae used in achieving multiple
wings, not only in our considered model, but in all chaotic systems as well.
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